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AN ERROR ESTIMATE FOR TWO-DIMENSIONAL STOKES

DRIVEN CAVITY FLOW

ZHIQIANG CAI AND YANQIU WANG

Abstract. Discontinuous velocity boundary data for the lid driven cavity
flow has long been causing difficulties in both theoretical analysis and numeri-

cal simulations. In finite element methods, the variational form for the driven
cavity flow is not valid since the velocity is not in H1. Hence standard error
estimates do not work. By using only W1,r (1 < r < 2) regularity and con-
structing a continuous approximation to the boundary data, here we present

error estimates for both the velocity-pressure formulation and the pseudostress-
velocity formulation of the two-dimensional Stokes driven cavity flow.

1. Introduction

The purpose of this paper is to provide strict error estimates for different fi-
nite element approximations of the two-dimensional Stokes lid driven cavity flow.
The two-dimensional Stokes driven cavity problem has been thoroughly studied in
numerous references. The main difficulty of this problem comes from the discon-
tinuity of the velocity boundary data at corners. Although the structure of its
solution is well-understood through the description of corner eddies and the use of
bi-orthogonal series [20, 21, 23], there are still many things that need to be clarified
concerning its finite element approximation. Due to the discontinuous boundary
data, the velocity is not in H1. Hence the usual variational form for Stokes equa-
tions is no longer valid for the driven cavity problem, which will be further ex-
plained in Section 3. Although in practice, many tend to ignore this and apply the
discontinuous boundary data directly to the finite element discretization. In this
paper, we attempt to give a strict mathematical explanation that will bridge the
gap between theory and practice. To deal with this situation, our main approach
is to construct a continuous approximation to the discontinuous boundary data.
Fractional Sobolev norms are used in order to derive error estimates. Two different
finite element formulations, the velocity-pressure formulation and the pseudostress-
velocity formulation, will be considered. Their error estimates, the main result of
this paper, will be given in Section 3.

We first introduce some notations. Let Ω be a convex polygon. Denote R
2 to be

the field of two-dimensional vector functions and M2 to be the field of 2× 2 matrix
functions. Throughout the paper, we adopt the convention that a Greek character
denotes a 2 × 2 matrix and a bold Latin character in lower case denotes a vector.
Let τ = (τij)1≤i,j≤2 ∈ M2 and v = (v1, v2)

t ∈ R
2, define

div v =
∂v1

∂x
+

∂v2

∂y
and div τ =

(

∂τ11

∂x + ∂τ12

∂y
∂τ21

∂x + ∂τ22

∂y .

)
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In above definitions, all derivatives are taken in the weak sense. Define the inner-
products between vectors and between 2 × 2 matrices by, respectively,

u · v = u1v1 + u2v2 and σ : τ =
∑

1≤i,j≤2

σijτij .

Let L2(Ω) be the set of square integrable functions on Ω and W s,r(Ω), where s
is a real number and 1 ≤ r ≤ ∞, be the Sobolev space [9, 17] on Ω. Let C∞

0 (Ω) be
the space of infinitely differentiable functions with compact support in Ω. Denote
W s,r

0 (Ω) to be the closure of C∞
0 (Ω) under the W s,r(Ω) norm. When r = 2, both

W s,r(Ω) and W s,r
0 (Ω) are Hilbert spaces and are usually denoted by Hs(Ω) and

Hs
0(Ω). Finally, the fractional Sobolev norm on ∂Ω is defined as follows. Let

s = m + t, where m ≥ 0 is an integer and 0 < t < 1. Let 1 < r < ∞. For
v ∈ W s,r(∂Ω), define

‖v‖s,r,∂Ω =



‖v‖r
m,r,∂Ω +

∑

|α|=m

∫

∂Ω

∫

∂Ω

|Dαv(x) − Dαv(y)|r

|x − y|1+tr
dx dy





1/r

.

Remark 1.1. The trace theorem is more complicated on polygonal domains than on
smooth domains [17]. Let Γi, i = 1, . . . , k be the edges of the polygonal domain Ω. If

s−1/r is not an integer, the trace of a function in W s,r(Ω) lies in
∏k

i=1 W s−1/r,r(Γi)
and satisfies certain matching conditions at the corners of Ω. For example, the

trace of W 2,r(Ω), r > 2, is in
∏k

i=1 W 2−1/r,r(Γi) and must be continuous across the
corners. However, this will not affect approximation orders discussed in following
sections. A similar situation and explanation can be found in [18]. Therefore, for
simplicity, we will use the unified notation W s,r(∂Ω) for traces instead of using
∏k

i=1 W s,r(Γi) with matching conditions.

It is natural to extend the above spaces to fields of vector functions and matrix
functions, by using product spaces. For example, Ws,r(Ω, R2) and Ws,r(Ω, M2)
denote the Sobolev spaces over the field of vector functions and 2× 2 matrix func-
tions. Other notations, such as Hs(Ω, R2), Hs(Ω, M2), L2(Ω, R2) and L2(Ω, M2)
are defined in the same fashion. For simplicity, denote ‖ · ‖s,r,Ω and | · |s,r,Ω to be
the Sobolev norm and semi-norm with indices s and r over scalar, vector or matrix
function fields, depending on the type of the function. When r = 2, we usually
suppress r in the subscript and denote the Sobolev norm and semi-norm by ‖ · ‖s,Ω

and | · |s,Ω. Denote (·, ·) and < ·, · > to be the L2 inner-product and the duality
form respectively over scalar, vector or matrix function fields.

Define

H(div ,Ω, M2) = {σ ∈ L2(Ω, M2) such that div σ ∈ L2(Ω, R2)}

with the norm
‖σ‖2

H(div ,Ω,M2)
= (σ,σ) + (div σ,div σ).

Let n be the unit outward normal vector along ∂Ω. By the trace theorem, we have

σn|∂Ω ∈ H−1/2(∂Ω, R2) for all σ ∈ H(div ,Ω, M2) [15].
In Section 2, we describe the velocity-pressure formulation and the pseudostress-

velocity formulation for two-dimensional Stokes equations. Also given are the stan-
dard finite element approximation and error estimates for these two formulations.
In Section 3, we discuss how to deal with the discontinuous velocity boundary con-
dition of the driven cavity problem. Detailed error estimates are given. Finally,
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some technique inequalities used in our analysis will be proved in Appendix A and
B.

2. Stokes equations

Consider the two-dimensional steady-state Stokes equations:

(2.1)











−∆u + ∇p = f in Ω,

div u = 0 in Ω,

u = g on ∂Ω,

where u is the velocity, p is the pressure, f is the external force and g is the
velocity boundary data satisfying

∫

∂Ω
g · n ds = 0. The Stokes equations usually

arise either from the approximation of a low-Reynolds-number flow or from the
time discretization of Navier-Stokes equations.

The Stokes equations have the following existence and regularity property [15,
16]:

Theorem 2.1. Let Ω be a convex polygon. Given f ∈ Wm,r(Ω, R2) and g ∈
Wm+2−1/r,r(∂Ω, R2) where m = −1, 0 and 1 < r ≤ 2. Then Problem (2.1) has a
unique solution (u, p) ∈ Wm+2,r(Ω, R2) × Wm+1,r(Ω)/R which satisfies

‖u‖m+2,r,Ω + ‖p‖m+1,r,Ω ≤ Cr(‖f‖m,r,Ω + ‖g‖m+2−1/r,r,∂Ω),

where Cr is a positive constant independent of f and g but may depend on r.

Remark 2.2. In both two-dimension and three-dimension, similar existence and
regularity results for m = −1, 0 and 1 < r < ∞ are well-known under assumptions
∂Ω ∈ C2 or ∂Ω ∈ C1,1 (see [1, 8]). For Lipschitz continuous boundary ∂Ω ∈ C0,1,
it has been shown in [14] that the result of Theorem 2.1 holds for m = −1 and
1 < r < ∞ if the Lipschitz constant of the boundary ∂Ω is smaller than a constant
depending only on the dimension and r. For convex polygons, the result of Theorem
2.1 was proved in [16], which was also especially pointed out in Remark 5.6 of [15].

In the following subsections, two different variational formulations and corre-
sponding finite element approximations for Problem (2.1) will be given. We always
assume that Ω is a convex polygon.

2.1. The velocity-pressure formulation and its discretization. Assume that

f ∈ H−1(Ω, R2) and g ∈ H1/2(∂Ω, R2). Then the velocity-pressure formulation
for Problem (2.1) is: Find u ∈ H1(Ω, R2), u|∂Ω = g and p ∈ L2(Ω)/R such that

(2.2)

{

(∇u,∇v) − (div v, p) =< f ,v > for all v ∈ H1
0(Ω, R2),

(div u, q) = 0 for all q ∈ L2(Ω)/R.

Problem (2.2) is a saddle-point problem and has been extensively studied for
decades [4, 11, 15]. To discretize this problem, several different finite element
spaces have been proposed. They can be divided into two major groups according
to whether the discrete inf-sup condition (LBB condition) is satisfied or not. If the
LBB condition is satisfied, the pair of finite element spaces is called stable. Other-
wise it is called unstable and requires a special stabilization process. For simplicity,
only stable finite element pairs will be considered here. We will investigate the
P2 − P1 Taylor-Hood element [19] and the P+

2 − P−1 conforming Crouzeix-Raviart
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element [10]. The P2 −P1 Taylor-Hood element uses P2 piecewise continuous poly-
nomials to approximate the velocity and P1 piecewise continuous polynomials to
approximate the pressure. The P+

2 − P−1 conforming Crouzeix-Raviart element
uses P2 piecewise continuous polynomials plus bubble functions to approximate
the velocity and discontinuous piecewise P1 polynomials to approximate the pres-
sure. Details of these elements are skipped since they can be found from numerous
sources.

Let Th be a quasi-uniform triangulation of Ω with characteristic mesh size h.
For simplicity, in the rest of this paper, . is used to denote “less than or equal
to” with a factor c independent of the mesh size h or other parameters appearing

in the inequality. Assume f ∈ L2(Ω, R2) and g ∈ H3/2(∂Ω, R2). Let (Uh, Qh) ⊂
(H1(Ω, R2), L2(Ω)/R) be the P2−P1 or the P+

2 −P−1 finite element spaces defined
over Th, with the boundary condition uh|∂Ω = gh for uh ∈ Uh. Here gh ∈ (Uh)|∂Ω

can be either the H3/2 projection or the nodal value interpolation of g, where the

H3/2 projection is defined by

‖g − gh‖3/2,∂Ω = min
χ∈(Uh)|∂Ω

‖g − χ‖3/2,∂Ω.

Define the space
◦

Uh⊂ H1
0(Ω, R2) similar to Uh but with homogeneous boundary

conditions. Consider the discrete formulation for Problem (2.2): Find uh ∈ Uh

and ph ∈ Qh such that

(2.3)

{

(∇uh,∇vh) − (div vh, ph) =< f ,vh > for all vh ∈
◦

Uh,

(div uh, qh) = 0 for all qh ∈ Qh.

The following error estimate is well known [11, 13, 15]:

Theorem 2.3. Assume f ∈ L2(Ω, R2) and g ∈ H3/2(∂Ω, R2). Let (u, p) be the
solution to Problem (2.2) and (uh, ph) be the solution to Problem (2.3). Then

(2.4) |u − uh|1,Ω + ‖p − ph‖0,Ω . h(‖u‖2,Ω + ‖p‖1,Ω).

Moreover, if g = 0, then

(2.5) ‖u − uh‖0,Ω . h2(‖u‖2,Ω + ‖p‖1,Ω).

Remark 2.4. We gain one more order in the approximation if u ∈ H3(Ω, R2) and
p ∈ H2(Ω). That is

|u − uh|1,Ω + ‖p − ph‖0,Ω . h2(|u|3,Ω + |p|2,Ω).

However, when the essential boundary condition is non-homogeneous, analysis
for the L2 error estimate of the velocity is much more complicated. This issue has
been thoroughly discussed in [13, 18]. According to their results,

Theorem 2.5. Under the same assumptions as in Theorem 2.3, the L2 error es-
timate of the velocity is:

• if gh is the H3/2 projection of g,

‖u − uh‖0,Ω . h2(‖u‖2,Ω + ‖p‖1,Ω + ‖g‖3/2,∂Ω);

• if gh is the nodal value interpolation of g and g ∈ H2(∂Ω, R2),

‖u − uh‖0,Ω . h2(‖u‖2,Ω + ‖p‖1,Ω + ‖g‖2,∂Ω).
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Theoretically, the approximation using the nodal value interpolation on the

boundary is not optimal for g ∈ H3/2(∂Ω, R2), although the authors of [13] have
presented some numerical results suggesting that one may still get optimal conver-

gence in practice. The other possibility, using the H3/2 projection, is impractical
although it does give an optimal error estimate. It is mentioned here just for the
theoretical purpose.

2.2. The pseudostress-velocity formulation and its discretization. In this
subsection we describe the pseudostress-velocity formulation [6, 7] for Problem
(2.1). Let A : M2 → M2 be a fourth order tensor defined by Aτ = τ − ( 1

2 tr τ )I,
for all τ ∈ M2. Here tr τ is the trace of τ and I is the 2×2 identity matrix. Notice
that A is a projection onto the trace-free subspace of M2 and

Ker(A) = {fI for all scalar functions f}.

It is clear that (Aτ , τ ) ≤ (τ , τ ) for all τ ∈ H(div ,Ω, M2).
By introducing the pseudostress σ = −pI + ∇u, which is not necessarily sym-

metric, System (2.1) can be rewritten as:

(2.6)











div σ = −f in Ω,

Aσ −∇u = 0 in Ω,

u|∂Ω = g.

The incompressible constraint div u = 0 is enforced through div u = tr (∇u) =
0. Notice that trσ = −2p is unique up to a constant related to the hydrostatic
pressure. Therefore, it needs to satisfy the compatibility condition

∫

Ω

trσ dx = 0.

Remark 2.6. The advantage of using the pseudostress instead of the symmetric
physical stress σ̃ = −pI+(∇u+(∇u)T ) in the formulation is that, the finite element
discretization for the mixed system is greatly simplified [6, 7]. For comparison, one
may also check the mixed finite element construction for the symmetric physical
stress in [2, 4]. Finally, we point out that the stress σ̃ and the pressure p can be
expressed algebraically in terms of the pseudostress σ by

σ̃ = σ + (Aσ)t, p = −
1

2
tr σ.

Hence they can be computed in a post-processing procedure in the same accuracy
as the approximation of σ.

Define spaces

Σ = H(div,Ω, M2)/span{I} = {τ ∈ H(div,Ω, M2) such that

∫

Ω

tr τ dx = 0}

and V = L2(Ω, R2). Then the variational form for Equation (2.6) is: Given f ∈

L2(Ω, R2) and g ∈ H1/2(∂Ω, R2), find σ ∈ Σ and u ∈ V such that

(2.7)

{

(Aσ, τ ) + (div τ ,u) =< g, τn >∂Ω, for all τ ∈ Σ,

(div σ,v) = −(f ,v), for all v ∈ V.
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In the above mixed formulation, the velocity boundary condition becomes the natu-

ral boundary condition. Here < g, τn >∂Ω is well defined since τn ∈ H−1/2(∂Ω, R2)
for all τ ∈ Σ.

According to [4], the existence and uniqueness of Problem (2.7) follows from the
well-known continuous inf-sup condition,

‖v‖0,Ω . sup
τ∈H(div ,Ω,M2)

(div τ ,v)

‖τ‖H(div ,Ω,M2)
, for all v ∈ V,

and the following lemma [5]:

Lemma 2.7. For all τ ∈ Σ, we have

‖τ‖2
0,Ω . ‖A1/2τ‖2

0,Ω + ‖div τ‖2
−1,Ω.

To discretize Problem (2.7), a good finite element approximation to the space Σ

is needed. A natural choice will be to use two copies of stable finite elements for the
vector H(div, R2) space. There are several well-known stable mixed elements for the
vector H(div, R2) space. Here we consider the lowest order Raviart-Thomas (RT)

element [22]. On each triangle T ∈ Th, define RTT = span

{(

1
0

)

,

(

0
1

)

,

(

x
y

)}

.

The degrees of freedom for the RT element are the zeroth order moments of the
normal components on each edge of T . Define

ΣT = {

(

σ11 σ12

σ21 σ22

)

such that (σ11, σ12) ∈ RTT and (σ21, σ22) ∈ RTT }.

Define the finite element space

Σh = {σ ∈ Σ such that σ|T ∈ ΣT }.

Notice that Σh inherits the constraint
∫

Ω
tr σ dx = 0 from the space Σ.

Define the space Vh ⊂ L2(Ω, R2) as follows:

Vh = {(v1, v2)
t such that v1, v2 are constants on each T ∈ Th}.

To show that (Σh,Vh) form a stable pair of finite element spaces, one needs to
prove the discrete inf-sup condition

‖vh‖0,Ω . sup
τh∈Σh

(div τh,vh)

‖τh‖H(div ,Ω,M2)
for all vh ∈ Vh.

Actually, this follows easily from the facts that the RT element satisfies the discrete
inf-sup condition [4] and that span{I} ⊂ Ker(div ).

We also need to know whether Σh, under the constraint
∫

Ω
tr σ dx = 0, is still

a good approximation to Σ. Indeed, denote Ph : L2(Ω, R2) → Vh to be the L2

projection, then the following lemma holds [6].

Lemma 2.8. There exists a linear operator Πh : Σ ∩ H1(Ω, M2) → Σh such that
div Πh = Phdiv and, it holds for all σ ∈ Σ ∩ H1(Ω, M2) that

(2.8) ‖σ − Πhσ‖0,Ω . h|σ|1,Ω

and

(2.9) ‖div σ − div (Πhσh)‖0,Ω . |div σ|0,Ω.

Furthermore, if div σ ∈ H1(Ω, R2), then

(2.10) ‖div σ − div (Πhσh)‖0,Ω . h|div σ|1,Ω.
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Finally we give an error estimate for the mixed finite element approximation.

Theorem 2.9. Assume f ∈ L2(Ω, R2) and g ∈ H3/2(∂Ω, R2). Let (σ,u) be the
solution to Problem (2.7) and (σh,uh) be the solution to the discrete problem: Find
σh ∈ Σh and uh ∈ Vh such that

(2.11)

{

(Aσh, τh) + (div τh,uh) =< g, τhn >∂Ω for all τh ∈ Σh,

(div σh,vh) = −(f ,vh) for all vh ∈ Vh.

Then

(2.12) ‖σ − σh‖0,Ω . h|σ|1,Ω and ‖u − uh‖0,Ω . h(|u|1,Ω + |σ|1,Ω).

Furthermore, if div σ = div σh, then

(2.13) ‖u − uh‖0,Ω . h|u|1,Ω + h2|σ|1,Ω.

The proof of Theorem 2.9 follows directly from Theorem 2.1, Lemma 2.8, the
stability of the RT element and the standard mixed finite element theory [4, 12].
For reader’s convenience, the proof is given in Appendix A. Also, the pressure p
can be approximated conveniently by ph = − 1

2 trσh and

(2.14) ‖p − ph‖0,Ω = ‖ −
1

2
tr σ +

1

2
tr σh‖0,Ω . h|σ|1,Ω.

3. The boundary condition for lid driven cavity flow

In this section, we study the discretization of the Stokes lid driven cavity flow
using both the velocity-pressure and the pseudostress-velocity formulation. Con-
sider the flow in a rectangular cavity generated by the uniform motion of the top
lid. Let Ω = (0, a) × (0, b), where a and b are positive numbers. The boundary of
Ω is divided into two parts:

Γ1 = {x ∈ [0, a], y = b} and Γ0 = (∂Ω)\Γ1.

Define the velocity boundary condition by

(3.1) u|∂Ω = gdc =

{

(1, 0)t on Γ1,

(0, 0)t on Γ0.

By calculating the norm, one can see that gdc ∈ H1/2−δ(∂Ω, R2) for all 0 < δ < 1/2

but gdc /∈ H1/2(∂Ω, R2) (see [17]). Then by the Sobolev embedding theorem [17],
it is clear that gdc ∈ W1−1/r,r(∂Ω, R2) for all 1 < r < 2.

Consider the following driven cavity problem:

(3.2)











−∆u + ∇p = 0 in Ω,

div u = 0 in Ω,

u = gdc on ∂Ω.

By Theorem 2.1, Problem (3.2) admits a unique solution

(u, p) ∈ (W1,r(Ω, R2),W 0,r(Ω)/R) for 1 < r < 2.

Recall that it requires at least g ∈ H1/2(∂Ω, R2) for variational forms (2.2) and

(2.7) to be valid, and g ∈ H3/2(∂Ω, R2) for error estimates in Theorem 2.3, 2.5
and 2.9 to be true. The discontinuous boundary data gdc certainly poses a problem
here. A popular solution to this is to regularize the boundary condition, as what
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is used in the spectral method. However, in finite element approximations, notic-
ing that discrete problems (2.3) and (2.11) are well defined under boundary data
gdc, people usually use directly gdc/“leaky” or the so-called “non-leaky” boundary
condition, in which the velocity on two top corners is set to be (0, 0)t. To our
knowledge, there are no existing error estimates for this type of approximation.
The purpose of this paper is to provide an error estimate in this situation using
both the velocity-pressure formulation and the pseudostress-velocity formulation
under the discontinuous boundary condition.

The main idea of our approach towards the error estimate is to first design

a continuous boundary data gc
ε ∈ H1/2(∂Ω, R2), which is presumably a good

approximation to gdc. The detailed construction of gc
ε will be given later. Let

(uc
ε, p

c
ε) ∈ (H1(Ω, R2), L2(Ω)/R) be the continuous solution corresponding to this

new boundary data gc
ε. According to Theorem 2.1,

(3.3) ‖u − uc
ε‖1,r,Ω + ‖p − pc

ε‖0,r,Ω ≤ Cr‖g
dc − gc

ε‖1−1/r,r,∂Ω for 1 < r < 2.

Then the variational form is discretized using the continuous boundary data gc
ε.

One important observation is that, for properly designed gc
ε, the discrete system

will not see the difference between gdc and gc
ε. In other words, discrete systems

with boundary data gdc and gc
ε are identical. Then the error estimate can be done

by using the triangle inequality. Here, one essential step is to choose gc
ε carefully.

Our definition of gc
ε is given in the following.

Simple calculation shows that a fourth degree polynomial f(x) on x ∈ [0, 1] can
be uniquely determined by the following conditions:

(1) f(0) = 0, f(1) = 1 and f ′(0) = f ′(1) = 0;
(2) for the velocity-pressure formulation, set f(1/2) = 1; for the pseudostress-

velocity formulation, set
∫ 1

0
f(x) dx = 1.

Notice that f(x) varies for different formulations. However, this will not affect later
analysis. The top boundary of Ω, [0, a] × b, is divided into segments by the mesh
Th (see Figure 1). Consider the two segments which contain the two upper corners
(0, b) and (a, b). Without loss of generality, we assume these two segments have the
same length ε. It is clear that ε = O(h). Denote

Γ1
ε = {x ∈ [0, ε], y = b}, Γ2

ε = {x ∈ [a − ε, a], y = b}

as shown in Figure 1 and set Γε = Γ1
ε ∪ Γ2

ε. Define

gc
ε =



















(1, 0)t on Γ1\Γε

(f(x/ε), 0)t on Γ1
ε

(f((a − x)/ε), 0)t on Γ2
ε

(0, 0)t on Γ0

.

It is easy to see that gc
ε ∈ H2(∂Ω, R2). Furthermore, discrete solutions using

the boundary data gc
ε and gdc are exactly the same in the pseudostress-velocity

formulation (2.11). Indeed, the boundary term < gc
ε, τhn >∂Ω is just proportional

to the line integral of gc
ε along boundary edges, since the normal components of

the lowest order RT element on the boundary are piecewise constants. By the
definition of gc

ε, it is easy to verify that

< gc
ε, τhn >∂Ω=< gdc, τhn >∂Ω for all τh ∈ Σh.
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In the velocity-pressure formulation (2.3), discrete solutions are the same for gc
ε and

gdc only when the nodal value interpolation is used to approximate the boundary
data. For higher order finite elements, one can design suitable gc

ε similarly.

(0,b)

Γ Γ

(ε,b) (a,b)(a−ε,b)

ε
1

ε
2

Figure 1. The top boundary of Ω.

Remark 3.1. The continuous boundary data gc
ε is designed purely for theoretical

analysis. In numerical simulation, it is expected that only gdc will be used. This
is clear in the case of the pseudostress-velocity formulation. However, in the case
of the velocity-pressure formulation, this is only true if one uses the nodal value
interpolation to approximate the boundary data.

To derive error estimates in fractional Sobolev norms, some technique inequalities
will be needed. The proof of the following lemma will be given in Appendix B.

Lemma 3.2. For 1 < r < 2 and 0 < ε < 1/2,
∫ 0

−1

∫ ε

0

yr

(y − x)r
dy dx ≤ −2ε2 ln ε,

∫ ε

0

∫ 1

ε

(ε − y)r

(x − y)r
dx dy ≤ −2ε2 ln ε,

∫ 0

−1

∫ ε

0

1

(y − x)r
dy dx ≤

−4ε2−r ln ε

2 − r
,

∫ ε

0

∫ 1

ε

1

(x − y)r
dx dy ≤

−4ε2−r ln ε

2 − r
.

Furthermore, for r = 2 and 0 < ε < 1/2,
∫ 0

−1

∫ ε

0

y2

(y − x)2
dy dx ≤ ε2/2,

∫ ε

0

∫ 1

ε

(ε − y)2

(x − y)2
dx dy ≤ ε2/2.

Now we are able to estimate the fractional Sobolev norm of gdc − gc
ε and gc

ε:

Lemma 3.3. For 0 < ε < 1/2 and 1 < r < 2,

(3.4) ‖gdc − gc
ε‖1−1/r,r,∂Ω .

(

−ε2−r ln ε

2 − r

)1/r

and

(3.5) ‖gc
ε‖2−1/r,r,∂Ω . (−ε2−2r ln ε)1/r.

For r = 2,

‖gc
ε‖1/2,∂Ω . (− ln ε)1/2, ‖gc

ε‖3/2,∂Ω . ε−1 and ‖gc
ε‖2,∂Ω . ε−3/2.

Proof. Let us start from a simplified case. Consider the following discontinuous
function defined on I = (−1, 1):

fε(x) =











0 −1 < x < 0

1 − f(x/ε) 0 ≤ x ≤ ε

0 ε < x < 1

.
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Define F = max{1 + max0≤x≤1 |f(x)|,max0≤x≤1 |f
′(x)|}. By the definition of the

fractional Sobolev norm, Lemma 3.2 and using the change of variables,

‖fε‖
r
1−1/r,r,I =

∫ ε

0

|fε(x)|r dx + 2

∫ 0

−1

∫ ε

0

|1 − f(y/ε)|r

|y − x|r
dy dx

+ 2

∫ ε

0

∫ 1

ε

|1 − f(y/ε)|r

|x − y|r
dx dy +

∫ ε

0

∫ ε

0

|f(x/ε) − f(y/ε)|r

|x − y|r
dx dy

≤ F rε + 4F r −4ε2−r ln ε

2 − r
+

∫ 1

0

∫ 1

0

|f(x) − f(y)|r

|x − y|r
ε2−r dx dy

≤ F r

(

ε − 16
ε2−r ln ε

2 − r
+ ε2−r

)

.
−ε2−r ln ε

2 − r
.

The last step comes from facts that 1 < r < 2 and that ε is small. Notice that

gdc − gc
ε =











(1 − f(x/ε), 0)t on Γ1
ε,

(1 − f((a − x)/ε), 0)t on Γ2
ε,

0 elsewhere.

Hence Inequality (3.4) can be proved by the same process as above.
To prove Inequality (3.5), we define a continuous function

kε(x) =











0 −1 < x < 0,

f(x/ε) 0 ≤ x ≤ ε,

1 ε < x < 1.

Let G = max0<x<1 |f
′′(x)|. Notice that k′

ε(x) is a continuous piecewise polynomial
and vanishes for −1 < x ≤ 0 and ε ≤ x < 1. Hence it is Lipschitz continuous with

|k′
ε(y) − k′

ε(x)| ≤ max
0<t<ε

(|k′′
ε (t)|)|y − x| ≤

G

ε2
|y − x| for − 1 < x, y < 1.

Consequently, for 0 < y < ε,

|k′
ε(y)| = |k′

ε(y) − k′
ε(0)| ≤

G

ε2
|y|,

|k′
ε(y)| = |k′

ε(y) − k′
ε(ε)| ≤

G

ε2
|ε − y|.

Then by Lemma 3.2,

‖kε‖
r
2−1/r,r,I = ‖kε‖

r
1,r,I + 2

∫ 0

−1

∫ ε

0

|k′
ε(y)|r

|x − y|r
dy dx

+ 2

∫ ε

0

∫ 1

ε

|k′
ε(y)|r

|x − y|r
dx dy +

∫ ε

0

∫ ε

0

|k′
ε(y) − k′

ε(x)|r

|x − y|r
dx dy

≤ (1 + F rε + F rε1−r) + 4
Gr

ε2r
(−2ε2 ln ε) + Grε2−2r

. −ε2−2r ln ε.

This completes the proof for Inequality (3.5).
Finally, the error estimate for ‖gc

ε‖1/2,∂Ω, ‖gc
ε‖3/2,∂Ω and ‖gc

ε‖2,∂Ω can be ob-
tained similarly by using Lemma 3.2. �

The following two theorems give the detailed error estimates for different finite
element approximations to the driven cavity problem.
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Theorem 3.4. Let (u, p) be the solution to Problem (2.1) and (uh, ph) be the
solution to Problem (2.3) with f = 0 and g = gdc. Assume that nodal value
approximation is used in treating the boundary data for uh. Then, for 1 < r < 2,
we have

‖u − uh‖2−2/r,Ω . Cr

(

h2−3r/2

2 − r

)1/r

(3.6)

‖u − uh‖0,Ω . inf
1<r<2

Cr

(

h2−3r/2

2 − r

)1/r

.(3.7)

If (uh, ph) is defined with the boundary data to be the H3/2 projection of gc
ε, then

it gives the optimal error estimate:

‖u − uh‖2−2/r,Ω . Cr

(

−h2−r lnh

2 − r

)1/r

,(3.8)

‖u − uh‖0,Ω . inf
1<r<2

Cr

(

−h2−r lnh

2 − r

)1/r

.(3.9)

Proof. Let (uc
ε, p

c
ε) be the solution to Problem (2.1) with f = 0 and the

boundary data g = gc
ε. According to Theorem 2.1, uc

ε is in H2(Ω, R2). Notice that
(uh, ph) can also be considered as the solution to Problem (2.3) with boundary data
set as an interpolant of gc

ε. Let Ih be the nodal value interpolation operator from
H2(Ω, R2) into Uh. Then by the triangle inequality and the Sobolev embedding
theorem,

‖u−uh‖2−2/r,Ω ≤ ‖u − uc
ε‖2−2/r,Ω + ‖uc

ε − Ihuc
ε‖2−2/r,Ω + ‖Ihuc

ε − uh‖2−2/r,Ω

.‖u − uc
ε‖1,r,Ω + ‖uc

ε − Ihuc
ε‖1,r,Ω + ‖Ihuc

ε − uh‖2−2/r,Ω.

Next, it follows from the approximation property of Ih [3], Theorem 2.1, 2.3, 2.5,
the inverse inequality, and the triangle inequality that, for 1 < r < 2 we have

‖uc
ε − Ihuc

ε‖1,r,Ω . h‖uc
ε‖2,r,Ω . hCr‖g

c
ε‖2−1/r,r,∂Ω

and
‖Ihuc

ε − uh‖2−2/r,Ω . h−2+2/r‖Ihuc
ε − uh‖0,Ω

. h−2+2/r(‖Ihuc
ε − uc

ε‖0,Ω + ‖uc
ε − uh‖0,Ω)

. h2/r(‖uc
ε‖2,Ω + ‖pc

ε‖1,Ω + ‖gc
ε‖2,∂Ω)

. h2/r‖gc
ε‖2,∂Ω.

Combining the above, Theorem 2.1 and Lemma 3.3 gives

‖u−uh‖2−2/r,Ω . ‖u − uc
ε‖1,r,Ω + ‖uc

ε − Ihuc
ε‖1,r,Ω + ‖Ihuc

ε − uh‖2−2/r,Ω

. Cr‖g
dc − gc

ε‖1−1/r,r,∂Ω + hCr‖g
c
ε‖2−1/r,r,∂Ω + h2/r‖gc

ε‖2,∂Ω

. Cr

(

−ε2−r ln ε

2 − r

)1/r

+ hCr(−ε2−2r ln ε)1/r + h2/rε−3/2

. Cr

(

h2−3r/2

2 − r

)1/r

.

The last step follows from the fact that ε = O(h). This completes the proof for
Inequality (3.6). Inequality (3.7) is an immediate consequence of Inequality (3.6).
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In the case of using the H3/2 projection to approximate the boundary data gc
ε,

all other estimates still hold except that ‖Ihuc
ε − uh‖2−2/r,Ω becomes

‖Ihuc
ε − uh‖2−2/r,Ω . h−2+2/r(‖Ihuc

ε − uc
ε‖0,Ω + ‖uc

ε − uh‖0,Ω)

. h2/r(‖uc
ε‖2,Ω + ‖pc

ε‖1,Ω + ‖gc
ε‖3/2,∂Ω)

. h2/r‖gc
ε‖3/2,∂Ω

. h2/rε−1.

Hence

‖u − uh‖2−2/r,Ω . Cr

(

−ε2−r ln ε

2 − r

)1/r

+ hCr(−ε2−2r ln ε)1/r + h2/rε−1

. Cr

(

−h2−r lnh

2 − r

)1/r

.

This completes the proof for Inequality (3.8). Inequality (3.9) follows immediately.
�

Theorem 3.5. Let (σ,u) be the solution to Problem (2.6) and (σh,uh) be the
solution to Problem (2.11) with f = 0 and g = gdc. Then

(3.10) ‖u − uh‖0,Ω . inf
1<r<2

Cr

(

−h2−r lnh

2 − r

)1/r

.

Proof. Let (σc
ε,u

c
ε) be the solution to Problem (2.6) with f = 0 and the

boundary data g = gc
ε. Then by the triangle inequality, Theorem 2.1, Theorem 2.9,

and Lemma 3.3,

‖u − uh‖0,Ω ≤ ‖u − uc
ε‖0,Ω + ‖uc

ε − uh‖0,Ω

. Cr‖g
dc − gc

ε‖1−1/r,r,∂Ω + h‖uc
ε‖1,Ω + h2‖σc

ε‖1,Ω

. Cr

(

−ε2−r ln ε

2 − r

)1/r

+ h‖gc
ε‖1/2,∂Ω + h2‖gc

ε‖3/2,∂Ω

. Cr

(

−ε2−r ln ε

2 − r

)1/r

+ h(− ln ε)1/2 + h2ε−1

. Cr

(

−h2−r lnh

2 − r

)1/r

.

The last step follows from the fact that ε = O(h). �

Finally, we compare the results of Theorem 3.4 and Theorem 3.5. Inequalities
(3.7), (3.9) and (3.10) describes the approximating property for, respectively, the
velocity-pressure formulation with nodal-value interpolation on the boundary data,

the velocity-pressure formulation with H3/2 projection on the boundary data, and
the pseudostress-velocity formulation. Notice all three error bounds have the form

‖u − uh‖0,Ω . inf
1<r<2

Crφ(r),
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where φ(r) =
(

h2−3r/2

2−r

)1/r

for Inequality (3.7) and φ(r) =
(

−h2−r ln h
2−r

)1/r

for other

cases. It can be shown that φ(r) takes its infimum at r = 1 and

φ(1) =

{

h1/2 for Inequality (3.7),

−h lnh for other situations.

However, since Cr may not be bounded as r goes to 1, we want to set r = 1 + δ
instead of 1, where δ is a small positive number. Because Cr does not depend on
h, one can still get an error estimate for ‖u − uh‖0,Ω of order close to O(h1/2) for
Inequality (3.7) or O(−h ln h) for other situations, although it may contain a large
coefficient C1+δ. The lose of half an order of h for Inequality (3.7) comes from using
the nodal-value interpolation on the boundary data.

Recall that the exact velocity u for the two-dimensional Stokes driven cavity
problem is in W 1,r(Ω, R2) for all 1 < r < 2. By the Sobolev embedding theorem
[17], the exact velocity u is in H1−ε(Ω, R2) for ε arbitrarily small. Therefore, we
expect the optimal bound of ‖u−uh‖0,Ω be close to O(h), but not better than that
even when higher order finite element spaces are used. Judged from this, an error of
order close to C1+δO(−h ln h), for inequalities (3.9) and (3.10), seems reasonable.
However, we are not sure whether improvements can be done on the C1+δ part or
not.

Appendix A. Proof of Theorem 2.9

Let (σ,u) be the solution to Problem (2.7) and (σh,uh) be the solution to
Problem (2.11). It is easy to see from Lemma 2.8 that

div Πhσ = Phdiv σ = div σh.

By subtracting equations (2.7) from (2.11) and using Lemma 2.8, one can derive
that

‖A1/2(σ−σh)‖2
0,Ω = (A1/2(σ − σh),A1/2(σ − Πhσ)) + (A(σ − σh),Πhσ − σh)

. h‖A1/2(σ − σh)‖0,Ω|σ|1,Ω − (div (Πhσ − σh),u − uh)

= h‖A1/2(σ − σh)‖0,Ω|σ|1,Ω.

Therefore

‖A1/2(σ − σh)‖0,Ω . h|σ|1,Ω.

Notice that

‖div (σ − σh)‖−1,Ω = sup
v∈H1

0
(Ω,R2)

(div (σ − σh),v)

‖v‖1,Ω

= sup
v∈H1

0
(Ω,R2)

(div (σ − σh),v − Phv)

‖v‖1,Ω
. h‖div (σ − σh)‖0,Ω.

Hence by Lemma 2.7,

‖σ−σh‖0,Ω . ‖A1/2(σ − σh)‖0,Ω + ‖div (σ − σh)‖−1,Ω

. h(|σ|1,Ω + ‖div (σ − σh)‖0,Ω) . h|σ|1,Ω.

Let τ satisfy div τ = Phu−uh and ‖τ‖1,Ω . ‖Phu−uh‖0,Ω . ‖u−uh‖0,Ω. Such
a τ can be easily constructed by solving a Stokes problem using the force function
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Phu − uh. Clearly, div Πhτ = div τ . Again by subtracting equations (2.7) from
(2.11) and using Lemma 2.8,

‖u − uh‖
2
0,Ω = (u − uh,u − Phu) + (u − uh,Phu − uh)

. h‖u − uh‖0,Ω|u|1,Ω + (u − uh,div Πhτ )

= h‖u − uh‖0,Ω|u|1,Ω − (A(σ − σh),Πhτ )

. h‖u − uh‖0,Ω|u|1,Ω + h|σ|1,Ω‖τ‖1,Ω

. h‖u − uh‖0,Ω(|u|1,Ω + |σ|1,Ω).

This completes the proof of Inequality (2.12).
Next we prove Inequality (2.13). For w ∈ V, define (σw,uw) by

{

(Aσw, τ ) + (div τ ,uw) = 0 for all τ ∈ Σ,

(div σw,v) = (w,v) for all v ∈ V.

Then

(w,uh − Phu) = (div σw,uh − Phu)

= (div Πhσw,uh − u) = (A(σ − σh),Πhσw)

= (A(σ − σh),Πhσw − σw) + (A(σ − σh),σw)

= (A(σ − σh),Πhσw − σw) − (div (σ − σh),uw)

= (A(σ − σh),Πhσw − σw).

The last step comes from the assumption that div σ = div σh. Hence

‖uh − Phu‖0,Ω = sup
w∈V

(w,uh − Phu)

‖w‖0,Ω

= sup
w∈V

(A(σ − σh),Πhσw − σw)

‖w‖0,Ω
. sup

w∈V

h2|σ|1,Ω|σw|1,Ω

‖w‖0,Ω

. h2|σ|1,Ω.

Finally, by using the triangular inequality and the property of L2 projection,

‖u − uh‖0,Ω ≤ ‖u − Phu‖0,Ω + ‖uh − Phu‖0,Ω . h|u|1,Ω + h2|σ|1,Ω

This completes the proof of Inequality (2.13).

Appendix B. Proof of Lemma 3.2

Lemma B.1. Let 0 < ε < 1/2 and 1 < r < 2, then

(B.1) ε2−r − (ε + 1)2−r + 1 ≤

(

3

2 ln 2
+ 1

)

(r − 1)ε2−r(− ln ε).

Proof. Define function

f(ε, r) = ε2−r − (ε + 1)2−r + 1.
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Clearly, f(ε, r) is differentiable in (0, 1/2) × [1, 2). Notice that f(ε, 1) = 0, then

f(ε, r) =f(ε, r) − f(ε, 1)

≤ sup
1≤ξ≤r

|
∂f

∂r
(ε, ξ)|(r − 1)

=(r − 1) sup
1≤ξ≤r

[−ε2−ξ ln ε + (ε + 1)2−ξ ln(ε + 1)]

≤(r − 1)[−ε2−r ln ε + (ε + 1) ln(ε + 1)]

≤

(

3

2 ln 2
+ 1

)

(r − 1)ε2−r(− ln ε).

Here the last step comes from the fundamental inequalities ln(1 + ε) < ε ≤ ε2−r

and assumptions that 0 < ε < 1/2 and 1 < r < 2. �

Lemma B.2. Assume 0 < y < 1/2 and 1 < r < 2. Then

y1−r − (y + 1)1−r ≤ 2(r − 1)y1−r(− ln y).

Proof. Define f(y, r) = y1−r − (y + 1)1−r. It is smooth on 0 < y < 1/2 and
1 ≤ r < 2. Notice that f(y, 1) = 0. Hence

f(y, r) = f(y, r) − f(y, 1) ≤ sup
1≤ξ≤r

|
∂f

∂r
(y, ξ)|(r − 1)

Since for 0 < y < 1/2 and 1 ≤ r < 2,

∂2f

∂r2
(y, r) =

ln2 y

yr−1
−

ln2(y + 1)

(y + 1)r−1
> 0.

Therefore ∂f
∂r (y, r) is monotonically increasing with respect to r, which means

sup
1≤ξ≤r

|
∂f

∂r
(y, ξ)| = |

∂f

∂r
(y, r)| = |

− ln y

yr−1
+

ln(y + 1)

(y + 1)r−1
| ≤ 2

− ln y

yr−1
.

This completes the proof of the lemma. �

Finally we prove Lemma 3.2. By using the previous lemma and integration by
parts,

∫ 0

−1

∫ ε

0

yr

(y − x)r
dy dx =

∫ ε

0

yr

∫ 0

−1

1

(y − x)r
dx dy

=

∫ ε

0

yr y1−r − (y + 1)1−r

r − 1
dy ≤

∫ ε

0

−2y ln y dy

= ε2(− ln ε + 1/2) ≤ −2ε2 ln ε.

By setting ỹ = ε − y and x̃ = ε − x, one has
∫ ε

0

∫ 1

ε

(ε − y)r

(x − y)r
dx dy ≤

∫ ε

0

∫ 1+ε

ε

(ε − y)r

(x − y)r
dx dy

=

∫ 0

−1

∫ ε

0

ỹr

(ỹ − x̃)r
dỹ dx̃ ≤ −2ε2 ln ε.

Since 3
2 ln 2 + 1 < 4, by using Lemma B.1

∫ 0

−1

∫ ε

0

1

(y − x)r
dy dx =

ε2−r − (ε + 1)2−r + 1

(r − 1)(2 − r)
≤

−4ε2−r ln ε

2 − r
.
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Again, the inequality concerning
∫ ε

0

∫ 1

ε
1

(x−y)r dx dy can be proved by a simple

change of variables.
Finally, a simple calculation shows that

∫ 0

−1

∫ ε

0

y2

(y − x)2
dy dx = ε − ln(ε + 1) ≤ ε2/2.

The inequality involving
∫ ε

0

∫ 1

ε
(ε−y)2

(x−y)2 dx dy can be proved similarly.
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