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Abstract
The initial-boundary-value problem for the Benjamin–Bona–Mahony (BBM)
equation is studied in this paper. The goal is to understand the periodic
behaviour (termed as eventual periodicity) of its solutions corresponding to
periodic boundary condition or periodic forcing. Towards this end, we derive a
new formula representing solutions of this initial- and boundary-value problem
by inverting the operator ∂t +α∂x−γ ∂xxt defined in the space–time quarter plane.
The eventual periodicity of the linearized BBM equation with periodic boundary
data and forcing term is established by combining this new representation
formula and the method of stationary phase. The eventual periodicity of the full
BBM equation is obtained under a suitable assumption imposed on its solution.

Mathematics Subject Classification: 35Q53, 35B40, 76B15, 37K40

1. Introduction

This paper is concerned with the initial- and boundary-value problem (IBVP) for the Benjamin–
Bona–Mahony (BBM) equation in the quarter plane {(x, t), x � 0, t � 0},

ut + αux + βuux − γ uxxt = f, x � 0, t � 0,

u(x, 0) = u0(x), x � 0,

u(0, t) = g(t), t � 0,

(1.1)

where γ > 0, α and β are real parameters. Our goal is two-fold: first, to establish a new
representation formula for (1.1) by inverting the operator ∂t +α∂x−γ ∂xxt ; second, to understand
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whether the solution of (1.1) exhibits certain time-periodic behaviour if the boundary data g

and the forcing term f are periodic.
The study on the large-time periodic behaviour is partially motivated by a laboratory

experiment involving water waves generated by a wavemaker mounted at the end of a water
channel. It is observed that if the wavemaker is oscillated periodically, say with a long period T0,
it appears that in due course, at any fixed station down the channel, the wave elevation becomes
periodic of period T0. Professor Jerry L Bona proposed the problem of establishing this
observation as a mathematically exact fact about solutions of the suitable model equations for
water waves. One goal of this paper is to determine whether the solution u of (1.1) exhibits
eventual periodicity. More precisely, we investigate whether the difference

u(x, t + T0) − u(x, t) (1.2)

approaches zero as t → ∞ if g and f are periodic of period T0. Since the solution of (1.1)
grows in time (measured in the norm of Sobolev spaces Hk with k � 0)(see [7]), the issue of
eventual periodicity appears to be extremely difficult.

The eventual periodicity has previously been studied in several works. In [7], Bona and
Wu thoroughly investigated the large-time behaviour of solutions to the BBM equation and the
KdV equation including the eventual periodicity. A formula representing the solution of the
BBM equation was derived through the Laplace transform with respect to temporal variable t

and the eventual periodicity is shown for the linearized BBM equation with zero initial data
and no forcing term. It appears that the formula derived there cannot be easily extended to
include a nonzero initial data or a forcing term. Bona et al in [6] established the eventual
periodicity in the context of the damped KdV equation

ut + ux + uux + uxxx + u = 0

with small amplitude boundary data u(0, t) = g(t). They were able to obtain time-
decaying bounds for solutions of this equation and the eventual periodicity follows as a
consequence. Through the Laplace transform with respect to the spatial variable x, Shen et al
in a recent work [10] obtained a new solution representation formula for the KdV equation
and re-established the eventual periodicity of the linearized KdV equation. In addition, the
eventual periodicity of the full KdV equation was studied there through extensive numerical
experiments. We also mention the work of Usman and Zhang [11], in which the eventual
periodicity of the KdV equation in a bounded domain is studied.

In this paper, we first derive a new solution formula for the IBVP
ut + αux − γ uxxt = f, x � 0, t � 0,

u(x, 0) = u0(x), x � 0,

u(0, t) = g(t), t � 0.

(1.3)

This explicit formula reads

u(x, t) = g(t)e− x√
γ +

∫ ∞

0
�(x − y, t)u0(y) dy

+
∫ t

0

∫ ∞

0
�(x − y, t − τ)

[
f (y, τ ) +

α√
γ

g(τ) e− y√
γ

]
dy dτ, (1.4)

where � and � are given by

�(x, t) =
∫ ∞

−∞
e

ixξ−i αξ

1+γ ξ2 t
dξ,

�(x, t) =
∫ ∞

−∞

1

1 + γ ξ 2
e

ixξ−i αξ

1+γ ξ2 t
dξ.
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� should be understood as a distribution. To obtain (1.4), we consider both the even and
odd extensions of (1.3) to the whole spatial line. By taking the Fourier transforms of these
extensions and solving the resulting equations simultaneously, we are able to represent∫ ∞

0
sin(xξ) u(x, t) dx and

∫ ∞

0
cos(xξ) u(x, t) dx (1.5)

in terms of f , u0 and g. (1.4) is then established by taking the inverse Fourier transform of the
quantities in (1.5). Corollaries of (1.4) include explicit solution formulae of (1.3) with α = 0
and γ > 0 and of (1.3) with γ = 0. More details can be found in the second section.

In [3, 5], the IBVP (1.1) has been recast as an integral equation through the inversion of
the operator ∂t − γ ∂xxt ,

u(x, t) = u0(x) + g(t)e− x√
γ +

∫ t

0

∫ ∞

0
K(x, y)

(
αu + 1

2βu2
)
(y, τ ) dy dτ, (1.6)

where the kernel function K(x, y) is given by

K(x, y) = 1

2γ

[
e− x+y√

γ + sgn(x − y)e− |x−y|√
γ

]
. (1.7)

While this representation is handy in dealing with the well-posedness issue, we find it
inconvenient in studying the eventual periodicity of (1.1) due to the inclusion of the linear
term on the right. The new representation (1.4) allows us to show that any solution of (1.3)
is eventual periodic if f and g are periodic of the same period. The precise statement and its
proof are presented in the third section.

This new representation is also very useful in studying the eventual periodicity of the
full BBM equation. Borrowing some ideas from John Albert ( [1, 2]), we first obtain suitable
large-time decay properties of the kernel functions. By representing the solution of (1.1) in
terms of this new formula and taking advantage of these decay results, we are able to establish
the eventual periodicity for the IBVP (1.1) of the full BBM equation under a suitable ansatz
on its solution. The details of this result and its proof are provided in section 4.

We mention that there is adequate theory of well-posedness and regularity on the IBVP
(1.1). The following theorem of Bona and Luo [4] serves our purpose well. In the following
theorem, we write R+ = [0, ∞) and Ck

b is exactly like Ck except that the functions and its first
k derivatives are required to be bounded.

Theorem 1.1. Let I = [0, T ] if T is positive or I = [0, ∞) if T = ∞. Assume that g ∈ C1(I )

and u0 ∈ C2
b (R

+) ∩ H 2(R+). Then (1.1) is globally well-posed in the sense that there is a
unique classical solution u ∈ C1(I, C∞

b (R+)) ∩ C(I, H 2(R+)) which depends continuously
on g ∈ C1(I ) and u0 ∈ C2

b (R
+) ∩ H 2(R+).

A more recent work [3] reduces the regularity assumptions to g ∈ C(I) and u0 ∈ C1
b (R

+)

while (1.1) still has a unique global solution in a slightly weak sense. We shall not attempt to
optimize these regularity assumptions in this paper. The rest of this paper is divided into three
sections and two appendices.

2. The inversion of the operator ∂t + α∂x − γ∂xxt

This section explicitly solves the IBVP of the linearized BBM equation
ut + αux − γ uxxt = f, x � 0, t � 0,

u(x, 0) = u0(x), x � 0,

u(0, t) = g(t), t � 0,

(2.1)
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where γ � 0 and α are real parameters. This amounts to inverting the operator ∂t +α∂x −γ ∂xxt

for the quarter-plane problem. Without loss of generality, we assume g(0) = 0.
In the case when γ > 0, we consider a new dependent variable

w(x, t) = u(x, t) − g(t) e− x√
γ , (2.2)

which satisfies the equations
wt + αwx − γwxxt = f̃ , x � 0, t � 0

w(x, 0) = u0(x), x � 0,

w(0, t) = 0, t � 0,

(2.3)

where

f̃ (x, t) = f (x, t) +
α√
γ

g(t) e− x√
γ . (2.4)

The IBVP (2.3) has its boundary data equal to zero and is solved through odd and even
extensions to the whole spatial line. The solution u of (2.1) is then obtained by (2.2).

Theorem 2.1. Let I = [0, T ] if T is positive or I = [0, ∞) if T = ∞. Let u0 ∈
C2

b (R
+) ∩ H 2(R+), g ∈ C1(I ) and f ∈ C(I, L2(R+)). Without loss of generality, assume

u0(0) = g(0) = 0. Then the unique classical solution of (2.1) can be written as

u(x, t) = g(t)e− x√
γ +

∫ ∞

0
�(x − y, t)u0(y) dy

+
∫ t

0

∫ ∞

0
�(x − y, t − τ)

[
f (y, τ ) +

α√
γ

g(τ) e− y√
γ

]
dy dτ, (2.5)

where � and � are given by

�(x, t) =
∫ ∞

−∞
e

ixξ−i αξ

1+γ ξ2 t
dξ, (2.6)

�(x, t) =
∫ ∞

−∞

1

1 + γ ξ 2
e

ixξ−i αξ

1+γ ξ2 t
dξ. (2.7)

� in (2.6) should be understood as a distribution.

To gain an initial understanding of the formula in this theorem, we consider two special
cases. The first is α = 0 and f ≡ 0. When α = 0,

�(x, t) =
∫ ∞

−∞
eixξ dξ = δ(x),

where δ denotes the Dirac delta. Therefore, for x � 0,∫ ∞

0
�(x − y, t)u0(y) dy = u0(x).

Corollary 2.2. The solution of (2.1) with α = 0 and f ≡ 0 is given by

u(x, t) = u0(x) + g(t)e− x√
γ .

The second special case is when γ = 0 and f ≡ 0. Although γ = 0 is not allowed in
theorem 2.1, the solution formula for this case can still be obtained similarly as (2.5). Instead
of (2.2), one considers

w(x, t) = u(x, t) − g(t)e−x
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which solves 
wt + αwx = (αg(t) − g′(t))e−x, x � 0, t � 0,

w(x, 0) = u0(x), x � 0,

w(0, t) = 0, t � 0.

Then, as in theorem 2.1, the solution for this special case is

u(x, t) = g(t)e−x +
∫ ∞

0
�(x − y, t)u0(y) dy

+
∫ t

0

∫ ∞

0
�(x − y, t − τ)

[
αg(τ)e−y − g′(τ )e−y

]
dy dτ. (2.8)

This representation allows us to extract a simple solution formula for the IBVP (2.1) with
γ = 0 and f ≡ 0.

Corollary 2.3. The solution of the IBVP (2.1) with γ = 0 and f ≡ 0 is given by

u(x, t) =
u0(x − αt), if x � αt,

g
(
t − x

α

)
, if x < αt.

Proof of corollary 2.3. When γ = 0,

�(x, t) =
∫ ∞

−∞
ei(x−αt)ξ dξ = δ(x − αt), �(x, t) = δ(x − αt).

If x − αt � 0, then∫ ∞

0
�(x − y, t)u0(y) dy =

∫ ∞

0
δ(x − αt − y)u0(y) dy = u0(x − αt) (2.9)

and∫ t

0

∫ ∞

0
�(x − y, t − τ)

[
αg(τ)e−y − g′(τ )e−y

]
dy dτ

=
∫ t

0

[
αg(τ) − g′(τ )

] ∫ ∞

0
δ(x − αt + ατ − y) e−y dy dτ

=
∫ t

0

[
αg(τ) − g′(τ )

]
e−(x−αt+ατ) dτ

= e−x+αt

[∫ t

0
αg(τ) e−ατ dτ −

∫ t

0
g′(τ ) e−ατ dτ

]
= −g(t)e−x. (2.10)

Inserting (2.9) and (2.10) in (2.8) yields

u(x, t) = u0(x − αt) if x − αt � 0.

If x − αt < 0, then∫ ∞

0
δ(x − αt − y)u0(y) dy = 0

and ∫ ∞

0
δ(x − αt + ατ − y) e−y dy =

{
e−(x−αt+ατ), if τ � t − α−1x,

0, otherwise.
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Thus,∫ t

0

∫ ∞

0
�(x − y, t − τ)

[
αg(τ)e−y − g′(τ )e−y

]
dy dτ

=
∫ t

t−α−1x

e−(x−αt+ατ)
[
αg(τ) − g′(τ )

]
dτ

= −g(t)e−x + g(t − α−1 x).

Therefore, for x < αt ,

u(x, t) = g(t − α−1 x).

This completes the proof of corollary 2.3.

Proof of theorem 2.1. The major idea is to extend the equation of (2.3) from the half line
{x : x > 0} to the whole line x ∈ R so that the method of Fourier transforms can be employed.
Both odd and even extensions will be considered. The rest of the proof is divided into four
major steps.

Step 1. Odd extension. Denote by W the odd extension of w in x, namely

W(x, t) =
{

w(x, t) if x � 0,

−w(−x, t) if x < 0.

If W0 and F are the odd extensions of w0 and f̃ , respectively, then W solves the following
initial-value problem:{

Wt + α sgn(x)Wx − γWxxt = F, x ∈ R, t > 0

W(x, 0) = W0(x), x ∈ R.
(2.11)

Let Ŵ denote the Fourier transform of W , namely

Ŵ (ξ, t) = F(W)(ξ, t) =
∫ ∞

−∞
e−iξxW(x, t) dx.

After applying a basic property of the Fourier transform, we obtain

(1 + γ ξ 2) ∂t Ŵ (ξ, t) + α F (sgn(x)Wx) = F̂ (ξ, t). (2.12)

According to the definition of W , we have

Ŵ (ξ, t) =
∫ ∞

0
(e−ixξ − eixξ )w(x, t) dx = −2i

∫ ∞

0
sin(xξ)w(x, t) dx. (2.13)

In addition,

F (sgn(x)Wx) (ξ, t) =
∫ 0

−∞
e−iξxsgn(x)Wx dx +

∫ ∞

0
e−iξxsgn(x)Wx dx

=
∫ 0

−∞
e−iξx(−wx(−x, t)) dx +

∫ ∞

0
e−iξxwx(x, t) dx.

Making the substitution y = −x and integrating by parts yield

F (sgn(x)Wx) (ξ, t) = −
∫ ∞

0
eiyξwy(y, t) dy +

∫ ∞

0
e−iξxwx(x, t) dx.

= iξ
∫ ∞

0
(eixξ + e−ixξ ) w(x, t) dx

= 2iξ
∫ ∞

0
cos(xξ) w(x, t) dx. (2.14)
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We can also write F̂ in terms of f̃ as

F̂ (ξ, t) = −2i
∫ ∞

0
sin(xξ) f̃ (x, t) dx. (2.15)

Inserting (2.13), (2.14) and (2.15) in (2.12), we obtain

∂tX(ξ, t) − β(ξ)Y (ξ, t) = h1(ξ, t), (2.16)

where

X(ξ, t) =
∫ ∞

0
sin(xξ) w(x, t) dx, Y (ξ, t) =

∫ ∞

0
cos(xξ) w(x, t) dx,

β(ξ) = αξ

1 + γ ξ 2
and h1(ξ, t) = 1

1 + γ ξ 2

∫ ∞

0
sin(xξ) f̃ (x, t) dx.

Step 2. Even extension. Denote by V (x, t) the even extension of w, namely

V (x, t) =
{

w(x, t) if x � 0,

w(−x, t) if x < 0.

It can be easily verified that V satisfies{
Vt + α sgn(x)Vx − γVxxt = H, x ∈ R, t > 0

V (x, 0) = V0(x), x ∈ R,
(2.17)

where H and V0 are the even extensions of f̃ and w0, respectively. As in step 1, we have

V̂ (ξ, t) = 2
∫ ∞

0
cos(xξ) w(x, t) dx, (2.18)

and

Ĥ (ξ, t) = 2
∫ ∞

0
cos(xξ) f̃ (x, t) dx. (2.19)

Furthermore,

F (sgn(x)Vx) (ξ, t) =
∫ 0

−∞
e−iξxsgn(x)Vx dx +

∫ ∞

0
e−iξxsgn(x)Vx dx

=
∫ 0

−∞
e−iξxwx(−x, t) dx +

∫ ∞

0
e−iξxwx(x, t) dx.

Making the substitution y = −x in the first integral and integrating by parts leads to

F (sgn(x)Vx) (ξ, t) =
∫ ∞

0
eiξywy(y, t) dy +

∫ ∞

0
e−iξxwx(x, t) dx

= − iξ
∫ ∞

0
eiξxw(x, t) dx + iξ

∫ ∞

0
e−iξxw(x, t) dx

= 2ξ

∫ ∞

0
sin(xξ) w(x, t) dx. (2.20)

Taking the Fourier transform of (2.17) and applying (2.18), (2.19) and (2.20), we obtain

∂tY (ξ, t) + β(ξ)X(ξ, t) = h2(ξ, t), (2.21)

where

h2(ξ, t) = 1

1 + γ ξ 2

∫ ∞

0
cos(xξ) f̃ (x, t) dx.
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Step 3. Solving for X(ξ, t) and Y (ξ, t). Solving the system of (2.16) and (2.21), we find

X(ξ, t) =
∫ ∞

0
sin(xξ + βt) u0(x) dx +

1

1 + γ ξ 2

∫ t

0

∫ ∞

0
sin(xξ + β(t − τ)) f̃ (x, τ ) dx dτ,

Y (ξ, t) =
∫ ∞

0
cos(xξ + βt) u0(x) dx +

1

1 + γ ξ 2

∫ t

0

∫ ∞

0
cos(xξ + β(t − τ)) f̃ (x, τ ) dx dτ.

where f̃ is defined in (2.4). We give the details of the derivation in appendix A.

Step 4. Finding w(x, t) through the inverse Fourier transform. To find w(x, t), we first
note that ∫ ∞

0
e−iyξw(y, t) dy = Y (ξ, t) − iX(ξ, t).

Applying the formulae in the previous step, we have∫ ∞

0
e−iyξw(y, t) dy = e−iβt

∫ ∞

0
e−iyξu0(y) dy

+
1

1 + γ ξ 2

∫ t

0
e−iβ(t−τ)

∫ ∞

0
e−iyξ f̃ (y, τ ) dy dτ. (2.22)

We shall now establish a theorem that allows us to obtain w(x, t) by taking the inverse Fourier
transform of (2.22).

Theorem 2.4. Fix t > 0. If u(x, t) ∈ L2(R+), then, for any x � 0,∫ ∞

−∞
eixξ

∫ ∞

0
e−iyξu(y, t) dy dξ = u(x, t). (2.23)

Proof of theorem 2.4.. Recall that if gε(ξ) = exp (−επξ 2), then

ĝε(x) = 1

ε1/2
exp

(
−πx2

ε

)
.

In addition, for any f ∈ Lp(R) with 1 � p < ∞,

ĝε ∗ f → f in Lp(R).

These basic facts can be found in Lieb and Loss [8]. Now, consider∫ ∞

−∞
eixξ gε(ξ)

∫ ∞

0
e−iyξu(y, t) dy dξ.

According to lemma 2.5, if u(y, t) ∈ L2(R+), then

P(u)(ξ, t) ≡
∫ ∞

0
e−iyξu(y, t) dy ∈ L2(R).

Since gε(ξ) → 1 as ε → 0, the dominated convergence theorem implies

gεP (u) → P(u) in L2(R).

Then,∫ ∞

−∞
eixξ gε(ξ)

∫ ∞

0
e−iyξu(y, t) dy dξ =

∫ ∞

0
u(y, t)

∫ ∞

−∞
e−i(y−x)ξ gε(ξ) dξ dy

=
∫ ∞

0
u(y, t)ĝε(y − x) dy. (2.24)



A new solution representation for the BBM equation in a quarter plane and the eventual periodicity 1935

As in the proof of theorem 2.16 of [8], we can prove∫ ∞

0
u(y, t)ĝε(y − x) dy → u(x, t) in L2(R+).

Letting ε → 0 in (2.24) yields (2.23). This proves theorem 2.4.

Lemma 2.5. If u(y, t) ∈ L2(R+), then

P(u)(ξ, t) ≡
∫ ∞

0
e−iyξu(y, t) dy ∈ L2(R).

Proof of lemma 2.5. For any ε > 0,∫ ∞

−∞
|P(u)|2(ξ, t)gε(ξ) dξ =

∫ ∞

−∞
P(u)(ξ, t)P (u)(ξ, t)gε(ξ) dξ

=
∫ ∞

−∞
gε(ξ)

∫ ∞

0
e−ixξu(x, t) dx

∫ ∞

0
eiyξu(y, t) dy dξ

=
∫ ∞

0

∫ ∞

0
u(x, t)u(y, t)

∫ ∞

−∞
e−i(x−y)ξ gε(ξ) dξ dx dy

=
∫ ∞

0
u(x, t)

∫ ∞

0
ĝε(x − y)u(y, t) dy dx.

As ε → 0, ∫ ∞

0
ĝε(x − y)u(y, t) dy → u(x, t) in L2(R+)

and u(x, t) ∈ L2(R+) implies
∫∞
−∞ |P(u)|2(ξ, t)gε(ξ) dξ is bounded uniformly. Since

gε(ξ) = exp(−επ |ξ |2) → 1 as ε → 0,

we obtain by applying the monotone convergence theorem that∫ ∞

−∞
|P(u)|2(ξ, t) dξ =

∫ ∞

0
|u(x, t)|2 dx.

This proves lemma 2.5.
Taking the inverse Fourier transform (denoted by F−1) of (2.22) and applying theorem 2.4

and the basic property F−1(fg) = F−1(f ) ∗ F−1(g), we obtain

w(x, t) =
∫ ∞

0
�(x − y, t)u0(y) dy +

∫ t

0

∫ ∞

0
�(x − y, t − τ)f̃ (y, τ ) dy dτ,

where, noticing β = αξ

1+γ ξ 2 ,

�(x, t) =
∫ ∞

−∞
e

ixξ−i αξ

1+γ ξ2 t
dξ,

�(x, t) =
∫ ∞

−∞

1

1 + γ ξ 2
e

ixξ−i αξ

1+γ ξ2 t
dξ.

Therefore, by (2.2),

u(x, t) = w(x, t) + g(t)e− x√
γ

= g(t)e− x√
γ +

∫ ∞

0
�(x − y, t)u0(y) dy

+
∫ t

0

∫ ∞

0
�(x − y, t − τ)

[
f (y, τ ) +

α√
γ

g(τ) e− y√
γ

]
dy dτ.

This completes the proof of theorem 2.1.
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3. Eventual periodicity for the linearized equation

This section studies the eventual periodicity of solutions to the IBVP for the linearized BBM
equation 

ut + αux − γ uxxt = f (x, t), x � 0, t � 0,

u(x, 0) = u0(x), x � 0,

u(0, t) = g(t), t � 0,

(3.1)

where g and f are assumed to be periodic in t . We prove the following theorem.

Theorem 3.1. Let γ > 0 and α be real parameters. Let I = [0, T ] if T is positive or
I = [0, ∞) if T = ∞. Let u0 ∈ C2

b (R
+) and u′

0 ∈ L1(R+). Let g ∈ C(I) with g(0) = 0 and
f ∈ C(I, L1(R+)). Assume g and f are periodic of period T0 in t , namely, for all t � 0,

g(t + T0) = g(t) and f (x, t + T0) = f (x, t). (3.2)

Then, for any fixed x > 0, the solution u of (3.1) satisfies

lim
t→∞ (u(x, t + T0) − u(x, t)) = 0. (3.3)

That is, u is eventually periodic of period T0.

Remark 3.2. When γ = 0, the eventual periodicity is easily obtained from the explicit formula
in corollary 2.3.

Proof of theorem 3.1. Consider the new function

v(x, t) = u(x, t) − u0(x),

which satisfies 
vt + αvx − γ vxxt = f (x, t) − α u′

0(x), x � 0, t � 0,

v(x, 0) = 0, x � 0,

v(0, t) = g(t), t � 0

(3.4)

Applying the explicit formula in theorem 2.1 to (3.4) gives

v(x, t) = g(t)e− x√
γ +

∫ t

0

∫ ∞

0
�(x − y, t − τ)

[
f (y, τ ) − αu′

0(y) +
α√
γ

g(τ) e− y√
γ

]
dy dτ,

where � is given by (2.7). Noting the conditions in (3.2), we obtain after making a substitution,

u(x, t + T0) − u(x, t) = v(x, t + T0) − v(x, t)

=
∫ t+T0

0

∫ ∞

0
�(x − y, t + T0 − τ)

[
f (y, τ ) − αu′

0(y) +
α√
γ

g(τ) e− y√
γ

]
dy dτ

−
∫ t

0

∫ ∞

0
�(x − y, t − τ)

[
f (y, τ ) − αu′

0(y) +
α√
γ

g(τ) e− y√
γ

]
dy dτ

=
∫ 0

−T0

∫ ∞

0
�(x − y, t − τ)

[
f (y, τ ) − αu′

0(y) +
α√
γ

g(τ) e− y√
γ

]
dy dτ. (3.5)

To show (3.3), we first show that, for any ε > 0, there is K > 0 such that

|�(x, t)| =
∣∣∣∣∫ ∞

−∞

1

1 + γ ξ 2
e

ixξ−i αξ

1+γ ξ2 t
dξ

∣∣∣∣ < ε when t > K.
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First, we choose M = M(ε) > 0 such that∫ −M

−∞

1

1 + γ ξ 2
dξ +

∫ ∞

M

1

1 + γ ξ 2
dξ <

ε

2
.

Next, we apply the method of stationary phase to show the following asymptotics.

Proposition 3.3. For any fixed M > 0,∫ M

−M

1

1 + γ ξ 2
e

ixξ−i αξ

1+γ ξ2 t
dξ = O

(
1√
t

)
as t → ∞. This large-time asymptotics is uniform in x ∈ R+.

We note that the result of this proposition does not necessarily hold for∫ ∞

−∞

1

1 + γ ξ 2
e

ixξ−i αξ

1+γ ξ2 t
dξ

because one of the conditions in the method of stationary phase is violated. More details on
this point will be provided in appendix B. The following estimate is a special consequence of
this proposition.

Corollary 3.4. There exists K = K(M) such that∣∣∣∣∫ M

−M

1

1 + γ ξ 2
e

ixξ−i αξ

1+γ ξ2 t
dξ

∣∣∣∣ <
ε

2
whenever t > K .

We resume the proof of theorem 3.1. It then follows from (3.5) that, for t > K ,

|u(x, t + T ) − u(x, t)|

� ε

[∫ 0

−T0

∫ ∞

0
|f (y, τ )| dy dτ + αT

∫ ∞

0
|u′

0(y)| dy + α

∫ 0

−T0

g(τ) dτ

]
.

This completes the proof of theorem 3.1.

Proof of proposition 3.3. We apply the method of stationary phase. To do so, we split the
integral into four parts∫ M

−M

1

1 + γ ξ 2
e

ixξ−i αξ

1+γ ξ2 t
dξ = I1 + I2 + I3 + I4

≡
∫ − 1√

γ

−M

+
∫ 0

− 1√
γ

+
∫ 1√

γ

0
+
∫ M

1√
γ

.

Note that ±1/
√

γ are the zero points of the derivative of p(ξ) = αξ/(1 + γ ξ 2) and p′(ξ)

is nonzero for ξ in each of these intervals. It suffices to consider I2 and I4. Without loss of
generality, we assume α > 0. Direct applications of the method of stationary phase concludes
that

I2 ∼
√

π e− π i
4 e

i√
γ
(−x+ αt

2 )

2
√

2α 4
√

γ
√

t
, (3.6)

I4 ∼
√

π e
π i
4 e

i√
γ
(x− αt

2 )

2
√

2α 4
√

γ
√

t
. (3.7)

For the readers’ convenience, this method is recalled in appendix B and the details leading to
these estimates can also be found there.
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4. Eventual periodicity for the full BBM equation

This section investigates the eventual periodicity of the IBVP for the full BBM equation (1.1).
The lack of suitable bounds on its solutions in terms of the time variable makes this problem
extremely difficult. By imposing a condition on the solution and making full use of the solution
representation formula derived in section 2, we are able to establish the eventual periodicity.

Theorem 4.1. Consider the IBVP for the full BBM equation (1.1) with real parameters γ > 0
and α 
= 0. Let I = [0, ∞) and assume u0, g and f satisfy

u0 ∈ C2
b (R

+) ∩ H 4(R+), g ∈ C1(I ) and f ∈ C(I, H 4(R+)).

In addition, g and f are periodic of period T0 in t .
Let u be the corresponding solution of (1.1). Set

u1(x, t) = u(x, t) + u(x, t + T0)

and

û1(ξ, t) =
∫ ∞

0
e−ixξ u1(x, t) dx.

Suppose that for some index p > 1 and a suitable constant C0 > 0

A(t) ≡ C0 β

∫ t

0
(A1(τ ) + A2(τ )) dτ � A0 < 1 for all t � 1,

where

A1(τ ) = 1
3
√

1 + t − τ

∫ ∞

0
|u1(y, τ )| dy,

A2(τ ) =
[

1
9
√

1 + t − τ

∫
ξ>(t−τ)1/9

|̂u1(ξ, τ )|p dξ

] 1
p

.

Then, for t � 1,

sup
x�0

|u(x, t + T0) − u(x, t)| � C1

1 − A(t)
(1 + t)−

1
3 , (4.1)

where C1 = ‖u0‖L1 + ‖u0‖H 4 + ‖u(·, T0)‖L1 + ‖u(·, T0)‖H 4 . In particular, u is eventually
periodic of period T0.

To prove this theorem, we need the following decay estimates.

Lemma 4.2. Let γ > 0 and α 
= 0. Then, for t � 1,∣∣∣∣∫|ξ |� t1/9
e

ixξ−i αξ

1+γ ξ2 t
dξ

∣∣∣∣ � C(1 + t)−
1
3 , (4.2)∣∣∣∣∫|ξ |� t1/9

iξ

1 + γ ξ 2
e

ixξ−i αξ

1+γ ξ2 t
dξ

∣∣∣∣ � C(1 + t)−
1
3 . (4.3)

Proof of lemma 4.2. (4.2) is essentially lemma 5 of Albert [2]. To prove (4.3), we note that
iξ/(1 + γ ξ 2) is the Fourier transform of

E(x) = − 1

2γ
(sign x) e− |x|√

γ
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and E ∈ L1. Therefore, by Young’s inequality,∣∣∣∣∫|ξ |� t1/9

iξ

1 + γ ξ 2
e

ixξ−i αξ

1+γ ξ2 t
dξ

∣∣∣∣ =
∣∣∣∣E ∗

∫
|ξ |� t1/9

e
ixξ−i αξ

1+γ ξ2 t
dξ

∣∣∣∣
� ‖E‖L1

∣∣∣∣∫|ξ |� t1/9
e

ixξ−i αξ

1+γ ξ2 t
dξ

∣∣∣∣
� C‖E‖L1(1 + t)−

1
3 .

Proof of theorem 4.1. Consider the difference

w(x, t) = u(x, t + T0) − u(x, t),

which satisfies

wt + αwx − γwxxt = −βu(x, t + T0)ux(x, t + T0) + βu(x, t)ux(x, t),

w(x, 0) = w0(x) ≡ u(x, T0) − u0(x),

w(0, t) = 0.

(4.4)

According to (2.5), w can be represented by

w(x, t) =
∫ ∞

0
�(x − y, t) w0(y) dy − N(x, t), (4.5)

where

N(x, t) = β

2

∫ t

0

∫ ∞

0
�(x − y, t − τ)

[
∂yu

2(y, T0 + τ) − ∂yu
2(y, τ )

]
dy dτ.

Through an integration by parts, N can be rewritten as

N(x, t) = β

2

∫ t

0

∫ ∞

0
�(x − y, t − τ) w(y, τ ) u1(y, τ ) dy dτ (4.6)

with

�(x, t) =
∫ ∞

−∞

i ξ

1 + γ ξ 2
e

ixξ−i αξ

1+γ ξ2 t
dξ. (4.7)

To estimate the first term in (4.5), we recall the formula for � (2.6) and write

�(x, t) =
∫

|ξ |� t1/9
e

ixξ−i αξ

1+γ ξ2 t
dξ +

∫
|ξ |> t1/9

e
ixξ−i αξ

1+γ ξ2 t
dξ.

Applying (4.2) in lemma 4.2, we have∣∣∣∣∫ ∞

0
�(x − y, t) w0(y) dy

∣∣∣∣ � C(1 + t)−
1
3

∫ ∞

0
|w0(y)| dy

+
∫

|ξ |> t1/9

∣∣∣∣∫ ∞

0
e−iyξw0(y) dy

∣∣∣∣ dξ. (4.8)

To further bound (4.8), it suffices to consider the integral over [t1/9, ∞). By Hölder’s inequality,∫ ∞

t1/9

∣∣∣∣∫ ∞

0
e−iyξw0(y) dy

∣∣∣∣ dξ �
∫ ∞

t1/9
ξ−4

∣∣∣∣ξ 4
∫ ∞

0
e−iyξw0(y) dy

∣∣∣∣ dξ

� C t−
7

18 ‖ξ 4ŵ0‖L2 � C t−
1
3 ‖w0‖H 4 . (4.9)
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Combining (4.8) and (4.9) and noticing that w0 = u(x, T0) − u0(x), we obtain∣∣∣∣∫ ∞

0
�(x − y, t) w0(y) dy

∣∣∣∣ � C1(1 + t)−
1
3 . (4.10)

To bound N in (4.6), we split the integral in (4.7) into two parts: |ξ | � t1/9 and |ξ | > t1/9

and bound the first part through lemma 4.2. Therefore, for τ � t ,∫ ∞

0
�(x − y, t − τ) w(y, τ ) u1(y, τ ) dy � Q1 + Q2 (4.11)

with

Q1 = C(1 + t − τ)−
1
3

∫ ∞

0
|w(y, τ)u1(y, τ )| dy,

Q2 =
∫ ∞

0

∫
|ξ |>(t−τ)1/9

i ξ

1 + γ ξ 2
e

i(x−y)ξ−i αξ

1+γ ξ2 (t−τ)
dξ w(y, τ )u1(y, τ ) dy.

Obviously,

Q1 � C sup
y�0

|w(y, τ)| 1
3
√

1 + t − τ

∫ ∞

0
|u1(y, τ )| dy. (4.12)

Exchanging the order of the integrals in Q2, we find

Q2 �
∫

|ξ |>(t−τ)1/9

ξ

1 + γ ξ 2

∣∣∣∣∫ ∞

0
e−iyξw(y, τ ) u1(y, τ ) dy

∣∣∣∣ dξ.

By symmetry, it suffices to consider the interval ξ > (t − τ)1/9. Realizing that∫ ∞

0
e−iyξw(y, τ ) u1(y, τ ) dy = ŵ(·, τ ) ∗ û1(·, τ ),

we apply Hölder’s and Young’s inequalities to obtain

Q2 �
[∫

ξ>(t−τ)1/9

(
ξ

1 + γ ξ 2

)q

dξ

] 1
q
∫

ξ>(t−τ)1/9
|ŵ(ξ, τ )| dξ

[∫
ξ>(t−τ)1/9

|̂u1(·, τ )|p dξ

] 1
p

,

where 1/q + 1/p = 1. These integrals can be further bounded as follows.[∫
ξ>(t−τ)1/9

(
ξ

1 + γ ξ 2

)q

dξ

] 1
q

� C (1 + t − τ)
1
9 (−1+ 1

q
) = C (1 + t − τ)

− 1
9p ,∫

ξ>(t−τ)1/9
|ŵ(ξ, τ )| dξ �

∫ ∞

0

∣∣∣∣∫ ∞

0
e−iyξw(y, τ ) dy

∣∣∣∣ dξ

= sup
x�0

∣∣∣∣∫ ∞

0
eixξ

∫ ∞

0
e−iyξw(y, τ ) dy dξ

∣∣∣∣
� sup

x�0
|w(x, τ)|

Therefore,

Q2 � C sup
x�0

|w(x, τ)|
[

1
9
√

1 + t − τ

∫
ξ>(t−τ)1/9

|̂u1(ξ, τ )|p dξ

] 1
p

. (4.13)

Combining (4.6), (4.11), (4.12) and (4.13), we obtain

N � A(t) sup
τ∈[0,t]

sup
x�0

|w(x, τ)|. (4.14)

Finally, we obtain (4.1) by putting together (4.5), (4.10) and (4.14). This concludes the proof
of theorem 4.1.
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Appendix A

This appendix provides the details of solving the system of ODEs (2.16) and (2.21). Consider
the general nonhomogeneous linear systems

d

dt
x(t) = P(t)x(t) + g(t), x(t0) = x0,

where x ∈ Rn, P ∈ Rn×n and g ∈ Rn. By variation of parameters, its solution can be
written as

x(t) = �(t)�−1(t0)x0 + �(t)

∫ t

t0

�−1(s)g(s) ds, (A.1)

where � denotes a fundamental matrix of the homogeneous system

d

dt
x(t) = P(t)x(t).

Since the system of equations we are solving can be written as

∂t

[
X(ξ, t)

Y (ξ, t)

]
=
[

0 β

−β 0

][
X(ξ, t)

Y (ξ, t)

]
+

[
h1(ξ, t)

h2(ξ, t)

]
and a fundamental matrix of the corresponding homogenous system is given by

�(t) =
[

eiβt e−iβt

i eiβt −i e−iβt

]
,

we apply (A.1) to obtain that[
X(ξ, t)

Y (ξ, t)

]
= �(t)�−1(0)

[
X(ξ, 0)

Y (ξ, 0)

]
+ �(t)

∫ t

0
�−1(τ )

[
h1(ξ, τ )

h2(ξ, τ )

]
dτ. (A.2)

Inserting

�−1(t) = 1

2

[
e−iβt −ie−iβt

eiβt ieiβt

]
,

[
X(ξ, 0)

Y (ξ, 0)

]
=


∫ ∞

0
sin(xξ)u0(x) dx∫ ∞

0
cos(xξ)u0(x) dx


and [

h1(ξ, t)

h2(ξ, t)

]
=


1

1 + γ ξ 2

∫ ∞

0
sin(xξ)f̃ (x, t) dx

1

1 + γ ξ 2

∫ ∞

0
cos(xξ)f̃ (x, t) dx
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in (A.2), we find after some simplification

X(ξ, t) =
∫ ∞

0
sin(xξ + βt) u0(x) dx +

1

1 + γ ξ 2

∫ t

0

∫ ∞

0
sin(xξ + β(t − τ)) f̃ (x, τ ) dx dτ,

Y (ξ, t) =
∫ ∞

0
cos(xξ + βt) u0(x) dx +

1

1 + γ ξ 2

∫ t

0

∫ ∞

0
cos(xξ + β(t − τ)) f̃ (x, τ ) dx dτ.

Appendix B

This appendix offers an expanded commentary on the asymptotic analysis of the oscillatory
integrals discussed in section 3. This analysis relies upon standard results in the theory of
stationary phase, e.g. theorem 13.1 in Olver’s book [9]. For readers’ convenience, we first
recall this theory here.

Suppose that in the integral

I (t) =
∫ b

a

eitp(y) q(y) dy

the limits a and b are independent of t , a being finite and b(> a) finite or infinite. The functions
p(y) and q(y) are independent of t , p(y) being real and q(y) either real or complex. We also
assume that the only point at which p′(y) vanishes is a. Without loss of generality, both t

and p′(y) are taken to be positive; cases in which one of them is negative can be handled by
changing the sign of i throughout. We require

(i) In (a, b), the functions p′(y) and q(y) are continuous, p′(y) > 0, and p′′(y) and q ′(y)

have at most a finite number of discontinuities and infinities.
(ii) As y → a+,

p(y) − p(a) ∼ P(y − a)µ, q(y) ∼ Q(y − a)λ−1, (B.1)

the first of these relations being differentiable. Here P , µ and λ are positive constants,
and Q is a real or complex constant.

(iii) For each ε ∈ (0, b − a),

Va+ε,b

{ q(y)

p′(y)

}
≡
∫ b

a+ε

∣∣∣∣( q(y)

p′(y)

)′∣∣∣∣ dy < ∞.

(iv) As t → b−, the limit of q(y)/p′(y) is finite, and this limit is zero if p(b) = ∞.

With these conditions, the nature of asymptotic approximation to I (t) for large t depends on
the sign of λ − µ. In the case λ < µ, we have the following theorem.

Theorem B.1. In addition to the above conditions, assume that λ < µ, the first of (B.1) is
twice differentiable and the second of (B.1) is differentiable, then

I (t) ∼ eλπ i/(2µ) Q

µ
�

(
λ

µ

)
eitp(a)

(P t)λ/µ

as t → ∞.

We now provide the details leading to (3.6). It suffices to check the conditions of
theorem B.1. Setting

a = − 1√
γ

, b = 0, p(ξ) = αξ

1 + γ ξ 2
and q(ξ) = eiξx

1 + γ ξ 2
,
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we have

(i) p, p′, p′′, q and q ′ are all continuous in (−1/
√

γ , 0), and p′(ξ) > 0.
(ii) As ξ → − 1√

γ
+,

p(ξ) − p

(
− 1√

γ

)
∼ α

√
γ

2

(
ξ +

1√
γ

)2

, q

(
− 1√

γ

)
∼ 1

2
e−i 1√

γ
x
.

That is, P = α
√

γ

2 , µ = 2, Q = 1
2 e−i 1√

γ
x and λ = 1.

(iii) For any fixed ε > 0, V− 1√
γ

+ε, 0(q/p′) < ∞. In fact,

q

p′ = (1 + γ ξ 2)eixξ

α(1 − γ ξ 2)
, V− 1√

γ
+ε, 0

(
q

p′

)
=
∫ 0

− 1√
γ

+ε

∣∣∣∣( q

p′

)′∣∣∣∣ dξ < ∞.

(iv) As ξ → 0−, q/p′ → 1/α.

Theorem B.1 then implies∫ 0

− 1√
γ

1

1 + γ ξ 2
e

ixξ−i αξ

1+γ ξ2 t
dξ ∼ e− π i

4
1

4
e−i x√

γ �

(
1

2

)
eit ( α

2
√

γ
)

(α/2
√

γ t)1/2

=
√

π e− π i
4 e

i√
γ
(−x+ αt

2 )

2
√

2α 4
√

γ
√

t
.

Estimate (3.7) also follows from theorem B.1. The conditions can be similarly checked
for this integral. In fact, for

a = 1√
γ

, b = M, p(ξ) = − αξ

1 + γ ξ 2
and q(ξ) = eiξx

1 + γ ξ 2
,

we have

p(ξ) − p

(
1√
γ

)
∼ α

√
γ

2

(
ξ − 1√

γ

)2

, q
( 1√

γ

)
∼ 1

2
ei 1√

γ
x
.

It is also easy to verify that V 1√
γ

+ε, M(q/p′) < ∞ for any fixed ε > 0. In fact,

q

p′ = − (1 + γ ξ 2)eixξ

α(1 − γ ξ 2)
, V 1√

γ
+ε, M

( q

p′
)

=
∫ M

1√
γ

+ε

∣∣∣∣( q

p′
)′∣∣∣∣ dξ < ∞. (B.2)

In addition, as ξ → M , q/p′ tends to a finite limit. It then follows from theorem B.1 that∫ M

1√
γ

1

1 + γ ξ 2
e

ixξ−i αξ

1+γ ξ2 t
dξ ∼

√
π e

π i
4 e

i√
γ
(x− αt

2 )

2
√

2α 4
√

γ
√

t
.

When M = ∞, (B.2) cannot be verified and theorem B.1 does not apply to the integral on
(−∞, ∞).
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