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This paper studies solutions of the generalized Buckley-Leverett (BL) equation with
variable porosity and solutions of the regularized BL equation with the Burgers-
Benjamin-Bona-Mahony-type regularization. We construct global in time weak so-
lutions to the Cauchy problem and to the initial- and boundary-value problem
for the generalized BL equation and global classical solutions for the regularized
BL equation. Solutions of the regularized BL equation are shown to converge to
the corresponding solution of the generalized BL equation when the coefficient
γ of the BBM term and the coefficient ν of the Burgers term obey γ = O(ν2).
C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4711133]

I. INTRODUCTION

The standard Buckley-Leverett (BL) equation

∂t u + ∂x ( f (u)) = 0

with

f (u) = u2

u2 + M(1 − u)2
, M > 0

models two-phase flow such as oil and water in a porous medium like soil and rock.11 It expresses
the conservation of mass for the saturation of water u where f denotes the water fractional flow
function and M the water over oil viscosity ratio. The BL equation and some of its regularizations
are not only useful in many practical applications but also important as a model of conservation laws
and regularized conservation laws (see, e.g., Refs. 1, 2, 11, 15, 17, 34, and 38–40).

This paper is devoted to the generalized BL equation with variable porosity (see, e.g., Refs. 38
and 39)

∂t u + ∂x

(
f (φ, u)

(
1 + k

μ0
(1 − u

φ
)2∂x Pc

)) = 0 (1.1)

and the regularized BL equation

∂t u + ∂x f (φ, u) = ν∂xx u + γ ∂xxt u, (1.2)

where

f (φ, u) = u2

u2 + M(φ − u)2
, 0 ≤ u ≤ φ, M > 0. (1.3)
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Here φ = φ(x) > 0 is the porosity of the medium, u := φ(x)ũ with ũ being the saturation of water, k,
μ0 are constants representing the absolute permeability and the viscosity of water, respectively, Pc is
the dynamic capillary pressure which depends on φ and u, and ν ≥ 0 and γ ≥ 0 are real parameters
with at least one of them nonzero.

Our goal is several fold. First, we would like to understand the solution of (1.1). We start with
the case when ∂ Pc

∂x = 0, namely,

∂t u + ∂x f (φ, u) = 0. (1.4)

We consider both the Cauchy problem{
ut + f (φ, u)x = 0, (x, t) ∈ R × R+,

u(x, 0) = u0(x), x ∈ R
(1.5)

and the initial and boundary value problem (IBVP),⎧⎪⎨⎪⎩
ut + f (φ, u)x = 0, (x, t) ∈ R × R+,

u(x, 0) = u0(x), x ∈ R+,

u(0, t) = uB(t), t ∈ R+,

(1.6)

where u0(0) = uB(0). We establish the global existence of weak solutions of (1.5) and of (1.6) when
the total variations of the data are finite. The approach is Glimm’s constructive method (see, e.g.,
Refs. 16,18,19,21,23–27,30,31,33, and 36). However, since f(φ, u) is not a convex function of u and
φ is not constant, suitable modifications have to be made in order for Glimm’s method to apply. We
then turn to the case when ∂ Pc

∂x is a nonconstant function of x, t. The situation is even more complex
since now the flux function

F̃(x, t, φ, u) = f (φ, u)
(

1 + k

μ0
(1 − u

φ
)2 ∂ Pc

∂x

)
involves the variables x and t. Following the idea introduced by Dafermos-Hsiao,14 we freeze the
variables x and t in each grid and considering the modified Riemann problem at the center of each
cell. This process still allows us to construct a sequence of approximate solutions, which enables
us to extend Glimm’s method to the equation with flux F̃(x, t, φ, u). Analogous techniques can
also be found in Refs. 13 and 20. More technical details are left to the construction in Sec. II. It is
worth pointing out that Temple37 has previously studied solutions of the BL equation with constant
porosity. The BL equation studied in Ref. 37 was expressed as a 2 × 2 non-strictly hyperbolic
system or Temple system {

∂t s + ∂x (s G(s, b)) = 0,

∂t b + ∂x (b G(s, b)) = 0.
(1.7)

Temple established the global existence of weak solutions of the Cauchy problem for (1.7) by
introducing a new type of Glimm functional to achieve the stability for the non-strictly hyperbolic
systems.

Second, we establish the global in time existence and uniqueness of solutions to the Cauchy
problem and the IBVP for the regularized BL equation in (1.2). Due to the regularization terms on
the right-hand side of (1.2), solutions of (1.2) are more regular than the counterparts of (1.1). The
proof of these existence and uniqueness results involves two steps: the local existence through the
contraction mapping principle and the global a priori bounds. We remark that the well posedness
of the Cauchy problems and the IBVPs for equations with the Burgers-BBM type regularization
have been studied extensively and many interesting results are available (see, e.g., Refs. 3–8 and
11). In addition, we obtain the eventual periodicity of solutions to the initial and boundary problems
for (1.2). That is, any periodic boundary datum yields an eventually periodic solution. The eventual
periodicity is an interesting phenomenon observed in laboratory experiments involving water waves
and has been investigated in several recent papers (see Refs. 9, 10, and 22).

Our third goal is to determine if solutions of (1.2) converge to the counterpart of (1.1). This
is a nontrivial issue. The pioneering work of Schonbek35 sets up a framework for handling such
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convergence problems and establishes the convergence of solutions of the generalized KdV-Burgers
equations and of the generalized BBM-Burgers equations to those of the corresponding conservation
laws. In particular, any solution of

∂t u + ∂x ( f (u)) = ν∂xx u + γ ∂xxt u

with

| f (u)| ≤ C(1 + |u|p) for p ≥ 2 and γ = O(ν4)

converges to a weak solution of the conservation law ∂ tu + ∂x(f(u)) = 0. The approach of Schonbek
was further explored and applied to generalized versions of the KdV-Burgers equation by LeFloch
and Natalini29 and LeFloch and Kondo.28 The convergence issue concerning the regularized BL
equation (1.2) can still be studied through the method of Schonbek. What is special with (1.2) is that
the flux function f(φ, u) is not a convex function of u but bounded uniformly in u. It is shown here
that, if γ = O(ν2), any sufficiently regular solution uν, γ of the Cauchy problem for (1.2) converges
in Lp for any 1 < p < 2 to a weak solution of (1.4). We note that the weaker assumption γ = O(ν2)
is due to the slower growth rate of f(φ, u) in u.

To complement our theoretical results and to directly visualize the behavior of solutions to the
BL and the regularized BL equations, we have numerically computed their solutions corresponding
to two representative initial data. Detailed comparisons are made to understand how the parameters
ν and γ affect the solutions. In particular, the limiting behavior of solutions of the regularized BL
equations is studied to check if the assumption γ = O(ν2) in our convergence theory is sharp. There
is an indication that γ = O(ν2) may not be removed.

The rest of this paper is divided into four sections. Section II presents the global existence of
weak solutions to the Cauchy problem and to the IBVP for (1.1). Section III is concerned with the
Cauchy problem and the IBVP for the regularized BL equation (1.2). Global in time solutions and
the eventual periodicity are established. Section IV proves the convergence of solutions of (1.2)
to the corresponding ones of (1.4) for the Cauchy problem. Section V presents some numerical
experiments that complement the theoretical results on the convergence issue.

II. THE GENERALIZED BL EQUATION WITH VARIABLE POROSITY

In this section, we consider the following generalized BL equation with variable porosity:38, 39

φ ∂t ũ + ∂x

(
f̃ (ũ)

(
1 + k

μ0
(1 − ũ)2 ∂ Pc

∂x

)) = 0, (2.1)

where φ = φ(x) > 0 is the porosity of soil and ũ is the saturation of water satisfying 0 < ũ ≤ 1, k,
μ0 are constants representing, respectively, the absolute permeability and the viscosity of water, Pc

is the dynamic capillary pressure. Flux f̃ is given by

f̃ (ũ) = ũ2

ũ2 + M(1 − ũ)2
, 0 < ũ ≤ 1, (2.2)

where M > 0 is the ratio of viscosities between water and oil. Writing (2.1) in conservative form,
we obtain the equivalent equation of (2.1),

∂t u + ∂x

(
f (φ, u)

(
1 + k

μ0
(1 − u

φ
)2 ∂ Pc

∂x

)) = 0, (2.3)

where u := φ(x)ũ, and

f (φ, u) = u2

u2 + M(φ − u)2
, 0 < u ≤ φ. (2.4)

In general, Pc is a function of φ, u, and ut, which means that (2.3) is not of hyperbolic type when k
μ0

is large. To demonstrate the properties of hyperbolic waves, we assume that Pc is a given C1 function
of x, t and k

μ0

∂ Pc
∂x is sufficiently small.
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Let

ε := k

μ0
> 0, h(x, t) := ∂ Pc

∂x
≥ 0. (2.5)

To obtain the admissible waves for Riemann and Cauchy problems, we assume that there exists
some positive constant ε* such that, for any (x, t) ∈ R × R+,

0 ≤ εh(x, t) < ε∗ < M. (2.6)

Then (2.3) can be written as

ut + F̃(ε, t, x, φ, u)x = 0, (2.7)

where

F̃(ε, t, x, φ, u) = f (φ, u)
(
1 + εh(x, t)(1 − u

φ
)2

)
. (2.8)

We call Eq. (2.7) the zero order generalized BL equation if h(x, t) = 0. In such case, (2.7) is
reduced to

ut + f (φ, u)x = 0. (2.9)

Or else, (2.7) is called the first order generalized BL equation which can be considered as the
perturbation of (2.9) when εh(x, t) is sufficiently small. We divide the global existence results for
generalized BL equation into Secs. II A–II C.

A. The zero order generalized BL equation and Riemann problem

In this subsection, we wish to establish the global existence of weak solutions to the Cauchy and
initial-boundary value problems of (2.7) and (2.9). We first consider the Cauchy problem of (2.9),{

ut + f (φ, u)x = 0, (x, t) ∈ R × R+,

u(x, 0) = u0(x), x ∈ R,
(2.10)

where φ(x) is Lipschitz continuous, and φ(x) and u0(x) are of finite total variation. The Riemann
problem of the generalized BL equation is a special type of (2.10) given by⎧⎪⎨⎪⎩

ut + f (φ, u)x = 0, x ∈ R × R+,

(φ(x), u(x, 0)) =
{

(φL , uL ), x < 0,

(φR, u R), x > 0,

(2.11)

where φL, φR, uL, and uR are constants satisfying 0 < uL ≤ φL, 0 < uR ≤ φR. We say a L1 function
u is a weak solution of (2.10) if for any ψ ∈ C∞

0 (R × [0,∞)), u satisfies

Rψ (φ, u) :=
∫∫

t>0
uψt + f (φ, u)ψx dxdt +

∫ ∞

−∞
u0(x)ψ(x, 0)dx = 0. (2.12)

We extend the Glimm method16 to establish the global existence of weak solutions to (2.10).
First, we augment the equation in (2.10) by adding φt = 0. Then, we obtain the equivalent 2 × 2
system of conservation laws

Ut + F(U )x = 0, (2.13)

where U := (φ, u)T, F(U) := (0, f(φ, u))T. Therefore, problem (2.10) is equivalent to the following
Cauchy problem: {

Ut + F(U )x = 0, (x, t) ∈ R × R+,

U (x, 0) = U0(x) = (φ(x), u0(x))T , x ∈ R.
(2.14)
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The corresponding Riemann problem is⎧⎪⎨⎪⎩
Ut + F(U )x = 0, x ∈ R × R+,

U (x, 0) =
{

UL := (φL , uL )T , x < 0,

UR := (φR, u R)T , x > 0.

(2.15)

The eigenvalues and corresponding eigenvectors of Jacobian matrix DF(U) are

λ0(U ) = 0, λ1(U ) = fu(U ) = 2Mφu(φ−u)
g2(φ,u) ≥ 0,

r0(U ) = ( fu,− fφ)T , r1(U ) = (0, 1)T , (2.16)

where g(φ, u) := u2 + M(φ − u)2. Therefore, by direct calculation we obtain

∇λ0 · r1(U ) = 0,

∇λ1 · r1(U ) = fuu(U ) = 2Mφ · { 2(M+1)u3−3(M+1)φu2+Mφ3

g3(φ,u) } = 2Mφ4 · h(ũ)
g3(φ,u) , (2.17)

where h(ũ) := 2(M + 1)ũ3 − 3(M + 1)ũ2 + M . It is easy to show that there is a unique u* ∈ (0, φ)
(or ũ∗ ∈ (0, 1)) satisfying

∇λ1 · r1(φ, u∗) = fuu(φ, u∗) = 0,

∇λ1 · r1(φ, u) = fuu(φ, u) > 0, 0 < u < u∗,

∇λ1 · r1(φ, u) = fuu(φ, u) < 0, u∗ < u < φ. (2.18)

It implies that the 0th characteristic field is linear degenerate, but the first characteristic field is
neither genuinely nonlinear or linear degenerate. That is, system (2.13) is non-strictly hyperbolic.
Therefore, the Lax method for (2.15) and the Glimm method for (2.14) have to be modified, which
will be carried out as follows.

To start, we construct the self-similar type of (generalized) weak solutions to (2.15) by Lax
method. It requires to study the elementary waves for each wave field and the corresponding wave
curves in φ-u space. We first construct the elementary waves in 0th characteristic field. Due to the
linear degeneracy of characteristic field, the contact discontinuity connecting two constant states
occurs in the solution of (2.15). Let {(φ, u)} be the states of such contact discontinuity connected
to (φL, uL), which is on the left of (φ, u). Then, following Rankine-Hugoniot condition and that the
speed of jump is zero, we have

f (φ, u) = f (φL , uL ). (2.19)

That is, (φ, u) satisfies

u2

u2 + M(φ − u)2
= u2

L

u2
L + M(φL − uL )2

. (2.20)

Solving (2.20) directly, we obtain that states {(φ, u)} satisfy

u = uL

φL
φ. (2.21)

It means that {(φ, u)} of contact discontinuity form a straight line passing through (φL, uL) and
crossing the line of critical state u = u* in 0 < u ≤ φ. In particular, these states lie on the boundary u
= φ when uL = φL. In addition, by plugging u = φũ, uL = φL ũL into (2.21), we obtain ũ = ũL for
the contact discontinuity, which means that there is no jump in ũ. Indeed, the jump of u is caused
purely by the discontinuity of φ, but not by ũ.

Next, due to the non-convexity of f, we construct the generalized version of elementary waves
for the first characteristic field. It can be accomplished by the convex extension of f in (2.9), see
Ref. 27. By (2.16) we have λ1(φ, u) > 0 for 0 < u < φ so that the generalized elementary wave is
located in x > 0, t > 0, which implies that φ = φR in (2.15). So, the generalized elementary wave
solves

ut + f (φR, u)x = 0. (2.22)
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Let (φL, uL), (φR, uR) be, respectively, the left and right constant states separated by the generalized
elementary wave U1(ξ ) = (φR, u1(ξ )) where ξ := x

t , also let

ũL := uL

φR
, ũ R := u R

φR
, ũ1(ξ ) := u1(ξ )

φR
. (2.23)

Then, by the case studies of ũL , ũ R and the results of Ref. 27, we have the following theorem for
ũ1(ξ ).

Theorem 2.1: Consider Riemann problem (2.15). Suppose (φR, u*) is the root of fuu = 0. Define
ũ∗ := u∗

φR
. Then

(i) If 0 < ũL < ũ R ≤ ũ∗ or ũ∗ ≤ ũ R < ũL ≤ 1, then ũ1(ξ ) in (2.23) is a rarefaction wave con-
necting ũL , ũ R and satisfies

fu(φR, ũ1(ξ )) = ξ. (2.24)

(ii) If 0 < ũ R < ũL ≤ ũ∗ or ũ∗ ≤ ũL < ũ R ≤ 1, then ũ1(ξ ) is a shock wave connecting ũL , ũ R

and satisfies Rankine-Hugoniot jump condition

s(uL − u R) = f (φR, uL ) − f (φR, u R), (2.25)

where s is the speed of shock satisfying Lax entropy condition

fu(φR, u R) < s < fu(φR, uL ). (2.26)

(iii) If 0 < ũL < ũ∗ < ũ R ≤ 1 or 0 < ũ R < ũ∗ < ũL ≤ 1, then ũ1(ξ ) is a rarefaction-shock con-
necting ũL , ũ R . More precisely, for 0 < ũL < ũ∗ < ũ R ≤ 1,

ũ1(ξ ) =

⎧⎪⎨⎪⎩
ũL , ξ < fu(φR, uL ),

v(ξ ), fu(φR, uL ) ≤ ξ < fu(φR, ū),

ũ R, ξ > fu(φR, ū),

(2.27)

where v(ξ ) satisfies (2.24), ū ∈ (0, 1) and satisfies

fu(φR, φRū) = f (φR, u R) − f (φR, φRū)

u R − φRū
. (2.28)

For 0 < ũ R < ũ∗ < ũL ≤ 1, ũ1(ξ ) is obtained by switching ũL with ũ R and uL with uR in
(2.27). Furthermore, ũ1(ξ ) in all the cases above are monotone in ξ .

The entropy condition imposed in Theorem 2.1, which combines the convex extension of f
with Lax’s entropy condition, selects the entropy solution of (2.15) in the sense that, the admissible
elementary wave of (2.15) has least total variation and preserves the monotonicity of its profile.

Proof: To show (i) and (ii), since uL and uR both lie on either the convex or concave portion of
f(φR, u), ũ1(ξ ) and its monotonicity in ξ can be obtained as in Refs. 25 and 26. For (iii), since v(ξ ) in
(2.27) satisfies (2.24), v(ξ ) is a rarefaction wave. In addition, constant states ū, ũ R satisfy Rankine-
Hugoniot condition (2.28), which means that ũ1 is a shock with speed fu(φR, φRū). It follows that
ũ1(ξ ) in (2.27) is a rarefaction-shock satisfying the definition of weak solutions to (2.15). It is easy
to see that ũ1(ξ ) in all cases above are monotone in ξ . We complete the proof.

We notice that the wave curve of first characteristic field passing through (φL, uL) is the straight
line φ = φL. It follows that the wave curves passing through (φL, uL), which are u = uL

φL
φ (0th

characteristic field) and φ = φL (first characteristic field), divide (φ, u) plane into four regions.
Furthermore, under the transformation (φ, u) → (φ, ũ), the wave curves above in (φ, u) plane can
be transformed into the following simpler forms in (φ, ũ) plane:

ũ = ũL (0-th characteristic field),

φ = φL (1st characteristic field). (2.29)
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So, the weak solutions of (2.15) can be constructed by the case studies of (φR, uR) or (φR, ũ R) in
each region. Therefore, by Theorem 2.1 we obtain the existence and uniqueness of weak solution u
(or ũ) to (2.15).

Theorem 2.2: Consider Riemann problem (2.15). Suppose UL = (φL, uL), UR = (φR, uR)
∈ �, and |UL − UR| is sufficiently small. Then, under the Lax entropy condition and convex
extension of flux f, there exists a neighborhood N⊂� such that if UL, UR ∈ N, then (2.15) admits
a unique weak solution. The weak solution consists of at most three constant states separated by
the rarefaction wave, shock, rarefaction-shock, or contact discontinuity. Moreover, ũ in the weak
solution is monotone in ξ .

B. The Cauchy problem of zero order generalized BL equation

In this subsection, we establish the global existence of weak solutions to Cauchy problem (2.14)
(or (2.10)) by the Glimm method. The Glimm method16 employs the following steps:

(I) The construction of approximate solutions for (2.14);
(II) wave interaction estimate;

(III) compactness of the subsequence of approximate solutions; and
(IV) showing the limit of approximate solution is indeed a weak solution.

In this problem, we use the weak solutions of Riemann problem (2.15) as the building block of
Glimm scheme. Then, by Theorem 2.2 and the Glimm scheme in Ref. 16, we are able to construct
the sequence of approximate solutions {Uθ , x} for (2.14) where x is the grid size and θ := (θ1, θ2,
···) is a sequence of equi-distributed random numbers in [ − 1, 1]. Here we notice that the solution u
of Riemann problem (2.15) may not be monotone in ξ , but ũ = u

φ
is monotone in ξ . So, instead we

construct the sequence of approximate solutions {Ũθ,x := (φθ,x , ũθ,x )} for (2.14). To obtain the
convergence of {Ũθ,x }, we need to obtain the uniform bound of total variation of {Ũθ,x }, which
can be accomplished by controlling the difference of total variations between the in-coming and
out-going waves of {Ũθ,x } in each diamond region.16 In our case, thanks to (2.29) we can simply use
the case studies to observe that, the total variations of {ũθ,x } between the in-coming and out-going
waves in each diamond region are identical. So, the BV -norm of {Ũθ,x } is uniformly bounded if
the total variation of Ũ0(x) = (φ0(x), ũ0(x)) is bounded. It follows that {Ũθ,x } is well defined for
(x, t) ∈ R × R+. Moreover, by the analysis in Ref. 36, we can show {Ũθ,x } satisfies the following
properties.

Theorem 2.3: Suppose the total variation of Ũ0(x) is small, then there exist constants {Ci }3
i=1

which are independent of θ and x such that

(i) T .V .(Ũθ,x ) ≤ C1 T .V .(Ũ0),
(ii) T .V .[Ũθ,x (x, it)] + sup

x
[Ũθ,x (x, it)] < C2 T .V .(Ũ0),

(iii)
∫
R

|Ũθ,x (x, t2) − Ũθ,x (x, t1)|dx ≤ C3 (|t2 − t1| + t),

where T .V .(U ) denotes the total variation of U.

Therefore, by Theorem 2.3 and Oleinik’s analysis,16, 33, 36 we obtain the compactness of the
subsequence of {Ũθ,x }, which means that there exists a subsequence {Ũθ,xi } of {Ũθ,x } such that
{Ũθ,xi } converges to some measurable function Ũ (x, t) = (φ(x), ũ(x, t)) in L1

loc. In particular, by
the triangle inequality we obtain φθ,xi · ũθ,xi → φ · ũ in L1

loc. That is, {Uθ,xi } converges to some
measurable function U(x, t) = (φ(x), u(x, t)) in L1

loc where u(x, t) = φ(x, t)ũ(x, t). In addition,
F(Uθ,xi ) → F(U ) in L1

loc as xi → 0.
Next, we show u is indeed a weak solution of (2.10), or equivalently U is a weak solution

of (2.14), we calculate residual Rψ (Uθ , x) defined in (2.12) for any test function ψ . Following
the analogous calculation of Rψ (Uθ , x) in Refs. 16 and 36, we obtain that Rψ (Uθ , x) → 0 as x
→ 0 in the probability space � of random numbers {θ j}. It implies that there is a null set N ∈ �
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and a sequence xi → 0 such that for any θ ∈ �\N and test function ψ , Rψ (Uθ , x) → 0 as x
→ 0. Therefore, U is a weak solution of (2.14). We then establish the global existence of weak
solution to (2.10), which is given in the following theorem.

Theorem 2.4: Consider the Cauchy problem (2.10). Suppose T .V .(u0) is sufficiently small.
Then there exists a null set N ∈ � and a sequence xi → 0 such that if θ ∈ �\N, u := lim

xi →0
uθ,xi

is a solution of (2.10).

Next, we study the following initial-boundary value problem:⎧⎪⎨⎪⎩
ut + f (φ, u)x = 0, (x, t) ∈ R+ × R+,

u(x, 0) = u0(x), x > 0,

u(0, t) = uB(t), t > 0,

(2.30)

where u0(x) and uB(t) are of finite total variation. By definition u ∈ L1 is a weak solution of (2.30) if∫∫
x, t>0

uψt + f (φ, u)ψx dxdt +
∫ ∞

0
u0(x)ψ(x, 0)dx +

∫ ∞

0
f (φ(0), uB(t))ψ(0, t)dt = 0.

It is important to study the weak solution of the following boundary Riemann problem:⎧⎪⎨⎪⎩
Ut + F(U )x = 0, (x, t) ∈ R+ × R+,

U (x, 0) = (φR, u R)T := UR, x > 0,

U (0, t) = (φL , uL )T := UL , t > 0.

(2.31)

Note that, since 0th characteristic field is characteristic to boundary x = 0, there exists a contact
discontinuity attached to the boundary in the solution of (2.31) if φL 
= φR. Following the results of
Refs. 21 and 32, we are able to construct the weak solution of (2.31). The structure of solution of
(2.31) is similar to that of (2.15). Furthermore, since no waves-reflection occurs on the boundary
due to λ1 > 0, the wave interaction estimate is similar to the one for Cauchy problem. Therefore,
Glimm method can be applied analogously to (2.30), and we obtain the global existence of weak
solutions to (2.30). We refer Refs. 21 and 32 for more details of Glimm method to initial-boundary
value problems.

C. The Cauchy problem of first order generalized BL equation

In this subsection, we generalize the Glimm method to the following Cauchy and initial-
boundary value problems of first order generalized BL equation:{

ut + F̃(ε, t, x, φ, u)x = 0, (x, t) ∈ R × R+,

u(x, 0) = u0(x), x ∈ R,
(2.32)

⎧⎪⎨⎪⎩
ut + F̃(ε, t, x, φ, u)x = 0, (x, t) ∈ R+ × R+,

u(x, 0) = u0(x), x > 0,

u(0, t) = uB(t), t > 0,

(2.33)

where F̃(ε, t, x, φ, u) is given in (2.8). In view of (2.12), the weak solution u of (2.32) satisfies

Rψ (φ, u) =
∫∫

t>0
uψt + F̃(ε, t, x, φ, u)ψx dxdt +

∫ ∞

−∞
u0(x)ψ(x, 0)dx = 0, (2.34)
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for any ψ ∈ C∞
0 (R × [0,∞)). Similarly, u is a weak solution of (2.33) if u satisfies∫∫

x, t>0
uψt + F̃(ε, t, x, φ, u)ψx dxdt

+
∫ ∞

0
u0(x)ψ(x, 0)dx +

∫ ∞

0
F̃(ε, t, 0, φ(0), uB(t))ψ(0, t)dt = 0.

To extend Glimm’s method to (2.32), we first freeze variables x, t in F̃(ε, t, x, φ, u) in each grid and
study the following modified Riemann problem with center at grid point (x0, t0):⎧⎪⎨⎪⎩

Ut + F̄(ε, t0, x0, U )x = 0, x ∈ [x0 − x, x0 + x] × (t0, t0 + t),

U (x, t0) =
{

UL := (φL , uL )T , x0 − x < x < x0,

UR := (φR, u R)T , x0 < x < x0 + x,

(2.35)

where U = (φ, u)T and

F̄(ε, t0, x0, U ) = (0, F̃(ε, t0, x0, φ, u))T =
(

0, f (φ, u)
(
1 + εh(x0, t0)(1 − u

φ
)2

))T
. (2.36)

We first study the weak solution of (2.35) by Lax’s method. We have the following eigenvalues
and the corresponding eigenvectors of Jacobian DF̄ :

λ̄0(ε, x0, t0, U ) = 0,

λ̄1(ε, x0, t0, U ) = F̃u(t0, x0, φ, u) = fu(U ) + εη1(x0, t0, U ),

r̄0(ε, x0, t0, U ) = (F̃u,−F̃φ)T = ( fu,− fφ)T + ε(η1(x0, t0, U ), η2(x0, t0, U ))T ,

r̄1(ε, x0, t0, U ) = (0, 1), (2.37)

where

η1(x0, t0, U ) := h(x0, t0)
∂

∂u

(
f (φ, u)(1 − u

φ
)2),

η2(x0, t0, U ) := h(x0, t0)
∂

∂φ

(
f (φ, u)(1 − u

φ
)2

)
.

Note that η1(x0, t0, U) and η2(x0, t0, U) are bounded functions for every (x0, t0) ∈ R × R+. So
λ̄1(ε, x0, t0, U ) and r̄0(ε, x0, t0, U ) are the regular perturbations of λ1(U), r0(U) in (2.16), respectively.
Therefore, by (2.17) and (2.18), it follows that for sufficiently small ε, there is a unique ū ∈ (0, φ)
satisfying

∇λ̄0 · r̄0(φ, u) = 0, 0 < u < φ,

∇λ̄1 · r̄1(φ, ū) = 0,

∇λ̄1 · r̄1(φ, ū) > 0, 0 < u < ū,

∇λ̄1 · r̄1(φ, ū) < 0, ū < u < φ. (2.38)

It implies that F̃(ε, t0, x0, φ, u) is a convex-concave flux for every (x0, t0) ∈ R × R+, 0 ≤ u < φ

and small ε ≥ 0. So, the system in (2.35) is still non-strictly hyperbolic, and the 0th characteristic
field is linear degenerate, while the first characteristic field is neither genuinely nonlinear nor linear
degenerate.

Now we apply the Lax method to construct the weak solution of (2.35). First, we construct the
wave curves for (2.35) in the region 0 < u < φ. The states {(φ, u)} of 0th wave curve starting at
(φL, uL) satisfy

L(ε, t0, x0, φL , uL , φ, u) = 0, (2.39)
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where L(ε, φL , uL , φ, u) = F̃(ε, t0, x0, φ, u) − F̃(ε, t0, x0, φL , uL ). Under the transformation
(φ, u) → (φ, ũ), ũ = u

φ
, we can re-write (2.39) into

H (ũ, ε̃) = ũ2

ũ2 + M(1 − ũ)2

(
1 + ε̃(1 − ũ)2

)
− ũ2

L

ũ2
L + M(1 − ũL )2

(
1 + ε̃(1 − ũL )2) = 0, (2.40)

where ε̃ := εh(x0, t0). It is easy to see ũ = ũL is a solution of (2.40). Moreover, for any fixed ε̃ � 1,
H (ũ) = H (ũ, ε̃) satisfies

H (0) < 0, H (1) > 0, (2.41)

H ′(ũ, ε̃) = f̃ ′(ũ)
(
1 + (1 − ũ)2

) − 2ε̃ f̃ (ũ)(1 − ũ),

where f̃ is as in (2.2), in particular, we have

H ′(ũ, 0) = f̃ ′(ũ)
(
1 + (1 − ũ)2

)
> 0. (2.42)

It follows by (2.41) and (2.42) that, for sufficiently small ε̃, ũ = ũL is the unique solution of (2.40),
or equivalently, u = uL

φL
φ is the unique solution of (2.39). It follows that the 0th wave curve starting

at (φL, uL) can be expressed as u = uL
φL

φ in (φ, u)-coordinate, or ũ = ũL in (φ, ũ)-coordinate. Next,
we study the 0th wave curves starting at the points on boundary φ = u. The 0th wave curve starting
at (φR, φR) satisfies L(ε, φR, φR, φ, u) = 0, or equivalently

f (φ, u)
(
1 + εh(x0, t0)(1 − u

φ
)2

) = f (φR, φR)
(
1 + ε(1 − φR

φR
)2

) = 1. (2.43)

By solving (2.43) directly, we obtain the following solutions of (2.43):

u = M

εh(x0, t0)
φ, u = φ. (2.44)

Under (2.6), the first solution in (2.44) is not admissible. It follows that the 0th wave curve starting
at (φR, φR) is given by u = φ. From previous analysis we see that the 0th wave curves for the first
order generalized BL equation is identical to the ones in zero order case. To the first characteristic
field, the generalized elementary wave satisfies

ut + F̃(ε, t0, x0, φR, u)x = 0, (2.45)

and the wave curve starting at (φR, uL) is the straight line

φ = φR . (2.46)

Next, from (2.38) we see that both F̃(ε, t0, x0, φ, u) and f(φ, u) are convex-concave functions of u.
Indeed, F̃(ε, t0, x0, φ, u) is the regular perturbation of f(φ, u) for small εh(x0, t0). Therefore, from
previous analysis we can obtain an analog result of Theorem 2.1 for the existence and uniqueness
of weak solutions to (2.35).

Now, we use weak solution u of (2.35) as the approximate solution of the following original
Riemann problem:⎧⎪⎨⎪⎩

Ut + F̄(ε, t, x, U )x = 0, x ∈ [x0 − x, x0 + x] × (t0, t0 + t),

U (x, t0) =
{

UL := (φL , uL )T , x0 − x < x < x0,

UR := (φR, u R)T , x0 < x < x0 + x .

(2.47)

It is necessary to calculate the residual (error) caused by this approximation in each local region
�(x0, t0) := {|x − x0| ≤ x, t0 ≤ t ≤ t0 + t}. Given weak solution u of (2.35), we define

R̃ψ (φ, u,�(x0, t0)) :=
∫∫

�(x0,t0)
uψt + F̃(ε, t0, x0, φ, u)ψx dxdt. (2.48)
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Then, using the divergence theorem and Rankine-Hugoniot condition, we obtain

R̃ψ (φ, u,�(x0, t0)) =
∫ x0+x

x0−x
u(x, t0 + t)ψ(x, t0 + t)dx

−
∫ x0+x

x0−x
u(x, t0)ψ(x, t0)dx

+
∫ t0+t

t0

F̃(ε, t0, x0, φR, u(x0 + x, t))ψ(x0 + x, t)dt

−
∫ t0+t

t0

F̃(ε, t0, x0, φL , u(x0 − x, t))ψ(x0 − x, t)dt, (2.49)

for every test function ψ ∈ C∞
0 (R × [0,∞)). On the other hand, define

Rψ (φ, u,�(x0, t0)) :=
∫∫

�(x0,t0)
uψt + F̃(ε, t, x, φ, u)ψx dxdt. (2.50)

Then, by the fact h(x, t) ∈ C1 and CFL condition, we obtain∣∣Rψ (φ, u,�(x0, t0)) − R̃ψ (φ, u,�(x0, t0))
∣∣ = O(1)(x)3. (2.51)

It follows by (2.49) and (2.51) that

Rψ (φ, u,�(x0, t0)) =
∫ x0+x

x0−x
u(x, t0 + t)φ(x, t0 + t)dx

−
∫ x0+x

x0−x
u(x, t0)φ(x, t0)dx

+
∫ t0+t

t0

F̃(ε, t0, x0, φR, u(x0 + x, t))φ(x0 + x, t)dt

−
∫ t0+t

t0

F̃(ε, t0, x0, φL , u(x0 − x, t))φ(x0 − x, t)dt

+ O(1)(x)3. (2.52)

We will need (2.52) to obtain the consistency of generalized Glimm scheme.
We now establish the global existence of weak solutions to (2.32). The generalized Glimm

scheme for the approximate solutions {uθ , x} of (2.32) can be constructed similarly as the zero
order case. We emphasize that, in contrast to the zero order case, in each time step we solve for
different Riemann problems caused not only by the difference of initial data, but also by the difference
of fluxes due to the choice of h(x, t). To obtain the stability of generalized Glimm scheme, since
the structure of wave curve is the same as the one in zero order case, we obtain the similar wave
interaction estimates so that the total variation of {ũθ,x } is conserved in each diamond region. It
leads to the analog result of Theorems 2.3 and the compactness of subsequence of {ũθ,x }. For the
consistency of scheme, we apply the divergence theorem and (2.52) to residual Rψ (φ, u) in (2.34),
and by the results in Ref. 36 to obtain

Rψ (φθ,x , uθ,x ) =
∑

i+ j=even

Rψ (φθ,x , uθ,x ,�(xi , t j )) → 0 as x → 0,

in the sense of probability space of equi-distributed random numbers {θ i}. We then obtain the
consistency of scheme, as well as the global existence of weak solution to (2.32). The Glimm
method to initial-boundary value problem (2.33) is similar to the one for zero order case, so we omit
it. We then have the following theorem for the Cauchy and initial-boundary problems of first order
BL equation.
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Theorem 2.5: Consider Cauchy problem (2.32) and initial-boundary value problem (2.33).
Let {uθ , x} and {ū θ̄ ,x } denote, respectively, the approximate solutions of (2.32) and (2.33) by
generalized Glimm scheme. Suppose (2.6) holds and the total variations of u0(x) and uB(t) are
sufficiently small. Then there exist null sets NC, NB ∈ �, and a sequence xi → 0 such that if
θ ∈ �\NC (θ̄ ∈ �\NB , respectively), then u := lim

xi →0
uθ,xi (ū := lim

xi →0
ū θ̄ ,xi

, respectively) is a

solution of (2.32) ((2.33), respectively).

III. REGULARIZED BL EQUATION

We now turn to the regularized BL equation (1.2). For the simplicity of presentation and without
loss of generality, we set φ(x) ≡ 1 and write f(u) for f(1, u). We establish the global (in time) existence
and uniqueness of solutions to the Cauchy problem{

ut + ( f (u))x = νuxx + γ uxxt , x ∈ R, t ≥ 0,

u(x, 0) = u0(x), x ∈ R,
(3.1)

and to the IBVP, ⎧⎪⎨⎪⎩
ut + f (u)x = νuxx + γ uxxt , x ≥ 0, t ≥ 0,

u(x, 0) = u0(x), x ≥ 0,

u(0, t) = g(t), t ≥ 0.

(3.2)

Here, ν ≥ 0 and γ ≥ 0 are real parameters with at least one of them nonzero. u0 and g in (3.2) satisfy
the compatibility condition,

u0(0) = g(0).

In addition, we obtain the eventual periodicity of solutions to (3.2). We remark that these results
are partially influenced by the papers of Bona and co-workers on the well posedness of the Cauchy
problem and the IBVP for the KdV and BBM equations in various functional settings.3–5, 7, 8, 11 What
is special about the regularized BL equation is the particular form of the nonlinear term.

The global solution result for (3.1) can be stated as follows.

Theorem 3.1: Assume at least one of the parameters ν ≥ 0 and γ ≥ 0 is positive. Let u0 ∈ H k(R)
with k ≥ 1. Then (3.1) has a unique global solution u satisfying C([0,∞); H k(R)). In addition,
u ∈ C∞((0,∞) × R).

The IBVP (3.2) also has a unique global solution for sufficiently smooth data. Here, C j
b ([0,∞))

denotes the bounded continuously differentiable functions with the derivatives up to the jth order
bounded.

Theorem 3.2: Consider the IBVP for the regularized BL equation (3.2) with γ > 0 and ν

≥ 0. Let u0 ∈ H 2([0,∞)) ∩ C2
b ([0,∞)). Let T > 0 be fixed and let g ∈ C1((0, T)). Then (3.2) has a

unique global solution satisfying C([0,∞); H 2([0,∞)) ∩ C2
b ([0,∞))).

In the case when ν > 0 and g(t) is periodic, the solution is eventually periodic. More precisely,
we have the following theorem.

Theorem 3.3: Let ν > 0 and γ > 0. Let u0 ∈ H 2([0,∞)) ∩ C2
b ([0,∞)). Assume that g ∈ C1((0,

∞)) is periodic, namely, for some T0 > 0,

g(t + T0) = g(t) for all t ≥ 0.

Then the corresponding solution of (3.2) is eventually periodic in the sense that, for any x > 0,

lim
t→∞(u(x, t + T0) − u(x, t)) = 0.

We now turn to the proofs of these results.
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Proof of Theorem 3.1: The proof consists of two major parts. The first part proves the local
existence and uniqueness through the contraction-mapping principle. The second part establishes
the global a priori bounds for ‖u‖H k and its C∞-smoothness. Since the first part is standard (see,
e.g., Refs. 3 and 4), attention is focused on the global bounds.

To prove the global bounds, we start with the L2-norm. Multiplying (3.1) by u and integrating
over R, we have

d

dt

(‖u‖2
L2 + γ ‖ux‖2

L2

) + 2ν‖ux‖2
L2 = 0,

where we have used the fact that∫
f ′(u)uux dx =

∫
(G(u))x dx = 0, G(u) =

∫
f ′(u) u du. (3.3)

Therefore, for any t ≥ 0,

‖u‖2
L2 + γ ‖ux‖2

L2 + 2ν

∫ t

0
‖ux‖2

L2 dτ = ‖u0‖2
L2 + γ ‖u0x‖2

L2 . (3.4)

To estimate the H1-norm, we take the inner product of ∂xu with ∂x of (3.1) to obtain

d

dt

(‖ux‖2
L2 + γ ‖uxx‖2

L2

) + 2ν‖uxx‖2
L2 = I1,

where

I1 = −2
∫

f ′(u) ux uxx dx − 2
∫

f ′′(u) u3
x dx .

To bound I1, we first notice that f(u) and all of its derivatives are bounded, namely,

‖ f (l)(u)‖L∞ ≤ Cl for any integer l ≥ 0 (3.5)

and then divide into two cases. In the case when ν > 0,

|I1| ≤ ν

2
‖uxx‖2

L2 + C
∫

( f ′(u))2 u2
x dx + C ‖ux‖L∞ ‖ux‖2

L2

≤ ν

2
‖uxx‖2

L2 + C ‖ux‖2
L2 + C ‖ux‖5/2

L2 ‖uxx‖1/2
L2

≤ ν‖uxx‖2
L2 + C ‖ux‖2

L2 + C ‖ux‖10/3
L2 .

In the case when γ > 0,

|I1| ≤ C
(‖ux‖2

L2 + γ ‖uxx‖2
L2

) + C ‖ux‖L∞ ‖ux‖2
L2

≤ C
(‖ux‖2

L2 + γ ‖uxx‖2
L2

) + C
√(‖ux‖2

L2 + γ ‖uxx‖2
L2

)‖ux‖2
L2 .

Therefore, when ν > 0, we have

d

dt

(‖ux‖2
L2 + γ ‖uxx‖2

L2

) + ν‖uxx‖2
L2 ≤ C ‖ux‖2

L2

(
1 + ‖ux‖4/3

L2

)
.

Noticing (3.4) and applying Gronwall’s inequality, we obtain

‖ux‖2
L2 + γ ‖uxx‖2

L2 + ν

∫ t

0
‖uxx‖2

L2 dτ ≤ C(T, ‖u0‖H 2 ) (3.6)

for any t ≤ T. When γ > 0, we have

d

dt

√(‖ux‖2
L2 + γ ‖uxx‖2

L2

) ≤ C
√(‖ux‖2

L2 + γ ‖uxx‖2
L2

) + C ‖ux‖2
L2

which yields the desired bound (3.6) again. It is not hard to see that higher order norms can be obtained
in a similar fashion. Therefore, we get u ∈ L∞([0,∞); H k(R)). To see that u ∈ C([0,∞); H k(R)),
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we need to use the integral form. By taking the Fourier transform, we write (3.1) in the following
integral form:

u(x, t) =
∫

K (x − y, t)u0(y) dy +
∫ t

0

∫
G(x − y, t − τ ) f (u(y, τ )) dy dτ,

where

K (x, t) =
∫

eixξ e
− νξ2

1+γ ξ2 t
dξ,

G(x, t) =
∫

eixξ e
− νξ2

1+γ ξ2 t iξ

1 + γ ξ 2
dξ.

By an inductive argument similar to Ref. 3, we can show that u ∈ C∞((0,∞) × R).
We finally verify the uniqueness of the solutions. Let u, ũ ∈ L∞([0, T ]; H 1(R)) be two solutions.

Their difference v = u − ũ satisfies

vt + ( f (u) − f (ũ))x = νvxx + γ vxxt .

Therefore,

d

dt

(‖v‖2
L2 + γ ‖vx‖2

L2

) + 2ν‖vx‖2
L2 = I2, (3.7)

where

I2 = −
∫

( f (u) − f (̃u))x v dx .

Because of (3.5), | f (u) − f (̃u)| ≤ C |v| and thus

|I2| ≤ C
∫

|v| |vx | dx ≤
{

ν‖vx‖2
L2 + C ‖v‖2

L2 , when ν > 0,

C
(‖v‖2

L2 + γ ‖vx‖2
L2

)
when γ > 0.

Inserting the bounds above in (3.7) and applying Gronwall’s inequality yield v ≡ 0 or u = ũ.
In order to prove Theorem 3.2, we recall a representation. This formula can be derived in a

similar fashion as in Refs. 12 and 22.

Lemma 3.4: If u solves the following IBVP:⎧⎪⎨⎪⎩
ut + αux − νuxx + λu − γ uxxt = h(x, t), x ≥ 0, t ≥ 0,

u(x, 0) = u0(x), x ≥ 0,

u(0, t) = g(t), t ≥ 0,

(3.8)

then u can be written as

u(x, t) = g(t) e− x√
γ +

∫ ∞

0
�(x − y, t)

[
u0(y) − g(0) e− y√

γ

]
dy (3.9)

+
∫ t

0

∫ ∞

0
�(x − y, t − τ )

[
h + (

α√
γ

+ ν

γ
− λ)g(τ ) e− y√

γ

]
dydτ,

where � and � are given by

�(x, t) = 1

2π

∫ ∞

−∞
eiξ x e−δt e−iβt dξ,

�(x, t) = 1

2π

∫ ∞

−∞

1

1 + γ ξ 2
eiξ x e−δt e−iβt dξ

with

δ = λ + νξ 2

1 + γ ξ 2
, β = αξ

1 + γ ξ 2
.
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Proof of Theorem 3.2. The proof consists of two major parts. The first part establishes the local
existence and uniqueness, while the second obtains the global bound.

To prove the local existence and uniqueness, we follow Lemma 3.4 to rewrite (3.2) into the
integral form

u(x, t) = g(t) e− x√
γ +

∫ ∞

0
�(x − y, t)

[
u0(y) − g(0) e− y√

γ

]
dy (3.10)

+
∫ t

0

∫ ∞

0
�(x − y, t − τ )

[
−( f (u))y + νg(τ )

γ
e− y√

γ

]
dydτ,

where � and � are given by

�(x, t) = 1

2π

∫ ∞

−∞
eiξ x e

− νξ2

1+γ ξ2 t
dξ, �(x, t) = 1

2π

∫ ∞

−∞

1

1 + γ ξ 2
eiξ x e

− νξ2

1+γ ξ2 t
dξ.

It is then not hard to show that the right-hand side of (3.10) defines a contractive mapping from
C([0, T]; Cb) to itself when the time interval T is chosen to be sufficiently small. The details are
similar to those in Ref. 5 or Ref. 11.

The global a priori bounds can be established following Ref. 11 although the nonlinear term
is different. To be self-contained, we briefly outline the proof. Multiplying (3.2) by u and uxx,
respectively, and integrating over (0, ∞), we obtain, after integrating by parts,

d

dt

(‖u‖2
L2 + γ ‖ux‖2

L2

) + 2ν‖ux‖2
L2

= −
∫ ∞

0
f ′(u)ux u dx − 2νg(t)ux (0, t) − 2γ g(t)uxt (0, t),

d

dt

(‖ux‖2
L2 + γ ‖uxx‖2

L2

) + 2ν‖uxx‖2
L2

= −
∫ ∞

0
f ′′(u) u3

x dx − 2g′(t)ux (0, t) − γ f (g(t)) u2
x (0, t).

Adding the two equations above and integrating with respect to time, we have

‖u‖2
L2 + (1 + γ )‖ux‖2

L2 + γ ‖uxx‖2
L2 + ν

∫ t

0
(‖ux‖2

L2 + ‖uxx‖2
L2 ) dτ (3.11)

= −
∫ t

0

∫ ∞

0
( f ′(u)ux u + f ′′(u) u3

x ) dx −
∫ t

0
2(νg(τ ) + g′(τ ))ux (0, τ ) dτ

−
∫ t

0
(2γ g(τ )uxt (0, τ ) + γ f (g(τ )) u2

x (0, τ )) dτ.

The terms in the time integrals on the right can be bounded through Sobolev embedding inequalities.
For example, ∣∣∣∣∫ t

0
g′(τ )ux (0, τ ) dτ

∣∣∣∣ ≤ C ‖g‖L∞

∫ t

0
‖ux‖1/2

L2 ‖uxx‖1/2
L2 dτ

≤ C(T ) ‖g‖L∞

[(∫ t

0
‖ux‖6

L2 dτ

)1/3

+
(∫ t

0
‖uxx‖2

L2 dτ

)1/3
]

.

Inserting these estimates in (3.11), we eventually obtain

C1 ‖u‖6
H 1 + C2‖uxx‖2

L2 ≤ C3 + C4

∫ t

0

[‖u‖6
H 1 + ‖uxx‖2

L2

]
dτ

and the desired bound then follows from Gronwall’s inequality.
We now tend to the proof of Theorem 3.3. We need to evaluate the difference u(x, t + T0)

− u(x, t). The following lemma provides a formula for this difference.
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Lemma 3.5: If g is periodic in t with period T0, then the solution u of (3.8) satisfies

u(x, t + T0) − u(x, t) (3.12)

=
∫ 0

−T0

∫ ∞

0
�(x − y, t − τ )

[
h + (

α√
γ

+ ν

γ
− λ)g(τ ) e− y√

γ

]
dydτ,

where h is given by

h = h − α u′
0(x) + νu′′

0(x) − λu0(x) − (
α√
γ

+ ν

γ
− λ)g(0) e− x√

γ .

Proof: To verify the formula in the lemma, we consider the new function

v(x, t) = u(x, t) − u0(x) + g(0) e− x√
γ (3.13)

and the equation it satisfies. Applying the formula in (3.9), we find that

v(x, t) = g(t) e− x√
γ (3.14)

+
∫ t

0

∫ ∞

0
�(x − y, t − τ )

[
h + (

α√
γ

+ ν

γ
− λ)g(τ ) e− y√

γ

]
dydτ.

Clearly,

u(x, t + T0) − u(x, t) = v(x, t + T0) − v(x, t).

Using (3.14) and the fact that g is periodic, we have

u(x, t + T0) − u(x, t)

=
∫ t+T0

0

∫ ∞

0
�(x − y, t + T0 − τ )

[
h + (

α√
γ

+ ν

γ
− λ)g(τ ) e− y√

γ

]
dydτ

−
∫ t

0

∫ ∞

0
�(x − y, t − τ )

[
h + (

α√
γ

+ ν

γ
− λ)g(τ ) e− y√

γ

]
dydτ.

Making the substitution τ = T0 + τ̃ in the first integral on the right and using the fact that h(x, t
+ T0) = h(x, t) and g(t) = g(t + T0), we obtain (3.12).

We now prove Theorem 3.3.

Proof of Theorem 3.3: Let u be a solution of (3.2). In the case when γ > 0, we use (3.12) to
obtain

u(x, t + T0) − u(x, t) (3.15)

=
∫ 0

−T0

∫ ∞

0
�(x − y, t − τ )

[
−( f (u))y + νu′′

0(y) + ν

γ
(g(τ ) − g(0)) e− y√

γ

]
dydτ,

where

�(x, t) = 1

2π

∫ ∞

−∞

1

1 + γ ξ 2
eiξ x e

− νξ2

1+γ ξ2 t
dξ.

For ν > 0,

|�(x, t)| ≤ 1

2π

∫ ∞

−∞

1

1 + γ ξ 2
e
− νξ2

1+γ ξ2 t
dξ.

As t → ∞,

�(x, t) → 0 uniformly in x .
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If u ∈ C((0, ∞); H2), then, by Sobolev’s inequality∫ ∞

0
| f (u)y| dy ≤

∫
| f ′(u)| |uy| dy ≤ C ‖ux‖L1

≤ C ‖u‖3/4
L2 ‖uxx‖1/4

L2 ≤ C ‖u‖H 2 .

Here, we have used the uniform boundedness of f ′(u). Letting t → ∞ in (3.15) and applying the
dominated convergence theorem yield

u(x, t + T0) − u(x, t) → 0.

This completes the proof of Theorem 3.3.

IV. CONVERGENCE

The goal of this section is to show that the solution of the regularized BL equation established
in Theorem 3.1 converges to the corresponding ones of the generalized BL equation obtained in
Theorem 2.4. We have the following theorem.

Theorem 4.1: Let u0 ∈ H 2(R) ∩ C2
b (R) and let uν, γ be the corresponding solution of (3.1) with

φ(x) ≡ 1. Then, if γ = O(ν2), then uν, γ converges in Lp for 1 < p < 2 to a weak solution u of the
Cauchy problem for the generalized BL equation (2.10).

Proof: We follow the approach of Schonbek.35 Her approach was further developed and applied
to diffusive-dispersive equations by LeFloch and Natalini29 and LeFloch and Kondo.28 The major
idea of her approach is to show the boundedness of the entropy dissipation measures. That is, for
any convex function ψ with ψ ′ and ψ ′′ uniformly bounded,

∂tψ(uν,γ ) + ∂x F(uν,γ )

is bounded when tested against a smooth test function, where F′ = ψ ′f ′. More precisely, we prove
that for any test function η = η(x, t) ∈ C∞

0 (R × R+) with η ≥ 0,∫ ∞

0

∫ ∞

−∞
(∂tψ(uν,γ ) + ∂x F(uν,γ )) η(x, t) dxdt

is bounded. It is easy to verify by multiplying (3.1) by ψ ′ that

ψ ′(uν,γ )∂t u
ν,γ + ψ ′(uν,γ ) f ′∂x uν,γ = ψ ′(uν,γ )νuν,γ

xx + γψ ′(uν,γ )uν,γ
xxt

= ν(ψ ′(uν,γ )uν,γ
x )x + γ (ψ ′(uν,γ )uν,γ

xt )x − νψ ′′(uν,γ )(uν,γ
x )2 − γψ ′′(uν,γ )uν,γ

x uν,γ
xt .

Therefore, ∫ ∞

0

∫ ∞

−∞
(∂tψ(uν,γ ) + ∂x F(uν,γ )) η(x, t) dxdt = J1 + J2 + J3 + J4, (4.1)

where, for the convenience of notation, we write ṽ for uν, γ ,

J1 =
∫ ∞

0

∫ ∞

−∞
ν(ψ ′ (̃v)̃vx )x η(x, t) dxdt,

J2 =
∫ ∞

0

∫ ∞

−∞
γ (ψ ′(̃v)̃vxt )x η(x, t) dxdt,

J3 = −
∫ ∞

0

∫ ∞

−∞
νψ ′′ (̃v)̃v2

x η(x, t) dxdt,

J4 = −
∫ ∞

0

∫ ∞

−∞
γψ ′′(̃v)̃vx ṽxt η(x, t) dxdt.

In order to bound the terms on the right, we need the following lemma.
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Lemma 4.2: Let u0 ∈ H 2(R) ∩ C2
b (R) and let ṽ be the corresponding solution of (3.1) with

ν > 0 and γ > 0. Then ṽ obeys the following bounds:

‖̃v‖2
L2 + γ ‖̃vx‖2

L2 + 2ν

∫ T

0
‖̃vx‖2

L2 dτ = ‖u0‖2
L2 + γ ‖u0x‖2

L2 . (4.2)

1

2

∫
ṽ2 dx + ν

∫∫
(̃v2

x + 2̃v2
t ) dxdt + 1

2
(2ν2 + γ )

∫
ṽ2

x dx (4.3)

+ 3ν

∫∫
ṽ2

x ṽ
2 dxdt + 2νγ

∫∫
ṽ2

xt dxdt = C1

∫
u2

0 dx + C2

∫
u2

0x dx .

To continue the proof of Theorem 4.1, we bound the terms on the right-hand side of (4.1).
Integrating by parts, we have

|J1| = ν

∣∣∣∣∫∫
ψ ′ (̃v)̃vxηx dxdt

∣∣∣∣ ≤ νC ‖̃vx‖L2‖ηx‖L2 ≤ C
√

ν
(
ν‖̃vx‖2

L2 + ‖ηx‖2
L2

)
.

Integrating by parts and applying Hölder’s inequality, we have

|J2| = γ

∣∣∣∣∫∫
ψ ′(̃v)̃vxtηx dxdt

∣∣∣∣ ≤ C

√
γ

ν

(
νγ

∫∫
ṽ2

xt dxdt

) 1
2

.

By (4.3), J2 is bounded when γ = O(ν). When γ = o(ν), |J2| → 0. According to (4.2),

|J3| ≤ 1

2

∫
ṽ2

0(x) dx .

By Hölder’s inequality,

|J4| ≤ C γ 1/2ν−1

(
νγ

∫∫
ṽ2

xt dxdt

)1/2 (
ν

∫∫
ṽ2

x dxdt

)1/2

.

By (4.3) again, J4 is bounded if γ = O(ν2) and J4 → 0 if γ = o(ν2). The desired convergence then
follows from the scheme of Schonbek.35

We now turn to the proof of Lemma 4.2.

Proof of Lemma 4.2: The L2-bound in (4.2) is obtained by multiplying (3.1) by ṽ and integrating
with respect to (x, t) ∈ ( − ∞, ∞) × (0, ∞). Multiplying (3.1) by ṽ + 2νṽt and integrating with
respect to (x, t) ∈ ( − ∞, ∞) × (0, ∞), we obtain, after integration by parts,

1

2

∫
ṽ2 dx + ν

∫∫
(̃v2

x + 2̃v2
t ) dxdt + 1

2
(2ν2 + γ )

∫
ṽ2

x dx (4.4)

+ 3ν

∫∫
ṽ2

x ṽ
2 dxdt + 2νγ

∫∫
ṽ2

xt dxdt

= 1

2

∫
u2

0 dx + 1

2
(2ν2 + γ )

∫
u2

0x dx − 2ν

∫∫
f ′ (̃v)̃vx ṽt dxdt.

Here, we have used the fact that∫
ṽ f (̃v)x dx =

∫
ṽ f ′ (̃v)̃vx dx = 0.

It suffices to bound the last term in the right-hand side of (4.4). Using the fact that

f ′ (̃v) = 2M ṽ(1 − ṽ)

ṽ2 + M(1 − ṽ)2

and | f ′ (̃v)| ≤ C , we have

2ν

∣∣∣∣∫∫
f ′ (̃v)̃vx ṽt dxdt

∣∣∣∣ ≤ Cν

∫∫
ṽ2

x dxdt + ν

∫∫
ṽ2

t dxdt.

Inserting this bound in (4.4), we obtain (4.3).
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V. NUMERICAL RESULTS

This section presents numerical experiments performed on the BL and the regularized BL
equations. These experiments are designed to understand the limiting behavior of solutions to the
regularized BL equations as ν → 0 and γ → 0. In particular, we examine how the relative sizes
of ν and γ affect the convergence of solutions of the regularized BL equation to those of the BL
equation.

We compute solutions of the BL equation

ut + ( f (u))x = 0 with f (u) = u2

u2 + M(1 − u)2
(5.1)

and the regularized BL equation

ut + ( f (u))x = νuxx + γ uxxt (5.2)

corresponding to two initial data

u(x, 0) = 1 − 0.4 exp(−10(x − 5)2), 0 ≤ x ≤ 10, (5.3)

and

u(x, 0) = 1 − 0.9 exp(−10(x − 5)2), 0 ≤ x ≤ 10. (5.4)

We remark that we are computing the solutions of the Cauchy problem here. Let u = 1 − w.
Then we can rewrite the above equation into the following Cauchy problem:

wt + ( f (w))x = νwxx + γwxxt (5.5)

with w(x, 0) = 0.4 exp(−10(x − 5)2), 0.9 exp (−10(x − 5)2). We have truncated the computational
domain from R to [0, 10]. Numerically, this is acceptable since the error due to the truncation can
be made negligible. The numerical computations are done only for the above Cauchy problems. We
consider u(x, t) instead of w(x, t) because u(x, t) fits physical meanings better.

Without loss of generality, we take M = 1. Although (5.3) and (5.4) appear to be very similar,
their corresponding solutions to (5.1) behave differently. To understand their behavior, we first plot
the graphs of f(u) and f ′(u) (see Figure 1), where

f ′(u) = 2u(1 − 2u)

(u2 + (1 − u)2)2
.

For (5.3), u0(x) ≥ 0.6 and initially the propagation speed f ′(u) decreases as u increases. In
contrast, the datum in (5.4) ranges between 0.1 and 1 and the initial propagation speed f′(u) increases
for u0 in the range 0.1–0.5 but decreases for u0 between 0.5 and 1. In fact, their corresponding
numerical solutions of (5.1) are different, as we shall see below.

We now present our numerical results. First, we plot the solutions of (5.1) and (5.5) at t = 1
corresponding to the initial datum in (5.3). The following six graphs (see Figures 2–4) provide the
solutions of (5.1) and of (5.5) with γ = 0 and ν = 10− 5, 10− 6, 10− 7, 10− 8, and 0. These plots
verify that, as ν → 0, the solution of (5.5) with γ = 0 tends to that of (5.1).

When γ > 0, if the condition γ = O(ν2) is violated, the solution of (5.5) may not converge to
that of (5.1), as the plots in Figure 5 indicate.

Now we present the numerical solutions of (5.1) and (5.5) at t = 1 corresponding to the initial
datum in (5.4). The following six graphs (see Figures 6–8) provide the numerical solutions of (5.1)
and of (5.5) with γ = 0 and ν = 10− 5, 10− 6, 10− 7, 10− 8, and 0. Again these plots verify that, as ν

→ 0, the solution of (5.5) with γ = 0 tends to that of (5.1).
Again when γ > 0, if the condition γ = O(ν2) is violated, the solution of (5.5) may not converge

to that of (5.1) (see Figure 9).
Finally, we briefly indicate our numerical scheme. For the Cauchy problem we have used a

numerical method developed in Ref. 4 with a fourth-order finite difference scheme for the spatial
discretization (x = 0.005) and the fourth-order Runge-Kutta method for the temporal discretization
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FIG. 1. The graphs of f(u) and f ′(u).
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FIG. 2. The left represents the solution of (5.1), while the right the solution of (5.5) with γ = 0 and ν = 10 − 5 at time t = 1
with initial data in (5.3).
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FIG. 3. The left represents the solution of (5.5) with γ = 0 and ν = 10 − 6, while the right that of (5.5) with γ = 0 and
ν = 10 − 7 at time t = 1 with initial data in (5.3).
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FIG. 4. The left represents the solution of (5.5) with γ = 0 and ν = 10 − 8, while the right that of (5.5) with γ = 0 and
ν = 0 at time t = 1 with initial data in (5.3).
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FIG. 5. The left represents the solution of (5.5) with γ = 10 − 5 and ν = 10 − 5, while the right that of (5.1) at time t = 1
with initial data in (5.3).
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FIG. 6. The left represents the solution of (5.1), while the right the solution of (5.5) with γ = 0 and ν = 10 − 5 at time t = 1
with initial data in (5.4).
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FIG. 7. The left represents the solution of (5.5) with γ = 0 and ν = 10 − 6, while the right that of (5.5) with γ = 0 and
ν = 10 − 7 at time t = 1 with initial data in (5.4).
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FIG. 8. The left represents the solution of (5.5) with γ = 0 and ν = 10 − 8, while the right that of (5.5) with γ = 0 and
ν = 0 at time t = 1 with initial data in (5.4).
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FIG. 9. The left represents the solution of (5.5) with γ = 10 − 5 and ν = 10 − 5, while the right that of (5.1) at time t = 1
with initial data in (5.4).
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(t = 10− 5). For the IBVP of (5.5) with the boundary datum g(t), we rewrite the equation into

ut = g′(t) e− x√
γ +

∫ ∞

0
K̃ (x, y)( f (u))(y, t) dy

+ ν

γ

[
g(t)e− x√

γ − u(x, t)
]

− ν

∫ ∞

0
H̃ (x, y)u(y, t) dy,

where K̃ (x, y) = 1
2γ

[e− x+y√
γ + sgn(x − y)e− |x−y|√

γ ] and H̃ = 1

2γ
3
2

[e− x+y√
γ + sgn(x − y)e− |x−y|√

γ ]. Then

the fourth-order Runge-Kutta method is used for the temporal discretization.
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