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The deformation variety

The shape of an ideal tetrahedron
embedded in H3 is determined by
a single complex dihedral angle
(aka cross ratio) z ∈ C \ {0, 1}.

Around an edge of the
triangulation T of a 3-manifold
M with torus boundary, the
product of the complex dihedral
angles must be 1 (gluing equation
for this edge).

These conditions give us
polynomials in the complex
angles. The set of such solutions
is the deformation variety,
D(M; T ).
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The developing map
Let Ṽ be the set of cusps of M̃. Given a point Z ∈ D(M; T ) the
developing map is

ΦZ : Ṽ → ∂H3

Defined by developing paths of tetrahedra into H3 and tracking
their vertices on ∂H3, starting from some initial triangle T0 of T̃ ,
the lift of T to M̃.

Doesn’t depend on the choice of path of
tetrahedra because of the gluing equations.

Some tetrahedra in H3 can end up flat or negatively oriented, but
never such that two vertices are in the same place on ∂H3

(degenerate).

ΦZ gives us a representation π1M → Isom(H3) and so a (generally
incomplete) hyperbolic structure.

So we have a map RT : D(M; T )→ R(M).
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Let Ṽ be the set of cusps of M̃. Given a point Z ∈ D(M; T ) the
developing map is

ΦZ : Ṽ → ∂H3
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Let Ṽ be the set of cusps of M̃. Given a point Z ∈ D(M; T ) the
developing map is

ΦZ : Ṽ → ∂H3
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Question: Given a representation ρ ∈ R(M), is there a
Z ∈ D(M; T ) such that RT (Z ) = ρ (up to conjugation)?

Answer: Not in general.

Given a representation ρ, we can define a map Ψρ : Ṽ → ∂H3

which says where the cusps go on ∂H3.

We would like to just read off the
cross ratios for each tetrahedron
from this map. The problem is
that edges of the triangulation
may connect two vertices that are
in the same place on ∂H3, and
this forces the tetrahedra
containing that edge to be
degenerate.
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The problem

There are examples of manifolds for which entire components of
the representation variety cannot be “seen” by the deformation
variety with one triangulation (but which can be seen with a
different triangulation).

Suppose then that we have a map

Ψρ : Ṽ → ∂H3

and for a triangulation T , some tetrahedra are degenerate under
this map, so that D(M; T ) will not ‘see’ ρ.

How can we describe ρ using shapes of tetrahedra?



Why should we care?

We want to use triangulations to talk about arbitrary incomplete
hyperbolic structures without worrying about the triangulation.

We can use this for investigating:

I Incompressible surfaces (via
spun-normal surfaces)

I The A-polynomial
I Components of the character

variety

8
20



The Solution: Dealing with zero-length edges

Use ‘infinitesimal’ cross ratios, or better, work with Laurent series
in some variable ζ.
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Zero-length edges and horo-normal surfaces

Start with a representation ρ and a choice of Ψρ.

Let E be the edge set of T . Divide E into E0 and E+, respectively
the edges of zero and non-zero length under Ψρ.

1111 211 22 31 4

We put pieces of normal surface into each tetrahedron in such a
way that each edge of E+ intersects two pieces of surface and each
edge of E0 intersects none.

These connect up to form a horo-normal surface S .
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S cuts M into an inside region Rin
and an outside region Rout
containing the cusp.

Lift everything to M̃, then collapse
each lift of the surface to a point.
We get a central region
corresponding to R̃in and many outer
regions, assuming R̃in is connected in
M̃.

We want to develop into this
extended structure, a tree of H3s,
not just one H3.
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Previously, we developed ideal tetrahedra into H3 by tracking
positions of vertices on ∂H3 = C ∪ {∞}, now we need to track
positions of vertices on ∂(tree of H3’s)

Instead of C ∪ {∞} we use Serre’s tree, which has ends
C((ζ)) ∪ {∞}. (Laurent series, plus ∞)
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We develop in the same way: given a, b, c ∈ C((ζ)) ∪ {∞} and
knowing that the cross ratio (dihedral angle) z of (a, b, c , d) is
given for this tetrahedron by

z =
(a − c)(b − d)

(a − d)(b − c)
∈ C((ζ)) \ {0, 1}

We can get d as a function of a, b, c and z .

Key technical lemma: We can determine lowest order position data
for developed cusps from lowest order cross ratio data, as long as
we don’t develop through entirely degenerate triangles.
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The extended deformation variety

D̂(M; T ; S), the extended deformation variety of M with
triangulation T and horo-normal surface S is an affine algebraic
variety whose points encode lowest order cross-ratio data for the
dihedral angles of each tetrahedron of T .

The powers of ζ on these cross ratios are given by S .

The cross-ratios must satisfy the consistent development condition,
meaning that if we develop through two different paths of
tetrahedra that contiguously contain R̃in out to a cusp, then the
positions we obtain must match at the ζ0 term.

This condition imposes a finite number of
polynomial conditions on the cross-ratios,
making it a variety.

The R̃in derived from S must be connected (otherwise there would
be places we cannot develop to).
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Once again, given a point Z ∈ D̂(M; T ; S) we have the developing
map

ΦZ : Ṽ → ∂H3

by forgetting all but the ζ0 information, from which we get
R(T ,S) : D̂(M; T ; S)→ R(M).

Let D̂(M; T ) be the union over all possible horo-normal S and
define RT : D̂(M; T )→ R(M) by the restriction to each
D̂(M; T ; S). Then:

Theorem
Let M be a connected 3-manifold with non-empty boundary
consisting of a disjoint union of tori and suppose that M admits an
ideal triangulation. Then there exists an ideal triangulation T∗ of M
such that for every irreducible ρ ∈ R(M) such that ρ(π1M) is not a
generalised dihedral group, ρ is in the image under RT∗ of
D̂(M; T∗), up to conjugation.
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Sketch of proof

Given ρ, we need to construct S and cross-ratios Zρ so that
ΦZρ(Ṽ) = Ψρ(Ṽ), and so translate ρ into dihedral angles.

If Ψρ is 1-1 then no points are in the same place, each quadruple of
points gives a non-degenerate tetrahedron and we can read off the
cross-ratio.

v

x
x+±³

w
If not... Ψρ determines the zeroth order positions
of points. To determine the higher order
information:

For each ei ∈ E0, arbitrarily choose a lift ẽi ∈ Ẽ0
and an offset δi ∈ C \ {0}.
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π1M acts on the edges Ẽ0 and we extend the
assignment of the δi everywhere using ρ, so that
the lowest order of cross-ratios is preserved.

z ≈ (δζ)(v − w)

(x − w)(v − x)

Now, for each tetrahedron, read off cross ratios for the dihedral
angles (some will be degenerate, having ζ’s).

I This determines an equivariant set of cross ratios for Zρ.
I ΦZρ has the same image as Ψρ...

I ...as long as we can develop through R̃in to every vertex of Ṽ.
I Assuming that ΦZρ has the same image as Ψρ and has at least

3 points, then we can recover ρ from the image.



Retriangulating

Given ρ we get a set of zero length edges E0, and then a
horo-normal surface S . If R̃in is not connected, then we need to
change the triangulation in order to make it connected. In fact we
can “fix” all of the surfaces at once.

The main tool we
use to alter the
triangulation is
“inserting a pillow”.

This adds edges, and so alters E0 and the
corresponding surface, increasing the
connectivity.
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Further directions

I Compactify D̂(M; T ). How do we interpret ideal points of this
variety?

I How much of the Culler-Shalen machinery can we reproduce in
the context of triangulations?

I Generalise other things that people do with triangulations that
can now be done more generally, e.g. a version of the
A-polynomial.

I New tool for investigating components of the representation
variety other than the Dehn surgery component.


