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Puzzling the 120–cell



Burr puzzles

The goal of a burr puzzle is to assemble a number of “notched
sticks” into a single object.

In this talk, I will describe Quintessence, a family of burr puzzles
based on the 120–cell.



The 120-cell

The 120–cell is a regular
4–dimensional polytope.

It has
I 120 dodecahedral cells,
I 720 pentagonal faces,
I 1200 edges, and
I 600 vertices.

We use radial projection followed by stereographic projection to
help us visualise the 120–cell.

R4 r {0} → S3 ⊂ R4

(w , x , y , z) 7→ (w , x , y , z)
|(w , x , y , z)|

S3 r {N} → R3

(w , x , y , z) 7→
(

x
1− w

,
y

1− w
,

z
1− w

)
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Stereographic projection

In general, stereographic projection maps from Sn r {N} to Rn.

For n = 1, we define ρ : S1 r {N} → R1 by ρ(x , y) = x
1−y .

N

R1

S  1

This is a cross-section of stereographic projection for n > 1.
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Example: projecting a cube into R2

Radial projection Stereographic projection

R3 r {0} → S2

(x , y , z) 7→ (x , y , z)
|(x , y , z)|

S2 r {N} → R2

(x , y , z) 7→
(
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Vertex-centered versus cell-centered projection
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Do the same one dimension up to see a hypercube



This is the
cell-centered projection
of the 120-cell; it has
dodecahedral symmetry
in R3.



The vertex-centered
projection has tetrahedral
symmetry in R3 and so has
fewer possibilities for
puzzle making.

Other choices have even
less symmetry, and so have
even fewer interesting ways
to combine pieces.



Spherical layers in the 120–cell

A first way to understand the
combinatorics of the 120–cell is to look
at the layers of dodecahedra at fixed
distances from the central
dodecahedron.

I 1 central dodecahedron
I 12 dodecahedra at distance π/5
I 20 dodecahedra at distance π/3
I 12 dodecahedra at distance 2π/5
I 30 dodecahedra at distance π/2

The pattern is mirrored in the last four layers.

1+ 12+ 20+ 12+ 30+ 12+ 20+ 12+ 1 = 120



Spherical layers in the 120–cell

A first way to understand the
combinatorics of the 120–cell is to look
at the layers of dodecahedra at fixed
distances from the central
dodecahedron.

I 1 central dodecahedron

I 12 dodecahedra at distance π/5
I 20 dodecahedra at distance π/3
I 12 dodecahedra at distance 2π/5
I 30 dodecahedra at distance π/2

The pattern is mirrored in the last four layers.

1+ 12+ 20+ 12+ 30+ 12+ 20+ 12+ 1 = 120



Spherical layers in the 120–cell

A first way to understand the
combinatorics of the 120–cell is to look
at the layers of dodecahedra at fixed
distances from the central
dodecahedron.

I 1 central dodecahedron
I 12 dodecahedra at distance π/5

I 20 dodecahedra at distance π/3
I 12 dodecahedra at distance 2π/5
I 30 dodecahedra at distance π/2

The pattern is mirrored in the last four layers.

1+ 12+ 20+ 12+ 30+ 12+ 20+ 12+ 1 = 120



Spherical layers in the 120–cell

A first way to understand the
combinatorics of the 120–cell is to look
at the layers of dodecahedra at fixed
distances from the central
dodecahedron.

I 1 central dodecahedron
I 12 dodecahedra at distance π/5
I 20 dodecahedra at distance π/3

I 12 dodecahedra at distance 2π/5
I 30 dodecahedra at distance π/2

The pattern is mirrored in the last four layers.

1+ 12+ 20+ 12+ 30+ 12+ 20+ 12+ 1 = 120



Spherical layers in the 120–cell

A first way to understand the
combinatorics of the 120–cell is to look
at the layers of dodecahedra at fixed
distances from the central
dodecahedron.

I 1 central dodecahedron
I 12 dodecahedra at distance π/5
I 20 dodecahedra at distance π/3
I 12 dodecahedra at distance 2π/5

I 30 dodecahedra at distance π/2

The pattern is mirrored in the last four layers.

1+ 12+ 20+ 12+ 30+ 12+ 20+ 12+ 1 = 120



Spherical layers in the 120–cell

A first way to understand the
combinatorics of the 120–cell is to look
at the layers of dodecahedra at fixed
distances from the central
dodecahedron.

I 1 central dodecahedron
I 12 dodecahedra at distance π/5
I 20 dodecahedra at distance π/3
I 12 dodecahedra at distance 2π/5
I 30 dodecahedra at distance π/2

The pattern is mirrored in the last four layers.

1+ 12+ 20+ 12+ 30+ 12+ 20+ 12+ 1 = 120



Spherical layers in the 120–cell

A first way to understand the
combinatorics of the 120–cell is to look
at the layers of dodecahedra at fixed
distances from the central
dodecahedron.

I 1 central dodecahedron
I 12 dodecahedra at distance π/5
I 20 dodecahedra at distance π/3
I 12 dodecahedra at distance 2π/5
I 30 dodecahedra at distance π/2

The pattern is mirrored in the last four layers.

1+ 12+ 20+ 12+ 30+ 12+ 20+ 12+ 1 = 120



Hopf fibers in the 120–cell
A second way to
understand the 120–cell is
via a combinatorial version
of the Hopf fibration.

Each fiber is a “ring” of 10
dodecahedra.

The rings wrap around
each other.

Each ring is surrounded by
five others.

These six rings make up half of the 120–cell. The other half
consists of five more rings that wrap around these, and one more
ring “dual” to the original grey one.

1+ 5+ 5+ 1 = 12 = 120/10
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We wanted to 3D print all six of the inner rings together; it seems
this cannot be done without them touching each other. (Parts
intended to move must not touch during the printing process.)







To print all five we use a trick...

don’t print the whole ring. We call
part of a ring a rib.
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Dc30 Ring puzzle



Another decomposition, with even shorter ribs.
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Dc45 Meteor puzzle



Six kinds of ribs

spine

inner 6 outer 6

inner 4 outer 4 equator



These make many puzzles, which we collectively call Quintessence.



Theorem
I At most six inner ribs are used in any puzzle.
I At most six outer ribs are used in any puzzle.
I At most ten inner and outer ribs are used in any puzzle.

Proof.
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Further possibilities: vertex centered projection
Dv30 Asteroid puzzle



Further possibilities: other polytopes

The 600-cell works, although the ribs now have handedness.

Tv270 Meteor puzzle

The other regular polytopes seem to have too few cells to make
interesting puzzles.



Further possibilities: other polytopes

The 600-cell works, although the ribs now have handedness.

Tv270 Meteor puzzle

The other regular polytopes seem to have too few cells to make
interesting puzzles.



Thanks!

http://segerman.org
http://ms.unimelb.edu.au/~segerman/
http://youtube.com/user/henryseg
http://www.shapeways.com/shops/henryseg?section=Quintessence
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