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Abstract. Kostant’s theory of conformally invariant differential operators
on certain homogeneous spaces is generalized to cover conformally invariant
systems of endomorphism-valued differential operators. In particular, the con-
nection discovered by Kostant between conformally invariant operators and
highest weight vectors in generalized Verma modules is extended.

1. Introduction

This work concerns itself with conformally invariant systems of differential op-
erators. We begin by giving a rough account of the meaning that we assign to
this term. A more precise and more general definition may be found in Section 2.
Suppose that M is a manifold and g is a Lie algebra of first order linear differential
operators on M . We call a list D1, . . . , Dm of linear differential operators on M
conformally invariant if we have

[X,Di] =
m∑

j=1

C(X)jiDj

for all 1 ≤ i ≤ m and X ∈ g, where C(X) is an m-by-m matrix of smooth functions
on M . This definition corresponds to that used by Kostant [6] in the case where
m = 1 and M is an open subset of a generalized flag manifold. It is also consistent
with the general definition given by Ehrenpreis [3]. In this latter work one may find
an interesting discussion of the philosophical significance of conformal invariance
and its relation to other themes in analysis.

In [1], the authors constructed many examples of conformally invariant systems
of differential operators. In particular, for any complex simple Lie algebra g of rank
greater than one, a system of many second-order differential operators and a system
consisting of a single fourth-order differential operator that are both conformally
invariant under g were constructed. Whereas [1] was focused on the construction
of examples, the present work is focused on establishing some general properties
of such systems. One of our aims is to justify a number of claims that were made
without proof in [1], and to answer a question that was left open there. A second
aim is to show that the main result of Kostant’s original theory (Theorem 4.7
in [6]) generalizes satisfactorily to conformally invariant systems provided that one
replaces highest weight vectors with what we call leading types (the reader may find
the definition of this term in Section 6). A third aim is to place various arguments
in their natural settings, with a resulting gain in both simplicity and generality.
In particular, parts of the theory presented here apply to conformally invariant

2000 Mathematics Subject Classification. Primary: 22E47.

1



2 L. BARCHINI, ANTHONY C. KABLE, AND ROGER ZIERAU

systems on manifolds, and with respect to Lie algebras, beyond those originally
considered by Kostant.

In keeping with the third aim identified above, the paper is structured by pro-
gressive specialization. Sections 2 and 3 take place on a manifold equipped with a
suitable Lie algebra of first order operators, and contain the basic definitions and
results on conformally invariant systems. In the brief Section 4, the consequences of
an additional assumption on the manifold are investigated. Section 5 moves some-
what closer to Kostant’s original setting by focusing on the case where the manifold
and Lie algebra arise from a dense open double coset in a connected real Lie group.
In this setting, it is already possible to obtain a purely algebraic description of
conformally invariant systems, which is given in Theorem 5.5. The process of spe-
cialization continues in Section 6, where we adopt Kostant’s original framework and
prove a generalization of his main result; this generalization appears as Theorem
6.3. In this section, we also justify the outstanding claims made in [1]. Finally, in
Section 7, we apply the theory that has been developed up to that point to answer
a question concerning the existence of certain conformally invariant systems that
was left open in [1]. The answer is given as Theorem 7.1, whose is proof is merely
sketched, since it is somewhat tangential to the main development. It is included
as an example of how the present theory may be used to settle concrete questions
about conformally invariant systems.

The reader should be aware of a previous extension of Kostant’s theory, which
may be found in [4]. This extension uses differential intertwining operators instead
of conformally invariant systems. By comparing the discussion in Section 6 with
Lemma 2.4 in [2], the reader will see that there is a close connection between
the two theories. In particular, every straight homogeneous L-stable conformally
invariant system gives rise to a differential intertwining operator between suitable
smooth induced representations, and conversely. The reader may thus be puzzled
to encounter Huang’s assertion, in Section 5 of [4], that quasi-invariant systems are
inadequate to detect the reducibility of generalized Verma modules in this setting.
The resolution of this puzzle is that Huang’s quasi-invariant systems are defined
differently from our conformally invariant systems, and have different properties.
We shall postpone the task of making the connection between the two theories more
explicit until we require it in future work.

2. Conformally Invariant Systems

The goal of this section is to define the notion of a conformally invariant system
of differential operators, and to note some of the basic properties of such systems.
Before we can do so, we require a number of preliminary definitions. For defi-
niteness, we phrase the theory with real coefficients; with trivial adjustments, the
discussion applies equally well with complex coefficients. We shall take advantage
of this observation beginning in Section 5.

We always work in the smooth category. Let M be a manifold. If V → M is a
vector bundle over M and U ⊂ M is an open set then we denote by Γ(U,V) the
space of sections of V over U , and abbreviate Γ(M, V) to Γ(V). We write T (M) for
the tangent bundle of M , Tp(M) for the tangent space at p, C∞(M) for the space
of smooth functions on M , and X(M) for Γ(T (M)), the space of smooth vector
fields on M . For any vector bundle V → M and open set U , the space Γ(U,V) is
understood to carry its usual smooth topology.
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If V1 → M and V2 → M are two vector bundles then we shall have to consider
the space D(V1,V2) of (finite-order) differential operators from V1 to V2. In order to
describe this space, suppose first that M is an open subset of Rn and that both V1

and V2 are trivial bundles. We may then identify Γ(Vj) with the space C∞(M ;Vj)
of smooth maps from M to a vector space Vj . An operator D : Γ(V1) → Γ(V2) is
said to be a differential operator if it may be written in the form

D•σ =
∑

|α|≤k

Tα(∂α•σ) (2.1)

for some k ≥ 0 and all σ ∈ Γ(V1), where each Tα is a smooth map from M to
Hom(V1, V2) and we are using multi-index notation for partial derivatives. Here we
write • to denote the action of differential operators on sections. This notation,
common in the algebraic literature, allows us to preserve juxtaposition for multipli-
cation. In the general case, an operator D : Γ(V1) → Γ(V2) is a differential operator
if it is so everywhere locally. This implies, in particular, that D is continuous and
support non-increasing. A differential operator D induces a differential operator
D : Γ(U,V1) → Γ(U,V2) for any open set U in M . We abbreviate D(V,V) to D(V).

Let g be a real Lie algebra. We say that M is a g-manifold if we are given an
R-linear map Π : g → C∞(M) ⊕ X(M) such that Π([X, Y ]) = [Π(X), Π(Y )] for
all X, Y ∈ g. Intuitively, M is a g-manifold if g has been realized as an algebra
of first-order differential operators on M . We shall assume henceforth that all the
manifolds we consider are equipped with the structure of a g-manifold. For X ∈ g
we shall write Π(X) = Π0(X)+Π1(X) with Π0(X) ∈ C∞(M) and Π1(X) ∈ X(M).
With this notation, the condition on Π is equivalent to the identities

Π0([X, Y ]) = Π1(X)•Π0(Y )−Π1(Y )•Π0(X)

and
Π1([X, Y ]) = [Π1(X), Π1(Y )]

for all X, Y ∈ g.
Suppose now that V → M is a vector bundle. Note that any smooth function

on M corresponds to an element of D(V) given by multiplication by that function.
We say that V → M is a g-bundle if we are given a linear map ΠV : g → D(V) that
has the following properties:

(B1) We have ΠV([X,Y ]) = [ΠV(X), ΠV(Y )] for all X,Y ∈ g.
(B2) In D(V), [ΠV(X), f ] = Π1(X)•f for all X ∈ g and all f ∈ C∞(M).
We note one source of g-bundles on M . Suppose that we are given a bundle

V → M together with a flat connection ∇ on V. Then we may define a g-bundle
structure on V by setting ΠV(X)•σ = ∇Π1(X)(σ)+Π0(X)σ for σ ∈ Γ(V) and X ∈ g.
However, by no means all g-bundle structures arise in this way.

Let V → M be a g-bundle. A list D1, . . . , Dn of elements of D(V) is said to
constitute a conformally invariant system on V if the following two conditions are
satisfied:

(S1) For all p ∈ M , the list D1, . . . , Dn is linearly independent at p.
(S2) For each X ∈ g there is a matrix C(X) with entries in C∞(M) such that

[ΠV(X), Di] =
n∑

j=1

C(X)jiDj

in D(V).
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We call C : g → gl(n,C∞(M)) the structure operator of the conformally invariant
system. Note that, because of the non-degeneracy assumption (S1), the system
D1, . . . , Dn uniquely determines C. In the following lemma, we extend the action
of vector fields on functions to the entry-wise action on matrices of functions. We
continue to use this notation below.

Lemma 2.1. Let C be the structure operator of a conformally invariant system.
Then, for all X, Y ∈ g, we have

C([X, Y ]) = Π1(X)•C(Y )−Π1(Y )•C(X) + [C(X), C(Y )].

Proof. A calculation. ¤
Two conformally invariant systems D1, . . . , Dn and D′

1, . . . , D
′
n are equivalent if

there is a matrix A ∈ GL(n,C∞(M)) such that

D′
i =

n∑

j=1

AjiDj

for 1 ≤ i ≤ n. The matrix A is said to realize the equivalence. Note that by (S1)
A is uniquely determined by the systems D1, . . . , Dn and D′

1, . . . , D
′
n.

Lemma 2.2. Let D1, . . . , Dn and D′
1, . . . , D

′
n be equivalent conformally invariant

systems with structure operators C and C ′. Let A be the matrix realizing the equiv-
alence. Then

C ′(X) = A−1(Π1(X)•A) + A−1C(X)A
for all X ∈ g.

Proof. A calculation. ¤
We say that a conformally invariant system D1, . . . , Dn is reducible if there is

an equivalent system D′
1, . . . , D

′
n and an m < n such that the system D′

1, . . . , D
′
m

is conformally invariant; otherwise, we say that D1, . . . , Dn is irreducible. We may
similarly formulate the notion of a direct sum of two conformally invariant systems,
use of which will be made below.

We shall use the abbreviation D in place of D1, . . . , Dn when convenient. If D is a
conformally invariant system on V then let E(D) be the trivial vector bundle over M
that is spanned by D1, . . . , Dn. Note that these operators are linearly independent
at each p and so E(D) is indeed a rank n vector bundle over M . Observe also that
the bundle E(D) depends only on the equivalence class of D. If we choose any other
ordered basis of global sections of E(D) then it will correspond to a conformally
invariant system equivalent to D.

We wish to define a g-bundle structure on E(D). We begin by setting

ΠE(D)(X)•Di =
n∑

j=1

C(X)jiDj .

Property (B2) and linearity then specify a unique extension of this action to all
sections. In order that this extension yield a g-bundle structure it is sufficient
that we have ΠE(D)([X,Y ])•Di = [ΠE(D)(X), ΠE(D)(Y )]•Di for all X, Y ∈ g and
1 ≤ i ≤ n. A calculation gives

ΠE(D)(X)•
(
ΠE(D)(Y )•Di

)
=

n∑

j=1

(
Π1(X)•C(Y )ji + (C(X)C(Y ))ji

)
Dj
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and this and Lemma 2.1 imply the required conclusion.
The bundle E(D) gives a convenient setting in which to discuss certain properties

of conformally invariant systems. For instance, a system D is irreducible if and only
if E(D) is an irreducible g-bundle.

3. Abstract Verma Modules

We expect there to be a connection between the existence of conformally in-
variant systems and the reducibility of Verma modules. In order to formulate this
relationship in the setting of g-manifolds, we must first explain what is to play the
role of a Verma module in this generality.

Let V → M be a g-bundle, p ∈ M , and W a finite-dimensional real vector space.
We define D′

p(V; W ) to be the set of all R-linear maps Λ : Γ(V) → W that have the
following properties:

(D1) The map Λ is continuous with respect to the smooth topology on Γ(V) and
the usual topology on W .

(D2) If U ⊂ M is an open set containing p and σ ∈ Γ(V) restricts to zero on U
then Λ(σ) = 0.

We abbreviate D′
p(V;R) to D′

p(V). In effect, D′
p(V; W ) is the space of W -valued

distributions on Γ(V) that are supported at p. Note that if Λ ∈ D′
p(V;W ), U ⊂ M

is an open set containing p and σ ∈ Γ(U,V) then (D2) implies that Λ(σ) may
be defined simply by choosing some τ ∈ Γ(V) such that τ |U = σ and setting
Λ(σ) = Λ(τ). This extension will be taken for granted below.

Define an action of g on D′
p(V;W ) by

(
Π′V(X)•Λ

)
(σ) = −Λ(ΠV(X)•σ)

for X ∈ g, Λ ∈ D′
p(V; W ), and σ ∈ Γ(V). Since ΠV(X) is continuous and sup-

port non-increasing, the action is well-defined. One verifies that Π′V([X,Y ]) =
[Π′V(X), Π′V(Y )] for all X,Y ∈ g. Let U0(g) denote the universal enveloping algebra
of g. (The subscript is included to emphasize that we are considering real coeffi-
cients; as mentioned before, everything we say applies equally well with complex co-
efficients.) The action of g on D′

p(V;W ) via Π′V may be extended to give D′
p(V; W )

the structure of a left U0(g)-module. It is easy to see that D′
p(V; W ) ∼= D′

p(V)⊗RW
as U0(g)-modules, where U0(g) acts on the first factor in the tensor product.

If T ∈ Hom(Vp,W ) then we may associate to T the element of D′
p(V; W ) given

by σ 7→ T (σ(p)). This identifies Hom(Vp,W ) as a subspace of D′
p(V; W ), and we

shall regard this identification as an identity henceforth. Note that Hom(Vp, W )
may be characterized as the set of all Λ ∈ D′

p(V;W ) such that Λ(fσ) = f(p)Λ(σ)
for all f ∈ C∞(M). If D ∈ D(V) and Λ ∈ D′

p(V;W ) then we define DΛ ∈ D′
p(V; W )

by (DΛ)(σ) = Λ(D•σ). Since D is continuous and support non-increasing, DΛ is
well-defined.

Theorem 3.1. Let D1, . . . , Dn be a conformally invariant system on the g-bundle
V. Take p ∈ M and suppose that there is some σ0 ∈ Γ(V) such that Di•σ0 = 0 for
all 1 ≤ i ≤ n and σ0(p) 6= 0. Let F be the R-span of the set

{Diλ | 1 ≤ i ≤ n, λ ∈ V∗p}
in D′

p(V). Then U0(g)F is a non-zero proper submodule of the module D′
p(V). In

particular, D′
p(V) is reducible.
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Proof. We first show that F 6= {0}. By hypothesis, D1, . . . , Dn is linearly inde-
pendent at p. In particular, D1 does not vanish identically at p and so there is
some σ ∈ Γ(V) such that (D1•σ)(p) 6= 0. We may then find some λ ∈ V∗p such that
λ(D1•σ(p)) 6= 0. That is, (D1λ)(σ) 6= 0 and so D1λ 6= 0. It follows from this that
F 6= {0}, and hence that U0(g)F 6= {0}.

Next we claim that if Λ ∈ U0(g)F then Λ(σ0) = 0. The conformal invariance of
the system D1, . . . , Dn implies that the common solution space of these operators
is stable under the action of g. The Lie algebra homomorphism ΠV : g → D(V)
extends to an algebra homomorphism ΠV : U0(g) → D(V) and it follows from
the preceding observation that the common solution space of D1, . . . , Dn is stable
under the action of U0(g). Now let b ∈ U0(g), λ ∈ V∗p, and 1 ≤ i ≤ n. Then(
ΠV(b)•(Diλ)

)
(σ0) is a sum of terms of the form λ

(
Di•(ΠV(a)•σ0)

)
for various

a ∈ U0(g). Since Di•(ΠV(a)•σ0) = 0, we have
(
ΠV(b)•(Diλ)

)
(σ0) = 0, and the

claim follows from this and the R-linearity of the action.
By hypothesis, σ0(p) 6= 0 and so there is some λ ∈ V∗p such that λ(σ0(p)) 6= 0.

This provides an element of D′
p(V) that does not annihilate σ0 and we conclude

that U0(g)F 6= D′
p(V). This completes the proof. ¤

Some hypothesis is certainly necessary in Theorem 3.1, because the identity
operator by itself constitutes a conformally invariant system on any g-bundle, but
does not give rise to reducibility in the associated modules. We next compute how
g acts via Π′V on an element of the space F defined in the statement of Theorem
3.1.

Lemma 3.2. Let V be a g-bundle on M and D1, . . . , Dn a conformally invariant
system on V. If λ ∈ V∗p and Y ∈ g then

Π′V(Y )•(Diλ) = Di(Π′V(Y )•λ) +
n∑

j=1

C(Y )ji(p)Djλ.

Proof. Let σ ∈ Γ(V). Then
(
Π′V(Y )•(Diλ)

)
(σ) = −(Diλ)

(
ΠV(Y )•σ

)

= −λ
(
Di•(ΠV(Y )•σ)

)

= −λ
(
ΠV(Y )•(Di•σ)− [ΠV(Y ), Di]•σ

)

= −λ
(
ΠV(Y )•(Di•σ)

)
+

n∑

j=1

λ
(
C(Y )jiDj•σ

)

=
(
Π′V(Y )•λ

)
(Di•σ) +

n∑

j=1

C(Y )ji(p)λ
(
Dj•σ

)

=
(
Di(Π′V(Y )•λ)

)
(σ) +

n∑

j=1

C(Y )ji(p)(Djλ)(σ).

The asserted identity follows. ¤

We can be more precise about the structure of the space F in the presence of
additional structure on the underlying g-manifold. Suppose that m is a subalgebra
of g. We shall call a point p ∈ M a polar point for m if (Π1(Z)•f)(p) = 0 for all
Z ∈ m and f ∈ C∞(M). In cases where the g-structure on M arises from a group
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action, saying that p is a polar point for m will be essentially the same as saying
that m is contained in the isotropy subalgebra of p. This may give some intuition
for the concept in general.

Lemma 3.3. Let m be a subalgebra of g, p ∈ M a polar point for m and V a
g-bundle. Then m preserves the subspace V∗p of D′

p(V).

Proof. Let λ ∈ V∗p, Z ∈ m, σ ∈ Γ(V) and f ∈ C∞(M). Then
(
Π′V(Z)•λ

)
(fσ) = −λ

(
ΠV(Z)•(fσ)

)

= −λ
(
(Π1(Z)•f)σ + fΠV(Z)•σ

)

= −(Π1(Z)•f)(p)λ(σ)− f(p)λ
(
ΠV(Z)•σ

)

= f(p)
(
Π′V(Z)•λ

)
(σ).

It follows that Π′V(Z)•λ ∈ V∗p. ¤

Lemma 3.4. Let m be a subalgebra of g and p ∈ M a polar point for m. Take V

a g-bundle on M and D = D1, . . . , Dn a conformally invariant system on V. Then
the map m → gl(n,R) given by Z 7→ C(Z)(p) is a representation of m.

Proof. Let Z1, Z2 ∈ m. By Lemma 2.1, we have

C([Z1, Z2]) = Π1(Z1)•C(Z2)−Π1(Z2)•C(Z1) + [C(Z1), C(Z2)].

By evaluating both sides of this equation at p and using the definition of a polar
point, we obtain

C([Z1, Z2])(p) = [C(Z1)(p), C(Z2)(p)],

as required. ¤

If p is a polar point for a subalgebra m then Lemma 3.2 says that, as a represen-
tation of m, the space F defined in Theorem 3.1 is a quotient of the tensor product
Rn ⊗ V∗p. Here m acts on Rn via the map Z 7→ C(Z)(p) identified in Lemma 3.4
and on V∗p via Π′V. If we identify the standard basis in Rn with D1, . . . , Dn then
the quotient map Rn ⊗ V∗p → F is given on simple tensors by Di ⊗ λ 7→ Diλ.

4. Straight Manifolds

In this section, we consider a restricted class of g-manifolds on which we may
prove further properties of conformally invariant systems. The additional restric-
tions placed on manifolds in this class may not seem particularly natural; they are
motivated by the context in which we intend to apply the results.

We say that the g-manifold M is straight if there is a subalgebra n of g such that
(N1) Π(n) ⊂ X(M).
(N2) For all p ∈ M , the map X 7→ Π(X)(p) is a linear isomorphism between n

and Tp(M).
Suppose that M is straight and let X1, . . . , Xr be a basis for n and Vj = Π(Xj).
The vector fields V1, . . . , Vr are a global ordered basis of smooth sections of T (M).
In particular, a straight g-manifold necessarily has trivial tangent bundle. If M is
straight and V → M is a g-bundle then there is a unique connection ∇ on V that
satisfies ∇Vj (σ) = ΠV(Xj)•σ for σ ∈ Γ(V) and 1 ≤ j ≤ r. A calculation, relying on
property (B1), shows that this connection is flat.
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Lemma 4.1. Let M be a straight g-manifold, V → M a g-bundle of rank m and
U ⊂ M a simply-connected open set. Then there are σ1, . . . , σm ∈ Γ(U, V) such that
σ1(p), . . . , σm(p) is an ordered basis of Vp for all p ∈ U and ΠV(X)•σi = 0 for all
X ∈ n and 1 ≤ i ≤ m.

Proof. Fix q ∈ U . The holonomy group of ∇ at q with respect to the manifold U
is trivial. It follows that parallel transportation taking any ordered basis of Vq as
initial data produces a list of sections of V|U with the required properties. ¤

We next identify a particularly nice set of representatives in each equivalence
class of conformally invariant systems when M is straight. To this end, we shall
call a conformally invariant system D1, . . . , Dn on a straight manifold straight if its
structure operator vanishes on n.

Proposition 4.2. Let M be simply-connected and straight, and V → M be a g-
bundle on M . Then every conformally invariant system on V is equivalent to a
straight conformally invariant system.

Proof. This follows at once by applying Lemma 4.1 to the g-bundle E(D). ¤
Note that this result may be applied to the restriction of a conformally invariant

system to a simply-connected open set U ⊂ M . Thus every conformally invariant
system on a straight manifold is everywhere locally equivalent to a straight confor-
mally invariant system. Although each equivalence class of conformally invariant
systems contains an infinite number of straight conformally invariant systems, the
equivalences between these systems are of a very restricted type.

Lemma 4.3. Let D1, . . . , Dn and D′
1, . . . , D

′
n be equivalent, straight, conformally

invariant systems on V → M . Then the matrix realizing the equivalence between
the two systems is locally constant.

Proof. Let A ∈ GL(n,C∞(M)) be the matrix realizing the equivalence. It follows
from Lemma 2.2 that Π(X)•A = 0 for all X ∈ n. Since the image of n under Π is
the full tangent space at every point, we conclude that A is locally constant. ¤

Assume that M is simply-connected and that the conformally invariant sys-
tem D1, . . . , Dn is straight and reducible. Then there is an equivalent system
D′

1, . . . , D
′
n and an m < n such that D′

1, . . . , D
′
m is conformally invariant. The

system D′
1, . . . , D

′
m may be straightened to D′′

1 , . . . , D′′
m and the system of oper-

ators D′′
1 , . . . , D′′

m, D′
m+1, . . . , D

′
n is conformally invariant. This system may be

straightened to obtain the system D′′
1 , . . . , D′′

n, which is equivalent to the original
system. From this and the argument of Lemma 4.3, we conclude that we may take

D′
i =

n∑

j=1

ajiDj

with aji constant.

5. A Specialization of the Theory

The purpose of this section is to specialize the theory to a setting which en-
compasses a number of interesting examples and in which more precise results can
be obtained. Recall that, as we remarked above, the theory developed so far ap-
plies equally well with complex scalars. In keeping with the usual conventions for
generalized Verma modules, we shall henceforth take the scalar field to be C.
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Let G be a connected real Lie group with (complex) Lie algebra g and real Lie
algebra g0. Suppose that N and H are closed subgroups of G such that N∩H = {e}
and NH is a dense open subset of G. We also require that N be connected. Let n
and h denote the Lie algebras of N and H, respectively, and note that g = n ⊕ h.
For Y ∈ g, we write Y = Yn + Yh for the decomposition of Y in this direct sum.
If g ∈ NH then there is a unique factorization g = n(g)h(g) with n(g) ∈ N and
h(g) ∈ H, and the maps g 7→ n(g) and g 7→ h(g) are smooth. For Y ∈ g0 we have

Yn =
d

dt
n
(
exp(tY )

)∣∣
t=0

,

and similarly with Yh.
Let (η, V ) be a finite-dimensional smooth representation of H. For any manifold

M , denote by C∞(M ; V ) the space of smooth maps from M to V . The group G
acts on the space

C∞η (G; V ) = {Φ ∈ C∞(G;V ) | Φ(gh) = η(h−1)Φ(g) for all h ∈ H and g ∈ G}
by left translation. The derived action Πη of g on C∞η (G;V ) is given by

(
Πη(Y )•Φ

)
(g) =

d

dt
Φ

(
exp(−tY )g

)∣∣
t=0

for Y ∈ g0. This action extends by C-linearity to g and then by universality to
U(g). We denote the extended actions by the same symbol and make such extensions
silently in future.

The restriction map C∞η (G; V ) → C∞(N ; V ) is injective and its image is dense
in C∞(N ; V ) in the smooth topology. We may transport Πη to the image of this
map by defining Πη(u)•ϕ = (Πη(u)•Φ)|N for u ∈ U(g) and Φ ∈ C∞η (G;V ) such
that ϕ = Φ|N . Let R denote the action of U(n) on C∞(N ; V ) defined by

(
R(X)•ϕ

)
(n) =

d

dt
ϕ(n exp(tX))

∣∣
t=0

for X ∈ n0 and ϕ ∈ C∞(N ;V ). A calculation shows that
(
Πη(Y )•ϕ

)
(n) = dη

(
(Ad(n−1)Y )h

)
ϕ(n)− (

R
(
(Ad(n−1)Y )n

)
•ϕ

)
(n)

for ϕ in the image of the restriction map from C∞η (G; V ). This expression may
then be used to extend Πη(Y ) to the whole space C∞(N ; V ). When η is the trivial
representation we write Π(Y ) for Πη(Y ). For n0 ∈ N , we define (`n0ϕ)(n) =
ϕ(n−1

0 n).

Lemma 5.1. For X, X ′ ∈ n, n0 ∈ N , and Y ∈ g, we have
(1) `n0 ◦R(X) = R(X) ◦ `n0 ,
(2) Πη(X ′) ◦R(X) = R(X) ◦Πη(X ′),
(3) Πη(Y ) ◦ `n0 = `n0 ◦Πη(Ad(n−1

0 )Y ).

Proof. Computation. ¤

With (η, V ) as above, let Vη be the trivial bundle over N with fiber V . Then
Γ(Vη) may be identified with C∞(N ; V ). It follows from the construction sketched
above that Π gives N the structure of a g-manifold, and Πη gives Vη the structure
of a g-bundle over this g-manifold. The g-manifold N is straight with respect to
the subalgebra n of g, and e ∈ N is a polar point for the subalgebra h of g. In fact,
(Πη(Y )•ϕ)(e) = dη(Y )ϕ(e) for all Y ∈ h and ϕ ∈ C∞(N ; V ).



10 L. BARCHINI, ANTHONY C. KABLE, AND ROGER ZIERAU

In order to study conformally invariant systems on N , we consider the space

D(Vη)n = {D ∈ D(Vη) | [Πη(X), D] = 0 for all X ∈ n}.
Lemma 5.2. If D ∈ D(Vη)n then `n0 ◦D = D ◦ `n0 for all n0 ∈ N .

Proof. The tangent space to N at any point is spanned by the vector fields R(X)
for X ∈ n. Thus there is an expression of the form

D =
∑

|α|≤k

TαR(X)α,

where we are using a slight variation of multi-index notation, and each Tα is a
smooth map from N to End(V ). It follows from the construction of Πη, or from
direct calculation, that if Z ∈ n then [Πη(Z), R(X)] = 0. Thus the condition
[Πη(Z), D] = 0 for all Z ∈ n implies that Π(Z)•Tα = 0 for all α. Since N is
connected, it follows that Tα is constant for all α. Given this, D visibly commutes
with `n0 for all n0 ∈ N . ¤
Proposition 5.3. Let D1, . . . , Dm be a list of operators in D(Vη)n. Suppose that
the list is linearly independent at e and that there is a map b : g → gl(m,C) such
that

(
[Πη(Y ), Di]•ϕ

)
(e) =

m∑

j=1

b(Y )ji(Dj•ϕ)(e)

for all Y ∈ g, ϕ ∈ C∞(N ; V ), and 1 ≤ i ≤ m. Then D1, . . . , Dm is a conformally
invariant system on Vη. The structure operator of the system is given by C(Y )(n) =
b(Ad(n−1)Y ) for all n ∈ N and Y ∈ g.

Proof. The linear independence of D1, . . . , Dm at e combines with their translation
invariance to imply that they are independent at all n ∈ N . Let n ∈ N . By using
the commutation relations for `n−1 , Πη(Y ) and Di, we have

(
[Πη(Y ), Di]•ϕ

)
(n) = `n−1

(
[Πη(Y ), Di]•ϕ

)
(e)

=
(
[Πη(Ad(n−1)Y ), Di]•`n−1ϕ

)
(e)

=
m∑

j=1

b(Ad(n−1)Y )ji

(
Dj•`n−1ϕ

)
(e)

=
m∑

j=1

b(Ad(n−1)Y )ji

(
`n−1(Dj•ϕ)

)
(e)

=
m∑

j=1

b(Ad(n−1)Y )ji(Dj•ϕ)(n).

This relationship expresses the conformal invariance of the system D1, . . . , Dm, and
shows that the structure operator is as claimed. ¤

Note that if Proposition 5.3 is applied to a system that is already known to be
conformally invariant and straight then it gives a formula for the structure operator
in terms of its value at the identity.

Corollary 5.4. Let D = D1, . . . , Dm be a straight conformally invariant system
on the bundle Vη with structure operator C. Then D is irreducible if and only if
the representation Z 7→ C(Z)(e) of h is irreducible.
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Proof. Choose a simply-connected neighborhood U of e in N . If D is reducible then
the restriction of D to U is reducible and hence we may find a straight conformally
invariant system D′ = D′

1, . . . , D
′
m on U that is equivalent to D and such that

D′
1, . . . , D

′
k is conformally invariant for some k < m. Let C ′ be the structure

operator of the system D′. The representation Z 7→ C ′(Z)(e) of h is isomorphic
to the representation Z 7→ C(Z)(e). The first k standard basis vectors in Cm

span a proper subrepresentation of Z 7→ C ′(Z)(e). It follows that Z 7→ C(Z)(e) is
reducible.

Suppose now that Z 7→ C(Z)(e) is reducible. After replacing D with a system
equivalent to it by a constant change-of-basis matrix, we may suppose that the first
k standard basis vectors in Cm span a proper subrepresentation of Z 7→ C(Z)(e)
for some k < m. Then we will have C(Y )ji(e) = 0 for all Y ∈ g, i ≤ k and
j > k. From Proposition 5.3, if i ≤ k, j > k, Y ∈ g, and n ∈ N then
C(Y )ji(n) = C(Ad(n−1)Y )ji(e) = 0. It follows that the system D1, . . . , Dk is
conformally invariant and hence that D is reducible. ¤

Let W be a finite-dimensional complex vector space and define an action of g
on Hom(V, W ) by Y · T = −T ◦ dη(Y ) for Y ∈ g and T ∈ Hom(V, W ). For Y ∈ h,
T ∈ Hom(V,W ), and ϕ ∈ C∞(N ; V ),(

Π′η(Y )•T
)
(ϕ) = −T

(
Πη(Y )•ϕ

)
= −T

(
dη(Y )ϕ(e)

)
= (Y · T )(ϕ).

It follows that there is a map from U(g) ⊗U(h) Hom(V, W ) to D′
e(Vη; W ) given

on simple tensors by u ⊗ T 7→ Π′η(u)•T . It is well-known that this map is an
isomorphism of U(g)-modules, and we shall henceforth identify the two spaces via
this isomorphism. We may also identify these spaces with U(g)⊗U(h) V ∗ ⊗C W as
convenient.

If we apply the observations of the preceding paragraph with W = V then we
obtain an isomorphism of U(g)-modules between D′

e(Vη; V ) and U(g)⊗U(h)End(V ).
However, some caution is necessary with the notation here, since h is acting on
End(V ) by Y · T = −T ◦ dη(Y ). This is not the usual action, which is rather
(Y, T ) 7→ dη(Y ) ◦ T − T ◦ dη(Y ). Unfortunately, both actions will play a role later
on. To avoid confusion, we shall henceforth take End(V ) to have the non-standard
action by default, and explicitly specify whenever the standard action is being
considered instead.

There is a vector space isomorphism between the spaces D(Vη)n and D′
e(Vη; V )

which provides a convenient description of the former. If D ∈ D(Vη)n then the
map ϕ 7→ (D•ϕ)(e) lies in D′

e(Vη; V ). Since D commutes with `n−1 for all n ∈ N ,
this map completely determines D. This gives the isomorphism in one direction.
If Λ ∈ D′

e(Vη;V ) then define DΛ by
(
DΛ•ϕ

)
(n) = Λ

(
`n−1ϕ

)
. Routine calculations

show that DΛ ∈ D(Vη)n and that these maps are mutually inverse.
We have already seen that if D1, . . . , Dm is a conformally invariant system on Vη

then F = spanC{Diλ | 1 ≤ i ≤ m, λ ∈ V∗η,e} is a finite-dimensional h-submodule
of U(g)⊗U(h) V ∗. Indeed, this follows on applying Lemmas 3.2, 3.3, and 3.4 to the
present situation. We are now in a position to obtain a converse statement.

Theorem 5.5. Suppose that F is a finite-dimensional h-submodule of the module
U(g)⊗U(h) V ∗. Let f1, . . . , fk be a basis of F and define constants ari(Y ) by

Y fi =
k∑

r=1

ari(Y )fr
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for 1 ≤ i ≤ k and Y ∈ h. Let ξ1, . . . , ξl be a basis of V and define constants btj(Y )
by

dη(Y )ξj =
l∑

t=1

btj(Y )ξt

for 1 ≤ j ≤ l and Y ∈ h. Define Λij = fi ⊗ ξj ∈ U(g) ⊗U(h) V ∗ ⊗C V and
Dij = DΛij

∈ D(Vη)n for 1 ≤ i ≤ k and 1 ≤ j ≤ l. Then
(
[Πη(Z), Dij ]•ϕ

)
(n)

=
k∑

r=1

ari

(
(Ad(n−1)Z)h

)
(Drj•ϕ)(n) +

l∑
t=1

btj

(
(Ad(n−1)Z)h

)
(Dit•ϕ)(n)

(5.1)

for all Z ∈ g, ϕ ∈ C∞(N ; V ), n ∈ N , 1 ≤ i ≤ k, and 1 ≤ j ≤ l. In particular, the
system D11, . . . , Dkl is conformally invariant. Moreover,

spanC{Dijλ | 1 ≤ i ≤ k, 1 ≤ j ≤ l, λ ∈ V∗η,e} = F.

Proof. By Proposition 5.3, the relation (5.1) will follow in general if we can obtain
it for n = e. By writing Z = Zh + Zn, and using the linearity of both sides of (5.1)
and the fact that n is stable under Ad(n−1) for all n ∈ N , we conclude that we
are also free to assume that Z ∈ h. If u ⊗ T ∈ U(g) ⊗U(h) End(V ), Y ∈ h, and
ϕ ∈ C∞(N ;V ) then(

[Πη(Y ), Du⊗T ]•ϕ
)
(e) =

(
Πη(Y )•(Du⊗T •ϕ)

)
(e)− (

Du⊗T •(Πη(Y )•ϕ)
)
(e)

= dη(Y )
(
(Du⊗T •ϕ)(e)

)− (Π′η(u)•T )(Πη(Y )•ϕ)

= dη(Y )
(
(Du⊗T •ϕ)(e)

)
+ (Π′η(Y u)•T )(ϕ)

= dη(Y )
(
(Du⊗T •ϕ)(e)

)
+

(
DY (u⊗T )•ϕ

)
(e).

It follows from this that for all Λ ∈ U(g)⊗U(h) End(V ), ϕ ∈ C∞(N ; V ), and Y ∈ h,
we have (

[Πη(Y ), DΛ]•ϕ
)
(e) = (DY Λ•ϕ)(e) + dη(Y )(DΛ•ϕ)(e)

= (Y Λ)(ϕ) + dη(Y )Λ(ϕ),

where Λ and Y Λ are interpreted as End(V )-valued distributions in the last line.
By introducing the definition of Dij into this identity, we obtain

(
[Πη(Y ), Dij ]•ϕ

)
(e) = (Y fi)(ϕ)ξj + fi(ϕ)dη(Y )ξj .

This equation and the definitions of the constants ari(Y ) and btj(Y ) now imply the
required relation. This establishes the first two claims. The last claim follows from
the fact that Dijλ = λ(ξj)fi. ¤

If we begin with a finite-dimensional h-submodule F of U(g)⊗U(h) V ∗, construct
the conformally invariant system described in Theorem 5.5, and then take the C-
span of Dλ for all D in the system and λ ∈ V∗η,e, we recover the space F . On
the other hand, if we begin with a conformally invariant system D1, . . . , Dm, let
F ⊂ U(g) ⊗U(h) V ∗ be the C-span of Diλ for 1 ≤ i ≤ m and λ ∈ V∗η,e, and then
construct the conformally invariant system described in Theorem 5.5 for F , we
generally do not recover the original system. For a start, the system so constructed
will be straight and so equivalence classes of conformally invariant systems that
cannot be straightened cannot be built via this construction. If we assume that the
original system was straight then we obtain a conformally invariant system that
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has a subsystem equivalent to the original system. This enlargement of the original
system is canonical, in the sense that repeating the process leads back to the same
result.

For later applications, it is useful to obtain a second description of the operator
DΛ ∈ D(Vη)n associated to an element Λ ∈ D′

e(Vη;V ). The PBW theorem implies
that the natural map

U(n)⊗C End(V ) → U(g)⊗U(h) End(V )

induced by the inclusion U(n) ↪→ U(g) is an isomorphism. Thus we may always
assume that Λ ∈ U(n)⊗C End(V ).

Proposition 5.6. Let Λ =
∑k

i=1 ui ⊗ Ti ∈ U(n) ⊗C End(V ), ϕ ∈ C∞(N ; V ), and
n ∈ N . Then

(
DΛ•ϕ

)
(n) =

k∑

i=1

Ti

(
(R(ui)•ϕ)(n)

)
.

Proof. By Lemma 5.1, the map that sends ϕ ∈ C∞(N ;V ) to the function

n 7→
k∑

i=1

Ti

(
(R(ui)•ϕ)(n)

)

is an element of D(Vη)n. We already know that DΛ ∈ D(Vη)n, and so it suffices
to verify the proposed identity for n = e. By linearity, we may assume that Λ =
X1X2 · · ·Xr ⊗ T with X1, . . . , Xr ∈ n and T ∈ End(V ). The key observation is
that for X ∈ n we have

(
Πη(X)•ϕ

)
(e) = −(

R(X)•ϕ
)
(e). This follows at once from

the definitions of the two actions. Thus
(
DX1···Xr⊗T •ϕ

)
(e) =

(
Π′η(X1 · · ·Xr)•T

)
(ϕ)

= (−1)rT
(
(Πη(Xr · · ·X1)•ϕ)(e)

)

= (−1)r+1T
(
(R(Xr)•Πη(Xr−1 · · ·X1)•ϕ)(e)

)

= (−1)r+1T
(
(Πη(Xr−1 · · ·X1)•R(Xr)•ϕ)(e)

)

= · · ·
= (−1)r+rT

(
(R(X1 · · ·Xr)•ϕ)(e)

)

= T
(
(R(X1 · · ·Xr)•ϕ)(e)

)
,

as required. ¤

The representation of elements of D(Vη)n in the form given in Proposition 5.6
was used by Kostant [6] in the case where Vη is a line bundle.

6. Systems Arising from Generalized Verma Modules

In this section, we apply the preceding theory to the original motivating example.
This will, in particular, allow us to justify a number of claims made without proof
in [1].

Let G be a connected real reductive Lie group with Lie algebra g. Let Q be a
closed subgroup of G whose Lie algebra is a parabolic subalgebra q of g. We may
then choose a Levi decomposition q = l ⊕ n and a corresponding decomposition
Q = LN of Q. Let q̄ = l ⊕ n̄ be the opposite subalgebra and Q̄ = LN̄ the
corresponding group. Note that we are not assuming that Q is the full normalizer
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of q, nor that it is connected; in general, Q will be intermediate between these
extremes. In this choice, we are following the framework established in [6]. The set
NQ̄ is open and dense in G, N ∩ Q̄ = {e}, and the group N is simply-connected.
Thus we are in the situation of Section 5. In particular, N is a straight g-manifold
on which every conformally invariant system is equivalent to a straight system.
Whenever we consider a conformally invariant system on N , we shall assume that
it is straight. Moreover, we shall only consider conformally invariant systems on
g-bundles of the form Vη → N , where (η, V ) is a representation of Q̄.

Let D1, . . . , Dm be a conformally invariant system. For Z ∈ l and X ∈ n,
we have [Z, X] ∈ n. By applying Lemma 2.1 to this bracket, we conclude that
Π(X)•C(Z) = 0, so that C(Z) is constant. It then follows from Lemma 3.4 and
the fact that e is a polar point for q̄ that Z 7→ C(Z) is a representation of l on Cm.

Given a semisimple element H0 ∈ g, let g(j) be the j-eigenspace of ad(H0). It is
known that we may find a semisimple element H0 ∈ l such that all its eigenvalues
are integers, g(1) 6= {0}, l = g(0), n = ⊕j>0g(j), and n̄ = ⊕j<0g(j). Let us
fix a choice of H0 with these properties. We call a conformally invariant system
D1, . . . , Dm homogeneous if C(H0) is a scalar matrix. Since we are assuming that
all systems are straight, the only allowable equivalences are realized by constant
matrices. This implies that homogeneity is invariant under equivalence.

Proposition 6.1. An irreducible conformally invariant system is homogeneous. If
D = D1, . . . , Dm is a homogeneous conformally invariant system with structure
operator C then C(Y )(e) = 0 for all Y ∈ n̄. A homogeneous conformally invariant
system is a direct sum of irreducible conformally invariant systems.

Proof. Suppose first that D = D1, . . . , Dm is irreducible. It follows from Corollary
5.4 that the representation Z 7→ C(Z)(e) of q̄ is irreducible. As is well known, this
implies that the representation Z 7→ C(Z)(e) of l is irreducible. Since H0 lies in
the center of l, C(H0) is a scalar matrix by Schur’s Lemma.

Next suppose that D is a homogeneous system and let Y ∈ g(j) for some j < 0.
By Lemma 2.1 and the hypothesis that C(H0) is a scalar matrix, we have

jC(Y ) = C([H0, Y ]) = Π1(H0)•C(Y ).

Now e is a polar point for q̄, and so evaluating this identity at e gives jC(Y )(e) = 0.
We have assumed that j < 0 and it follows that C(Y )(e) = 0 for all Y ∈ g(j). The
general case follows from the linearity of C.

We continue with the assumption that D is a homogeneous system. Since
C(Y )(e) = 0 for all Y ∈ n̄, the representation Z 7→ C(Z)(e) of q̄ factors through
l. Because l is reductive, it follows that this representation is a direct sum of irre-
ducible subrepresentations. As in Proposition 5.3 and Corollary 5.4, each of these
subrepresentations corresponds to an irreducible conformally invariant system, and
D is the direct sum of these systems. ¤

We remark that the last conclusion of Proposition 6.1 fails if the system is not
assumed to be homogeneous; that is, there are non-homogeneous, reducible, inde-
composable conformally invariant systems. Indeed, such systems are very common.
To sketch an example, let us temporarily adopt the setting and notation of [1].
We take g to be a simple complex Lie algebra not of type A, q to be a Heisen-
berg parabolic subalgebra of g, {Y1, . . . , Yk} to be a basis for the unique l-invariant
complement to the center of n in n, and V to be the restriction to N of the homo-
geneous line bundle corresponding to the character sγ of l, where γ is the highest
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root in g. It follows from the first theorem in Section 5 of [1] that the system
D = 1, Ω1(Y1), . . . , Ω1(Yk) is conformally invariant, as is the subsystem consisting
of 1 alone. The same result easily implies that D is indecomposable unless s = 0.
Note that D is inhomogeneous and does not annihilate any non-zero section of V.

Let (η, V ) be a finite-dimensional irreducible representation of Q̄ and denote by
M(V ) = U(g)⊗U(q̄)V the associated generalized Verma module. Since L acts on V ,
it also acts on M(V ). The action satisfies g(u⊗ v) = Ad(g)u⊗ η(g)v for g ∈ L, u ∈
U(g), and v ∈ V . Note that this action is by twisted U(g)-module automorphisms;
that is, if u ∈ U(g), g ∈ L, and ξ ∈ M(V ) then g(uξ) = (Ad(g)u)(gξ). Moreover,
the action is locally finite and its derived action is simply the standard action of
l ⊂ g on M(V ).

The space
M(V )n̄ = {ξ ∈ M(V ) | Y ξ = 0 for all Y ∈ n̄}

is known to be finite-dimensional. Because L normalizes n̄ under the adjoint action,
M(V )n̄ is stable under the action of L. By a leading L-type for V we shall mean a
non-zero irreducible L-submodule of M(V )n̄. Since L is reductive, M(V )n̄ may be
decomposed as a direct sum of a finite number of leading L-types.

The subspace {1 ⊗ v | v ∈ V } of M(V )n̄ is always a leading L-type, which we
shall call the canonical leading L-type. Any leading L-type may be viewed as a
representation of Q̄ by making N̄ act trivially on it. To each leading L-type F for
V there is associated a non-zero element of the space

HomU(g),L

(
M(F ), M(V )

)
(6.1)

given on simple tensors by u⊗ f 7→ uf . The canonical leading L-type corresponds
in this way to the identity map in HomU(g),L(M(V ),M(V )). Conversely, if F is an
irreducible Q̄-module and we are given a non-zero element of (6.1) then this gives
rise to a leading L-type for V , namely the image under the given homomorphism
of the canonical leading L-type in M(F ).

In order to relate conformally invariant systems and leading L-types, we require
a notion of L-invariant system. For this purpose, we begin by defining an action
of L on D(Vη). For g ∈ L and ϕ ∈ C∞(N ; V ), let g ∗ ϕ ∈ C∞(N ; V ) be defined
by (g ∗ ϕ)(n) = η(g)ϕ(g−1ng) for n ∈ N . One checks that this defines an action
of L on C∞(N ; V ). The restriction of this action to the image of C∞η (G; V ) under
restriction to N is simply the action of L in the smooth induced representation. In
particular, the associated infinitesimal action is Πη. For D ∈ D(Vη), define g ∗D
by (g ∗D)•ϕ = g ∗ (D•(g−1 ∗ ϕ)).

Lemma 6.2. The map (g, D) 7→ g ∗D is an action of L on D(Vη). It enjoys the
following properties:

(1) g ∗ (D1D2) = (g ∗D1)(g ∗D2) for all g ∈ L and D1, D2 ∈ D(Vη),
(2) g ∗ T = η(g) ◦ T ◦ η(g−1) for all g ∈ L and T ∈ End(V ),
(3) g ∗R(X) = R(Ad(g)X) for all g ∈ L and X ∈ n.

The subspace D(Vη)n is stable under L, and the isomorphism Λ 7→ DΛ between
M(End(V )) and D(Vη)n becomes L-intertwining if we let L act on M(End(V )) by

g ∗ (u⊗ T ) = (Ad(g)u)⊗ (
η(g) ◦ T ◦ η(g−1)

)
.

Proof. The fact that (g,D) 7→ g ∗ D is an action and identities (1), (2), and (3)
follow by calculation. For Λ ∈ M(End(V )), we may represent DΛ in the form given
in Proposition 5.6. By using the properties of the action that have already been
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established, we conclude that g ∗ DΛ = Dg∗Λ for all Λ ∈ M(End(V )) and g ∈ L.
This demonstrates the truth of the remaining claims. ¤

Note that the infinitesimal action of l on M(End(V )) derived from the action of
L on M(End(V )) via ∗ is not the one that might be expected naively. Indeed, a
calculation reveals that

Z ∗ (u⊗ T ) = Zu⊗ T + u⊗ (
dη(Z) ◦ T

)

for Z ∈ l. The additional term compensates for the non-standard action of l
on End(V ) that we have used to define M(End(V )). As we remarked above, it
seems that both the standard and non-standard actions of l on End(V ) play an
unavoidable role.

Let D1, . . . , Dm be a conformally invariant system on the bundle Vη → N . We
shall say that the system is L-stable if there is a map c : L → GL(n,C∞(N)) such
that

g ∗Di =
m∑

j=1

c(g)jiDj (6.2)

for all g ∈ L and 1 ≤ i ≤ m. As before, the map c is unique. A calculation shows
that g ∗ (`n0ϕ) = `gn0g−1(g ∗ ϕ) for all g ∈ L, n0 ∈ N , and ϕ ∈ C∞(N ; V ). Since
we are assuming that the system D1, . . . , Dn is straight, each Di commutes with
`n0 for all n0 ∈ N . By following the calculation in the proof of Proposition 5.3, we
conclude that c(g)(n) = c(g)(e) for all n ∈ N ; that is, the entries in the matrix c(g)
are in fact constants. From this, we conclude that c(gh) = c(g)c(h) for all g, h ∈ L,
so that c is a representation of L. There are elements Λ1, . . . , Λm in M(End(V ))
such that Di = DΛi for 1 ≤ i ≤ m. Because the functions c(g)ji are constant, (6.2)
is equivalent to

g ∗ Λi =
m∑

j=1

c(g)jiΛj (6.3)

for 1 ≤ i ≤ m. In particular, c is smooth and we may define

Z · c =
d

dt
c(exp(tZ))

∣∣
t=0

for Z ∈ l, as usual. By taking the derivative on both sides of (6.3), we obtain

ZΛi + dη(Z)Λi =
m∑

j=1

(Z · c)jiΛj .

In light of the calculation made in the proof of Theorem 5.5, this is equivalent to

[Πη(Z), Di] =
m∑

j=1

(Z · c)jiDj ,

so that Z · c = C(Z) for all Z ∈ l. That is, the representation of L afforded by the
space spanned by D1, . . . , Dm is a globalization of the representation Z 7→ C(Z)
of l. We may similarly show that if D1, . . . , Dm is a conformally invariant system
corresponding to Λ1, . . . , Λm ∈ M(End(V )), and the space spanned by the Λi is
L-invariant under the ∗ action, then the system is L-stable.

Consideration of L-stability is necessary for a reason familiar in Lie theory: the
group L need not be connected and so infinitesimal data alone fail to capture all the
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essential information. As usual, one could just as well replace L by any subgroup
meeting each of the connected components of L.

Theorem 6.3. Let D1, . . . , Dm be a straight L-stable homogeneous conformally
invariant system on the bundle Vη, and let

F = spanC{Diλ | λ ∈ V∗η,e, 1 ≤ i ≤ m}.
Then F is an L-invariant subspace of M(V ∗)n̄. Conversely, if F ⊂ M(V ∗)n̄ is a
leading L-type for V ∗ then the conformally invariant system on Vη associated to F
as in Theorem 5.5 is L-stable and homogeneous.

Proof. We first show that the homogeneity of the system D1, . . . , Dm alone implies
that F ⊂ M(V ∗)n̄. To this end, let Y ∈ n̄. By Lemma 3.2, we have

Π′η(Y )•(Diλ) = Di

(
Π′η(Y )•λ

)
+

m∑

j=1

C(Y )ji(e)Djλ.

By Proposition 6.1, C(Y )(e) = 0, and so the second term on the right-hand side
vanishes. Since n̄ acts trivially on V , it also acts trivially on V ∗, and this implies
that the first term on the right-hand side vanishes also. Thus n̄ annihilates Diλ, as
required.

Let X1, . . . , Xr ∈ g, λ ∈ V ∗, T ∈ End(V ), and ϕ ∈ C∞(N ; V ). Then

λ
(
(Π′η(X1 · · ·Xr)•T )(ϕ)

)
= (−1)rλ

(
T (Πη(Xr · · ·X1)•ϕ)

)

= (−1)r(λ ◦ T )
(
Πη(Xr · · ·X1)•ϕ

)

=
(
Π′η(X1 · · ·Xr)•(λ ◦ T )

)
(ϕ)

and hence if u ∈ U(g) then

λ
(
(Π′η(u)•T )(ϕ)

)
=

(
Π′η(u)•(λ ◦ T )

)
(ϕ).

This identity in turn gives

(Du⊗T λ)(ϕ) = λ
(
(Du⊗T •ϕ)(e)

)

= λ
(
(Π′η(u)•T )(ϕ)

)

=
(
Π′η(u)•(λ ◦ T )

)
(ϕ).

Consequently, when each object is identified with the corresponding generalized
Verma module, the map D(Vη)n ⊗C V∗η,e → D′

e(Vη) given by D ⊗ λ 7→ Dλ is
identified with the map M(End(V )) ⊗C V ∗ → M(V ∗) given on simple tensors by
(u ⊗ T ) ⊗ λ 7→ u ⊗ (λ ◦ T ). With L acting on M(End(V )) via ∗ and on V ∗ and
M(V ∗) in the natural way, this map is L-intertwining. It follows that if D1, . . . , Dm

is L-stable then F is L-invariant.
Now suppose that F ⊂ M(V ∗)n̄ is a leading L-type, D is the conformally in-

variant system associated to F as in Theorem 5.5, and C is its structure operator.
Observe that since V ∗ and F are irreducible representations of L, H0 acts on each
by a scalar. It follows from the formula given in Theorem 5.5 that C(H0) is a
scalar matrix whose diagonal entries equal the sum of these two scalars. Thus D is
homogeneous. Regarded as elements of M(End(V )), the span of the operators com-
prising D is equal to F ⊗C V ⊂ M(End(V )). Since both F and V are L-invariant,
this subspace is also L-invariant, and hence D is L-stable. ¤
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It follows from the above discussion that if we have an L-stable homogeneous
conformally invariant system D1, . . . , Dm on the bundle Vη such that all Di an-
nihilate the constants sections of Vη then we obtain a leading L-type in M(V ∗)
other than the canonical one. In particular, we may then conclude that M(V ∗)
is reducible. All the conformally invariant systems constructed in [1] satisfy these
hypotheses, and this justifies the claims regarding reducibility of generalized Verma
modules and existence of leading L-types made in the introduction to [1].

We remark that the results obtained above relating leading L-types and L-stable
homogeneous systems could also be obtained purely on the Lie algebra level. That
is, one could define leading l-types and show that they are related to homogeneous
systems in a similar way. No additional hypothesis of l-stability would be necessary
in this development, because the requisite stability is already implied by confor-
mality. We have chosen the above framework because it appears to be the most
appropriate for applications. However, we shall make use of this remark in Section
7.

In Section 6 of [1], we constructed several differential operators, denoted by
Ω4(C), for each simple algebra g. These operators are all conformally invariant
on a certain line bundle L → N . Let us choose a representation (η, V ) of Q̄
such that Vη = L, and note that the dimension of V is one. Fix a particular g.
Then, as may be deduced from the results given in Section 6 of [1], the leading
L-types corresponding to the various Ω4(C) are all isomorphic to one another as
L-representations. Let F be a representative of the isomorphism class containing
these leading L-types, and note that the dimension of F is one. In accordance with
the theory developed above, from each Ω4(C) we obtain a non-zero element of the
space

HomU(g),L

(
M(F ), M(V ∗)

)
.

However, because F and V ∗ both have dimension one, it is known that this space of
homomorphisms has dimension at most one. Consequently, as claimed at the end of
Section 6 of [1], the various Ω4(C) associated to a particular g are all proportional
to one another. This verifies the last outstanding claim made in [1].

7. Scalar Generalized Verma Modules

If, in the setting established in Section 6, we additionally assume that the rep-
resentation (η, V ) is one-dimensional then significant simplifications occur. The
purpose of this section is to obtain further information under this additional hy-
pothesis, and to apply it to resolve a question left open in [1]. We continue with
the notation and assumptions made in Section 6. For convenience, we also assume
that G is semisimple.

Let h ⊂ g be a Cartan subalgebra of g, R be the set of roots of g with respect
to h, and W be the Weyl group of R. Let 〈 · , · 〉 be a positive multiple of the inner
product induced on h∗ by the Killing form. Choose a positive system R+ ⊂ R
and assume that the parabolic subalgebra q and Levi decomposition q = l⊕ n are
standard with respect to R+. Let ρ denote half the sum of the positive roots in
g. Let ρ(n) denote half the sum of the positive roots in n, and similarly for other
ad(h)-stable subalgebras of g. Note that ρ(l) = ρ− ρ(n).

Fix a γ ∈ h∗ that is orthogonal to all the simple roots in l. Then γ is trivial on
[l, l] and so it extends to a character of l. For s ∈ C, we denote by Csγ the one-
dimensional representation of l associated to the character sγ. In keeping with the
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conventions of [1], we consider an L-stable irreducible conformally invariant system
D on the line bundle L−sγ → N associated to the representation V = C−sγ . Let
C be the structure operator of D. Then Z 7→ C(Z) is a representation of l on
Cm, where m denotes the number of operators in the system, and by Corollary
5.4 this representation is irreducible. Let us denote this irreducible representation
by E and by $ ∈ h∗ the highest weight of E. The system D gives rise to a
leading l-type F ⊂ M(Csγ)n̄ and, by the observation made at the end of Section
3, we have F ∼= E ⊗ Csγ . Thus the highest weight of F is $ + sγ. Now, as
we observed in Section 6, the existence of this leading l-type implies that there is
a non-zero homomorphism from M(F ) to M(Csγ), and it follows that these two
generalized Verma modules must have the same infinitesimal character. We regard
the infinitesimal characters as elements of h∗/W . Since we form our Verma modules
by tensoring over U(q̄), the infinitesimal character of M(F ) is represented by

$ + sγ + ρ(l)− ρ(n) = $ + sγ + ρ− 2ρ(n)

and the infinitesimal character of M(Csγ) is represented by

sγ + ρ(l)− ρ(n) = sγ + ρ− 2ρ(n).

It follows that we must have

$ + sγ + ρ− 2ρ(n) = w
(
sγ + ρ− 2ρ(n)

)
(7.1)

for some w ∈ W . By computing the squared length of both sides of (7.1), we obtain

s〈$, γ〉 = 2〈$, ρ(n)〉 − 〈$, ρ〉 − 1
2
‖$‖2. (7.2)

To summarize, if D is an irreducible conformally invariant system on the line bun-
dle L−sγ → N , and the irreducible representation of l arising from the structure
operator of D has highest weight $ then (7.1) and (7.2) must hold.

We wish to apply the above conclusions to resolve a question left open in [1].
As before, the reader will need to be familiar with the notation used in [1] in
order to follow the details of the argument, but the general idea can be easily
stated. In [1], we constructed a conformally invariant system called Ω3 on the line
bundle L−sγ → N for each exceptional simple algebra and a suitable value of s, the
parabolic subalgebra being the Heisenberg parabolic in all cases. The corresponding
system on the symplectic algebras is known to be identically zero, but the question
of whether an analogue of Ω3 exists on the non-symplectic classical algebras was left
open. This accounts for the question marks that disfigure the table of conformally
invariant systems given at the end of [1]. Now the conformally invariant systems
studied in [1] are constructed by beginning with a specific representation of L that
should serve as the representation E, and so the highest weight $ that should
correspond to Ω3 is known. This may be used to apply the conditions (7.1) and
(7.2) to study whether or not Ω3 exists. We state the conclusion of this investigation
as a theorem, although we shall not provide a complete proof.

Theorem 7.1. The system Ω3 exists for the simple algebras of types A2 and D4.
It does not exist for the simple algebras of types Ar with r ≥ 3, Br with r ≥ 3, nor
Dr with r ≥ 5.

Proof. We discuss the case of Dr with r ≥ 4. The other cases that have to be
considered are similar, and all the necessary data may be found in [1], particularly
in the compendium that appears as Section 8 of that work. We use the standard
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model for the root system Dr inside Rr, in which the positive roots are εi± εj with
1 ≤ i < j ≤ r. For the situation considered in [1] and the system Ω3, the essential
data have the following values:

γ = ε1 + ε2,

$ = 2ε1 + ε2 + ε3,

ρ =
r∑

i=1

(r − i)εi,

ρ(n) = (r − 3/2)γ.

From this data and (7.2), one finds that s = (2r − 5)/3. Thus

$ + sγ + ρ− 2ρ(n) =
(7− r

3
,
1− r

3
, r − 2, r − 4, r − 5, . . . , 1, 0

)

and

sγ + ρ− 2ρ(n) =
(1− r

3
,
−2− r

3
, r − 3, r − 4, r − 5, . . . , 1, 0

)
.

The Weyl group in this instance acts by permutation of the coordinates and an even
number of sign changes. It is required that the two displayed vectors are in the
same orbit under the action of this group. This condition holds for r = 4 and fails
for 5 ≤ r ≤ 7 by direct verification. Now suppose that r ≥ 8. After making two
sign changes in each displayed vector, we render all the coordinates non-negative
with precisely one zero coordinate in each vector. The sets of coordinates in these
non-negative vectors must be equal, and this yields

{(r − 7)/3, r − 2} = {(r + 2)/3, r − 3}.
By solving the resulting linear equations, this condition turns out to be unsatisfi-
able. The conclusion of the argument so far is that Ω3 does not exist for the algebra
of type Dr with r ≥ 5. As the reader of [1] might suspect, there does not seem to be
a simple way to verify that Ω3 does exist for the algebra of type D4. The only way
known to the authors at present is to go through the proof given for the existence
of Ω3 for the exceptional algebras in Section 6 of [1] and verify that it also succeeds
for D4. The crucial points are that the constants c(g, C) have the same value for all
three components of the deleted Dynkin diagram in this case and that the center
of l has dimension one. ¤
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