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The Deformation Variety

The shape of an ideal
tetrahedron embedded in H3

is determined by a single
complex dihedral angle (aka
cross ratio) z ∈ C \ {0, 1}.

Around an edge of the
triangulation T of M the
product of the complex
dihedral angles must be 1
(gluing equation for this edge).

These conditions give us
polynomials in the complex
angles. The set of such
solutions is the deformation
variety, D(M; T ).
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The Developing Map
Given a point p ∈ D(M; T ) the developing map is

Φp : M̃ → H3

Defined by developing paths of tetrahedra into H3 by
tracking their vertices on ∂H3, starting from some initial
triangle T0 of T̃ (T̃ is the lift of T to M̃).

I Defined up to conjugation, both in the choice of images
of vertices of T0, and choice of T0 among the triangles
of T̃ .

I Doesn’t depend on the choice of path of tetrahedra
because of the gluing equations.

I Some tetrahedra in H3 can end up flat or negatively
oriented, but never such that two vertices are in the
same place on ∂H3 (degenerate).

I Φp gives us a representation into Isom(H3) and so a
(generally incomplete) hyperbolic structure.
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The 2-3 and 3-2 moves

Theorem (Matveev) Any two ideal triangulations of a given
manifold M are connected by a sequence of 2-3 and 3-2
moves.
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What do these moves do to the deformation
variety?

How are D(M; T2) and D(M; T3) related?
Outside of the six sided polyhedron, nothing changes...

x

x

x

y

y
x

b

b

c

c
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b c
a
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a

y

y

a = y−1
y(1−x)

b = x−1
x(1−y)

c = 1
ab

x = a−1
a(1−b)

y = b−1
b(1−a)

Everything translates unless x = 1/y , which corresponds to
the top and bottom vertices of the two tetrahedra developing
to the same place on ∂H3. The corresponding three
tetrahedra are all degenerate.
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An ideal point of D(M; T ) is a limit point of D(M; T ) such
that at least one complex angle of a tetrahedron converges to
0, 1 or ∞.

1. An isolated point of D(M; T2) for which "x = 1/y"
corresponds to an ideal point of D(M; T3).

2. If an entire component of D(M; T2) has "x = 1/y" then
there is no corresponding component of D(M; T3).

The developing map Φp gives a representation
ρp : π1M → Isom(H3). D(M; T2) can give some
representations that D(M; T3) does not.
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Motivation

This behaviour happens with very simple manifolds and
triangulations: e.g. the punctured torus bundle with
monodromy LLR has triangulations T and T ′ with 4 and 5
tetrahedra respectively such that T has an entire component
with "x = 1/y", and to which there is no corresponding
component for T ′.

We would like to be able to define some extension of the
deformation variety which deals with degenerate tetrahedra:

I How do we define a developing map when some
tetrahedra are degenerate?

I How do we compactify D(M; T )? (in order to add ideal
points)

I How do we include "ideal components"?
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The Deligne-Mumford compactification

Consider the space of n distinct points in CP1 up to
conjugation,

((CP1)n \∆)/ ∼

a

b

c

d

c

d

a

b

a

b

c

d

We compactify with
arrangements of points on
various trees of CP1’s
depending on how and at
what rates the points
approach each other.
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b

c

d

e

Now do the same with positions of cusps on ∂H3, with
infinitely many points but with a π1M equivariance condition.

As we arrive at an ideal point p̃ of D(M; T ) our developing
map

Φp : M̃ → H3

should become

Φep : M̃ → (tree of H3’s)
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Developing into ∂(tree of H3’s)
Previously, we developed ideal tetrahedra into H3 by tracking
positions of vertices on ∂H3 = CP1, now we need to track
positions of vertices on ∂(tree of H3’s)

Instead of CP1 we use Serre’s tree (so called by Ohtsuki),
Tζ , tree with ends C((ζ)) ∪ {∞}. (Laurent series, plus ∞)
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We develop in the same way: given a, b, c ∈ C((ζ)) ∪ {∞}
and knowing that the cross ratio (aka dihedral angle) z of
(a, b, c , d) is given for this tetrahedron and

z =
(a − c)(b − d)

(a − d)(b − c)
∈ C((ζ)) \ {0, 1}

We can solve for d :

d =
(b − c)za − (a − c)b
(b − c)z − (a − c)

We also need consistency of the developing map through
different paths of tetrahedra.
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Example: developing an ideal point into Tζ

p̃ is an ideal point of D(M; T ) (which we assume is a 1
(complex) dimensional variety)

Cross ratios in C((ζ)): By some algebraic geometry magic,
we can parametrise a neighbourhood of p̃ by a complex
variable ζ (with ζ = 0 corresponding to p̃). For each
tetrahedron, the cross ratio zi = zi (ζ) ∈ C((ζ)).

Develop consistently: For all ζ 6= 0 the zi (ζ) develop cusp
positions consistently, because they correspond to shapes of
tetrahedra that satisfy the gluing equations, so the zi (ζ)
develop consistently as elements of C((ζ)).

For an isolated ideal point of D(M; T3)
corresponding to "x = 1/y" in
D(M; T2) this gives us the right
developing map into one "central" H3

of the tree.
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Problems

I This deals with an isolated ideal point of D(M; T3)
corresponding to "x = 1/y" for D(M; T2), but doesn’t
help for the other case, of an entire "ideal component".
There is no way to approach the needed degenerate
shapes of tetrahedra.

I An element of C((ζ)) for each cross ratio is an enormous
amount of data in comparison to an element of C:
finding sets of cross ratios that develop consistently
looks hard (unless we can apply magic through being
able to approach from non-degenerate shapes).

I Similarly, we don’t obviously have a finite dimensional
algebraic variety of solutions, assuming that solutions for
"ideal components" even exist.
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Developing with less information

Idea: Low order information determines low order behaviour.

Definition: If a is an end of Tζ , so a ∈ C((ζ)) ∪ {∞}, let

aH :=

{
a0 if a ∈ C[[ζ]]
∞ if a ∈ (C((ζ)) ∪∞) \ C[[ζ]]

Example: Suppose p is an interior point (i.e. not an ideal
point) of D(M; T ), so the data of p is a tuple of cross ratios
(z(1), z(2), . . . , z(n)) ∈ (C \ {0, 1})n.

Arbitrarily extend z(i) to Z (i)(ζ) =
∑∞

k=0 Z (i)
k ζk ∈ C[[ζ]]

such that Z (i)
0 = z(i), but Z (i)

k , k > 0 is chosen arbitrarily.

Now develop the Z (i)(ζ) into Tζ . If a is the position of some
developed vertex then aH depends only on the Z (i)

0 = z(i).
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So if we only care about one H3 of the tree, we can develop
without knowing higher order information.

Question: Is something like this true when some tetrahedra
are degenerate?

Answer: Yes, but we have to be careful about which
tetrahedra we develop into.

First, some needed machinery:

b c

a

b0 c0

a0

A triangle of M̃ maps to a tripod in Tζ . Normal curves are
inverse images of midpoints of the edges of the tripod.
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A tetrahedron of
M̃ maps to a
spine in Tζ .
Normal triangles
and quadrilaterals
are inverse images
of midpoints of
the edges of the
spine.

If the lowest
non-zero term of
a cross ratio
z(ζ) ∈ C[[ζ]] is
zkζ

k then
order(z(ζ)) = k ,
which is also the
length of the
spine.
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The combinatorial data of spines and how they glue together
allows us to develop a purely combinatorial tree from the
degeneration data. We require that this construction be
independent of the path of tetrahedra we develop along.

This consistency implies that the normal triangles and
quadrilaterals link up to form a spun-normal surface S ⊂ M̃
(related to work of Tillmann).
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The combinatorial data of spines and how they glue together
allows us to develop a purely combinatorial tree from the
degeneration data. We require that this construction be
independent of the path of tetrahedra we develop along.

This consistency implies that the normal triangles and
quadrilaterals link up to form a spun-normal surface S ⊂ M̃
(related to work of Tillmann).
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We can then define a tree TS with vertices the components
of M̃ \ S and edges corresponding to the components of S ,
and TS is the same as the tree we get by gluing spines.

In the ideal point case the developing map gives TS mapping
into Tζ , and components of M̃ \ S mapping to vertices of Tζ .
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We can then define a tree TS with vertices the components
of M̃ \ S and edges corresponding to the components of S ,
and TS is the same as the tree we get by gluing spines.

In the ideal point case the developing map gives TS mapping
into Tζ , and components of M̃ \ S mapping to vertices of Tζ .
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Theorem Suppose we have a set of z(i)(ζ), one for each
tetrahedron of T such that the tree generated by the spines
of lengths given by the orders of the z(i) is consistent. Let
M̃0 be a component of M̃ \ S and suppose a is the developed
position of a vertex obtained from a path of tetrahedra that
has a contiguous non-empty intersection with M̃0. Then aH
depends only on the lowest order terms of the z(i)(ζ).

X

What this means is that we can work out the developing map
for one vertex (one H3) of the Tζ knowing only the orders
and the lowest order coefficients of the cross ratios.

We still need some conditions on these coefficients to get
that the developing map is independent of the path of
tetrahedra we take to get to a vertex.
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Theorem Suppose we have a set of z(i)(ζ), one for each
tetrahedron of T such that the tree generated by the spines
of lengths given by the orders of the z(i) is consistent. Let
M̃0 be a component of M̃ \ S and suppose a is the developed
position of a vertex obtained from a path of tetrahedra that
has a contiguous non-empty intersection with M̃0. Then aH
depends only on the lowest order terms of the z(i)(ζ).
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What this means is that we can work out the developing map
for one vertex (one H3) of the Tζ knowing only the orders
and the lowest order coefficients of the cross ratios.

We still need some conditions on these coefficients to get
that the developing map is independent of the path of
tetrahedra we take to get to a vertex.
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Theorem Suppose we have a set of z(i)(ζ), one for each
tetrahedron of T such that the tree generated by the spines
of lengths given by the orders of the z(i) is consistent. Let
M̃0 be a component of M̃ \ S and suppose a is the developed
position of a vertex obtained from a path of tetrahedra that
has a contiguous non-empty intersection with M̃0. Then aH
depends only on the lowest order terms of the z(i)(ζ).

X

What this means is that we can work out the developing map
for one vertex (one H3) of the Tζ knowing only the orders
and the lowest order coefficients of the cross ratios.

We still need some conditions on these coefficients to get
that the developing map is independent of the path of
tetrahedra we take to get to a vertex.
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The extension to the deformation variety, D̃(M, T ) then
should consist of points containing the following data:

I Order and choice of degeneration of cross ratio z(i) for
each tetrahedron.

I Lowest order coefficient for each z(i).
subject to the conditions that:

I The spines corresponding to the combinatorial
degeneration information fit together into a consistent
tree.

I The positions of vertices aH developed from paths
following each component M̃0 are independent of the
path.
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The extension to the deformation variety, D̃(M, T ) then
should consist of points containing the following data:

I Order and choice of degeneration of cross ratio z(i) for
each tetrahedron.

I Lowest order coefficient for each z(i).
subject to the conditions that:

I The spines corresponding to the combinatorial
degeneration information fit together into a consistent
tree.

I The positions of vertices aH developed from paths
following each component M̃0 are independent of the
path.
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What’s next

I Is this structure actually a variety?
I Does this work nicely with the 2-3 and 3-2 moves?
I Given triangulations T , T ′ and a point x ∈ D̃(M, T ), is

there a corresponding x ′ ∈ D̃(M, T ′)? If so, we
effectively have a triangulation independent structure.

I We should then, for instance, be able to take limits of
points of the extended deformation variety(?) to (even
more ideal) ideal points.

I This could then give us a way to look for essential
surfaces from ideal points, and know that we would get
all possible such surfaces, no matter which triangulation
we used.
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