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Abstract. Studied here is the large-time behavior and eventual periodicity
of solutions of initial-boundary-value problems for the BBM equation and the
KdV equation, with and without a Burgers-type dissipation appended. It is
shown that the total energy of a solution of these problems grows at an algebraic
rate which is in fact sharp for solutions of the associated linear equations. We
also establish that solutions of the linear problems are eventually periodic if
the boundary data are periodic.

1. Introduction. Initial-boundary-value problems for the KdV equation or the
BBM equation arise naturally in modeling small-amplitude long waves in a chan-
nel with a wavemaker mounted at one end, or in modeling coastal zone motions
generated by long-crested waves propagating shoreward from deep water (see, for
example [9], [3], [4]). Such mathematical formulations have received considerable
attention in the past, and a satisfactory theory of global well-posedness is in place
for initial and boundary conditions satisfying physically relevant smoothness and
consistency assumptions (see e.g. [5], [10], [12], [15] and the references contained
therein).

Our major interest here is certain qualitative aspects of solutions, suggested by
experiments, that are connected with their large-time behavior. The issues are of
obvious importance for understanding the kind of time-dependent equilibrium that
is reached in a laboratory channel under constant periodic forcing or in a near-
shore zone approached by a regular wavetrain with a long fetch. In particular,
we will address the question of energy growth, both locally and globally and the
issue of what we term eventual periodicity which is exhibited by solutions of initial-
boundary-value problems (IBVP henceforth) for the generalized BBM equation and
the generalized KdV equation

ut + ux + upux − uxxt = 0 for x, t ≥ 0,
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ut + ux + upux + uxxx = 0 for x, t ≥ 0,

respectively, and their dissipative counterparts which includes a Burgers-type term,
namely

ut + ux + upux − uxxt − νuxx = 0 for x, t ≥ 0, (1)

ut + ux + upux + uxxx − νuxx = 0 for x, t ≥ 0, (2)

where ν > 0. All these equations will be supplemented with the initial and boundary
conditions

u(x, 0) = f(x) for x ≥ 0 and u(0, t) = g(t) for t ≥ 0. (3)

As is now well known, if ν > 0, order-one solutions of the pure initial-value
problems posed on the whole real line R for either (1) or (2) decay to zero as t
approaches infinity (see e.g. [2], [6]). In contrast, the total energy of solutions of
the IBVP for the above equations may grow as t increases. Intuitively, the growth
is due to energy that is transmitted into the system at the boundary. One issue
that will occupy us here is to determine the rate at which the total energy in the
system, as measured by a natural norm, increases. Indeed, it will be shown that if
the boundary data g satisfies the growth conditions

∫ t

0

g(τ)2dτ = O(t) and

∫ t

0

g′(τ)2dτ = O(t)

as t → ∞, then the L2-norms of u and ux grow at most algebraically with t. For
solutions of the associated linear problems, the sharp growth rate t1/2 is established.
It is interesting to note that the presence of a Burgers-type dissipation is not strong
enough to offset the influx of energy from the boundary. This is in contrast to the
situation that obtains when damping of the form µu, µ > 0, is introduced. In this
case, the total energy of solutions of the initial-boundary-value problems

ut + ux + upux + µu − uxxt = 0 (4)

and

ut + ux + upux + µu + uxxx = 0 (5)

posed for x, t ≥ 0, and with boundary conditions as in (3), are uniformly bounded
in time (c.f. [11]). For the nonlinear problems (1) and (2), it may be the case that
the nonlinear term dominates and that solutions grow faster than t1/2. At least our
energy-type arguments do not suffice to deny this possibility. If it is true that the
sharp rates of growth for the nonlinear problem are not the same as for the linear
boundary-value problems, it would be in contrast with the situation that obtains
for the pure initial-value problems, in which the asymptotic rates of boundedness,
or decay in case ν > 0, of the energy is the same for solutions of the linear and
the corresponding nonlinear equations. Finally, it is also worth remark that the
present results represent a significant improvement over the current exponential
growth rates in the literature (see e.g. [7]).

A second, related point will then occupy attention. Laboratory experiments in
a channel with a flap-type or piston-type wavemaker mounted at one end show
an interesting phenomenon. If the wavemaker is oscillated periodically, say with
a period T , and the wave elevation gx0(t) = η(x0, t) is observed as a function of
time at some station x0 down the channel, then it appears that in due course, gx0

becomes periodic of period T . Of course, at different stations x0, the associated
function gx0 varies in its structure. Our second overall goal is to establish this
observation as a mathematically exact fact about solutions of the aforementioned
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model equations. To this end, the boundary data g = g0 will be assumed periodic
of period T > 0, say,

g(t + T ) = g(t) for all t ≥ 0.

In case ν > 0, it is then shown that solutions u of the associated linear problems
are eventually periodic of period T , which is to say

‖u(·, t + T )− u(·, t)‖L∞ → 0 as t → ∞,

where ‖·‖L∞ is the L∞-norm in the x-variable. Similar, but somewhat weaker results
hold for ν = 0. As t → ∞, the solution u(x, t) with periodic forcing converges to a
function u∗(x, t) which is a solution of the boundary-value problem that is exactly
periodic in t.

These developments complement the work in [11] where the issue of asymptotic
periodicity was initiated in the context of (5) with µ > 0. In [11], results are
established for the nonlinear problem that are similar to those derived here for the
linear problem corresponding to (1) and (2) with ν > 0. The analysis in the linear
case that appears here, in particular the integral representations, will very likely
find use in a theory of eventual periodicity for the nonlinear problems (see, again,
[11]). It should be remarked that for the pure initial-value problems posed on all of
R, the temporal decay rates of (2) with ν > 0 and (5) with µ > 0 are quite different,

the former being generically of order t−
1
2 whilst the latter throws up exponential

decay. This disparity is a hint as to why asymptotic periodicity is a little more
subtle with the Burgers-type dissipation than it is for the dissipation featured in
(4) and (5).

Considerable effort has gone into the well-posedness theory for initial-boundary-
value problems of the form depicted in (2)-(3) (see [5], [8], [10], [12], [13], [14] and
[15]). Part of the purpose of the more recent of these works was to extend the
range of the earlier theory as exemplified in [7], [8], [12] and [13] to include much
weaker regularity assumptions on the auxiliary data f and g. Our goals here are
different, and consequently we will not struggle to state our conclusions under the
most general hypotheses for which they might hold. Rather, we will be content to
establish our theory under assumptions on f and g strong enough to directly justify
the intermediate calculations that come to the fore in our analysis. Appropriate
continuous dependence results may then be invoked to obtain sharper conclusions,
but on the whole, we eschew this exercise.

Notation and Outline

The notation in force throughout is standard. The symbol L2(R
+) signifies the

usual Hilbert space of measurable, square-integrable functions on R
+ and the norm

of any f ∈ L2(R
+) is written unadorned as ‖f‖. If f ∈ Hs(R+), the Sobolev class

of L2(R
+)-functions whose first s derivatives also lie in L2(R

+), its norm will be
denoted by ‖f‖s. The norm of all other Banach spaces X will be denoted ‖ · ‖X .

The plan of this paper is as follows. Section 2 is concerned with the large-time
bounds on solutions of all four of the initial-boundary-value problems mentioned
above. These are obtained by energy-type estimates. They would be standard
except for the non-homogeneous boundary conditions at x = 0. Attention is then
restricted to the linear versions of the IBVP’s in Section 3 with the boundary data
taken to be periodic. In this context, eventual periodicity of solutions is established.
The script concludes with a brief summary and comments about directions that may
be worth further development.
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2. Large-time bounds. In this section, attention is given to the large-time be-
havior of solutions of the IBVP’s for the BBM equation, the KdV equation, the
BBM-Burgers equation and the KdV-Burgers equation. The goal is to understand
fairly precisely how norms of solutions behave for large t. To begin, consider the
first-order linear equation

ut + ux = 0 for x, t ≥ 0,

with u(x, 0) = f(x) and u(0, t) = g(t). In the KdV-range of small-amplitude long
waves, this equation is the lowest-order approximation for unidirectional motions.
One easily verifies that

‖u(·, t)‖2 = ‖f‖2 +

∫ t

0

g(τ)2dτ, ‖ux(·, t)‖ = ‖fx‖2 +

∫ t

0

g′(τ)2dτ.

Therefore, if f ∈ H1(R+) and
∫ t

0

g(τ)2dτ = O(t) and

∫ t

0

g′(τ)2dτ = O(t) (6)

as t → ∞, then

‖u(·, t)‖1 = O(t
1
2 )

as t → ∞. This simple calculation indicates the sharp growth of order t
1
2 in both

L2 and H1 that one might expect to obtain for solutions of the full nonlinear,
dispersive and dissipative IBVP’s. The growth assumptions (6) on g are natural.
Indeed, many physically relevant boundary data such as periodic functions, or more
generally, data that along with its derivatives, is uniformly bounded in time conform
to such an assumption.

2.1. The BBM equation. In this subsection, interest is focused on the IBVP for
the generalized BBM equation

ut + ux + upux − uxxt = 0, for x, t ≥ 0, (7)

with
u(x, 0) = f(x) for x ≥ 0 and u(0, t) = g(t) for t ≥ 0. (8)

Assume that u is a solution of (7)-(8) which, along with its first few partial
derivatives, lies in L2(R

+) for each t ≥ 0 and is smooth up to the boundary. Such
an assumption is certainly justified by the existing theory provided the consistency
condition

f(0) = g(0) (9)

is satisfied (see e.g. [7], [8], [12] and [13]). This condition will be in force throughout
for both KdV-type and BBM-type equations.

If (7) is multiplied by 2u(x, t), and the result integrated over R
+ and then [0, t],

we obtain after appropriate integrations by parts

‖u(·, t)‖2
1 = ‖f‖2

1 +

∫ t

0

[ 2

p + 2
gp+2 + g2 − 2guxt(0, τ)

]

dτ.

Applying the Cauchy-Schwartz inequality gives

‖u(·, t)‖2
1 ≤ ‖f‖2

1 +

∫ t

0

[ 2

p + 2
gp+2 + g2

]

dτ

+2
(

∫ t

0

g2dτ
)

1
2
(

∫ t

0

u2
xt(0, τ)dτ

)
1
2

. (10)
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To deal with the potentially troublesome term involving uxt(0, t) in the above in-
equality, multiply (7) by 2uxt(x, t)− 2

p+1up+1 and integrate over R
+× [0, t] to obtain

‖ux(·, t)‖2 +

∫ t

0

u2
xt(0, τ) dτ − 2

(p + 1)(p + 2)

∫ ∞

0

up+2 dx (11)

= ‖f ′‖2 − 2

(p + 1)(p + 2)

∫ ∞

0

fp+2 dx

+

∫ t

0

[

(g′)2 +
2

p + 1
gp+1uxt(0, τ) − 1

(p + 1)2
g2(p+1) − 2

(p + 1)(p + 2)
gp+2

]

dτ.

Theorem 2.1. If f ∈ H1(R+) and g ∈ C1(R+) satisfy the conditions
∫ t

0

g(τ)2dτ = O(t),

∫ t

0

g(τ)2p+2dτ = O(t),

∫ t

0

g′(τ)2dτ = O(t), (12)

as t → ∞, then any solution u of the IBVP (7) and (8) with 0 ≤ p < 2 satisfies

‖u(·, t)‖1 ≤ C(t + 1)
1

2−p ,

where C is a constant depending only on ‖f‖1. In particular, if p = 1,

‖u(·, t)‖1 = O(t)

as t → ∞.

Remarks. If p = 0, we are considering the linearized BBM-equation. Note in
this case that one of the hypotheses is redundant. Note also that, for p ≥ 1,
∫ t

0
|g(τ)|rdτ = O(t) for any r ∈ [2, 2p+2] by interpolation. If g and g′ are uniformly

bounded, then (12) holds. Thus (12) holds for g(t) = a sin(bt) say, a, b > 0, or
indeed for any smooth periodic function. For non-integer values of p, it is assumed
throughout that p = m/n is rational with m, n relatively prime and n odd. In this
case, a branch of the mapping z → z1/n may be chosen so that up is real if u is real.

Proof. For f ∈ H1 and g ∈ C1 satisfying (12), the inequality (2.1) gives the bound

‖u(·, t)‖2
1 ≤ C(t + 1) + C(t + 1)

1
2

(

∫ t

0

u2
xt(0, τ) dτ

)
1
2

. (13)

Applying Young’s inequality to (11) yields

1

2

∫ t

0

u2
xt(0, τ) dτ ≤ ‖f ′‖2 +

2

(p + 1)(p + 2)

∫ ∞

0

[

up+2 − fp+2
]

dx

+

∫ t

0

[

(g′)2 +
1

(p + 1)
2 g2(p+1) − 2

(p + 1)(p + 2)
gp+2

]

dτ. (14)

Thus, for f ∈ H1(R+) and g satisfying (12), it follows from (14) that
∫ t

0

u2
xt(0, τ) dτ ≤ C(t + 1) +

4

(p + 1)(p + 2)

∫ ∞

0

up+2 dx

where C is a constant depending only on ‖f‖1 and the constants implied by (12)
related to g. Because of the elementary inequality

‖h‖2
L∞(R+) ≤

√
2‖h‖ ‖hx‖, (15)

it transpires that
∫ ∞

0

up+2 dx ≤ ‖u(·, t)‖p
L∞

‖u(·, t)‖2 ≤ ‖u(·, t)‖2+ p
2 ‖ux(·, t)‖ p

2 ≤ ‖u(·, t)‖p+2
1 .
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Combining the above estimates leads securely to the inequality

‖u(·, t)‖2
1 ≤ C (t + 1) + C(t + 1)

1
2

[

C(t + 1) + C‖u(·, t)‖p+2
1

]
1
2

. (16)

For any a, b ≥ 0, (a + b)
1
2 ≤ a

1
2 + b

1
2 ; thus (16) implies that

‖u(·, t)‖2
1 ≤ C(t + 1) + C(t + 1)

1
2 ‖u(·, t)‖1+ p

2
1 . (17)

The advertised inequality now follows from the latter inequality by applying the
next, elementary lemma which may be found, for example, in [17].

Lemma 2.2. Let P, Q and β < 2 be positive numbers. If Y ≥ 0 satisfies

Y 2 ≤ PY β + Q,

then Y is bounded in terms of P, Q and β, and in fact

Y ≤ max
{

(2P )
1

2−β , (2Q)
1
2

}

.

2.2. The KdV equation. Consideration is now given to determining the growth
rates for solutions of the IBVP

ut + ux + upux + uxxx = 0 for x, t ≥ 0, (18)

with

u(x, 0) = f(x) for x ≥ 0,

u(0, t) = g(t) for t ≥ 0 (19)

for the generalized KdV equation. Just as for the BBM equation, the consistency
condition (9) will be presumed. As needed for regularity, higher-order consistency
conditions will also be assumed (see [13]).

Multiplying equation (18) by 2u(x, t) and integrating over R
+ × [0, t], there ob-

tains

‖u(·, t)‖2 +

∫ t

0

u2
x(0, τ)dτ

= ‖f‖2 +

∫ t

0

[

g2 + 2guxx(0, τ) +
2

p + 2
gp+2

]

dτ (20)

after integrations by parts. Next, multiply (18) by the combination 2uxx + 2
p+1up+1

and integrate to arrive at the relation

‖ux(·, t)‖2 +

∫ t

0

u2
x(0, τ)dτ +

∫ t

0

[

uxx(0, τ) +
1

p + 1
gp+1

]2

dτ

= ‖f ′‖2 +
2

(p + 1)(p + 2)

∫ ∞

0

up+2 dx − 2

(p + 1)(p + 2)

∫ ∞

0

fp+2 dx

−
∫ t

0

[ 2

(p + 1)(p + 2)
gp+2 + 2g′(τ)ux(0, τ)

]

dτ. (21)

Theorem 2.3. Let f ∈ H1(R+) and let g ∈ C1(R+) satisfy
∫ t

0

g(τ)2dτ = O(t) and

∫ t

0

g′(τ)2dτ = O(t)

as t → ∞. Then, for 0 ≤ p < 4
3 , the IBVP (18)-(19) satisfies the global bounds

‖u(·, t)‖ = O
(

t
4−p

2(4−3p)

)

and ‖ux(·, t)‖ = O
(

t
p+4

2(4−3p)

)
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as t → ∞, where the constants implied depend on ‖f‖1 and on the constants implied
in the assumptions on g. In particular these conclusions for p = 1 amount to

‖u(·, t)‖ = O
(

t
3
2

)

and ‖ux(·, t)‖ = O
(

t
5
2

)

as t → ∞.

Remark. As for Theorem 2.1, the case p = 0 is the linear KdV equation. The
hypotheses on g are valid for any smooth periodic or almost periodic boundary
forcing.

Proof. Applying the Cauchy-Schwartz inequality to (20) yields

‖u(·, t)‖2 ≤ ‖f‖2 +

∫ t

0

[

g2 +
2

p + 2
gp+2

]

dτ + 2

(
∫ t

0

g2dτ

)

1
2
(
∫ t

0

u2
xx(0, τ)dτ

)

1
2

≤ C2(t + 1) + C3(t + 1)
1
2

(∫ t

0

u2
xx(0, τ)dτ

)

1
2

. (22)

It then follows that for all t > 0,
∣

∣

∣

∣

∫ ∞

0

up+2dx

∣

∣

∣

∣

≤
√

2‖u(·, t)‖2+ p
2 ‖ux(·, t)‖ p

2

≤ C

[

(t + 1) + (t + 1)
1
2

(
∫ t

0

u2
xx(0, τ)dτ

)

1
2

]1+ p
4

‖ux(·, t)‖ p
2 .

Inserting this estimate into (21), there appears the inequality

‖ux(·, t)‖2 +

∫ t

0

u2
xx(0, τ)dτ ≤ C4(t + 1)

+ C

[

(t + 1) + (t + 1)
1
2

(∫ t

0

u2
xx(0, τ)dτ

)

1
2

]1+ p
4

‖ux(·, t)‖ p
2 (23)

valid for all t > 0. It is convenient to write

X(t) = ‖ux(·, t)‖ and Y 2(t) =

∫ t

0

u2
xx(0, τ)dτ.

With this notation, (23) becomes

X2 + Y 2 ≤ C(t + 1) + C
[

(t + 1) + (t + 1)
1
2 Y
]1+ p

4

X
p
2

where the constants only depend on ‖f‖1 and the constants implied by the assump-
tions on g. For µ ≥ 0, q > 1 and r > 1, Young’s inequality insures that

X2 + Y 2 ≤ C4(t + 1) + C8(t + 1)q(1+ p
4−µ)

+ C6(t + 1)µrX
pr
2 + C9(t + 1)q( 1

2+ p
8−µ)Y q(1+ p

4 ). (24)

We need the following, more general version of Lemma 2.2

Lemma 2.4. Let α < 2, β < 2, P1, P2 and Q be nonnegative numbers. If X ≥ 0
and Y ≥ 0 satisfy

X2 + Y 2 ≤ P1X
α + P2Y

β + Q,

then

max{X, Y } ≤ max
{

√

2Q, (2P1 + 2P2)
1

2−max{α,β}
}

.
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Applying Lemma 2.4 to the inequality (24), it is determined that X(t) and Y (t)
are bounded above by

max

{

[

(t + 1) + (t + 1)q(1+ p
4−µ)

]
1
2

,

[

(t + 1)µr + (t + 1)q( 1
2+ p

8−µ)
]

1
2−max{(1+p/4)q,pr/2}

}

.

If µ, q and r are chosen to be

µ =
p(p + 4)

4(4 + 3p)
, q =

4 + 3p

4 + p
, r =

4 + 3p

2p
,

then for p < 4
3 ,

X(t) + Y (t) ≤ C(t + 1)
p+4

2(4−3p) ,

which is to say that for p < 4
3 ,

‖ux(·, t)‖ ≤ C(t + 1)
p+4

2(4−3p) and

∫ t

0

u2
xx(0, τ)dτ ≤ C(t + 1)

p+4
2(4−3p) . (25)

In particular, if p = 1,

‖ux(·, t)‖ ≤ C(t + 1)
5
2 .

Inserting (25) into (22), there obtains

‖u(·, t)‖ ≤ C(t + 1)
4−p

2(4−3p) ,

which specializes to ‖u(·, t)‖ ≤ C(t + 1)
3
2 for p = 1. This completes the proof of

Theorem 2.3.

2.3. The BBM-Burgers equation. Attention is now given to situations where
a Burgers-type damping is featured in addition to nonlinearity and dispersion. We
start with the IBVP

ut + ux + upux − νuxx − uxxt = 0 for x, t ≥ 0, (26)

with
u(x, 0) = f(x) for x ≥ 0,

u(0, t) = g(t) for t ≥ 0 (27)

for the BBM-Burgers equation.

Energy-type methods are used to derive three equalities. These results are the

key to our further ruminations. Multiplying (26) by 2u, uxx and 2
(

up+1

p+1 − uxt

)

,

respectively, and integrating over R
+ × [0, t], we obtain after integrations by parts

that
∫ ∞

0

(u2 +u2
x)dx+2ν

∫ t

0

∫ ∞

0

u2
xdxdτ =

∫ ∞

0

(f2 + f2
x)dx− 2g(t)ux(0, t)+2g(0)f ′(0)

+

∫ t

0

[

2

p + 2
gp+2 + g2 − 2νgux(0, τ) + 2g′ux(0, τ)

]

dτ, (28)

‖ux(·, t)‖2 + ‖uxx(·, t)‖2 + 2ν

∫ t

0

‖uxx(·, τ)‖2dτ + 2

∫ t

0

u2
x(0, τ)dτ

= ‖fx‖2 + ‖fxx‖2

−
∫ t

0

∫ ∞

0

pup−1u3
x dxdτ −

∫ t

0

[2g′ux(0, τ) − gpu2
x(0, τ)]dτ (29)
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and

(1 + ν)‖ux(·, t)‖2 + νu2
x(0, t) +

∫ t

0

(

1

p + 1
gp+1 − uxt(0, τ)

)2

dτ

= (1+ν)‖fx‖2+νu2
x(0, 0)+2ν

∫ t

0

∫ ∞

0

upu2
x dxdτ+

2

(p + 1)(p + 2)

∫ ∞

0

(up+2−fp+2)dx

+

∫ t

0

[

(g′)2 − 2

(p + 1)(p + 2)
gp+2 +

2ν

p + 1
gp+1ux(0, τ)

]

dτ. (30)

Prior to this work, estimates obtained indicated exponential growth rates (see
e.g. [7]); these are here considerably improved, though they are not in line with the
associated linear theory.

Theorem 2.5. Assume that f ∈ H2(R+) and g ∈ C1(R+) and suppose |g(t)| ≤ 1
for all t ≥ 0. If there exists a constant C0 such that g satisfies

∫ t

0

g′(τ)2dτ < C0t

for t ≥ 0, then, for 0 ≤ p < 3
2 , the solution u of the IBVP (26)-(27) with auxiliary

data f and g has the properties

‖u(·, t)‖ ≤ C1(t+1)
3

2(3−2p) , ‖ux(·, t)‖ ≤ C1(t+1)
2p+3

2(3−2p) , ‖uxx(·, t)‖ ≤ C1(t+1)
2p+3

2(3−2p) ,

where C1 is a constant depending only on ‖f‖2 and C0. In particular, for p = 1,

‖u(·, t)‖ ≤ C1(t + 1)
3
2 , ‖ux(·, t)‖ ≤ C1(t + 1)

5
2 , ‖uxx(·, t)‖ ≤ C1(t + 1)

5
2 .

Remark. For the linearized BBM-Burgers equation, the growth rate of the H2(R+)-
norm is optimal. That is, when f and g satisfy the conditions of Theorem 2.5, the
corresponding solution u of the linear BBM-Burgers equation satisfies

‖u(·, t)‖ ≤ C(t + 1)
1
2 , ‖ux(·, t)‖ ≤ C(t + 1)

1
2 , ‖uxx(·, t)‖ ≤ C(t + 1)

1
2 .

Proof of Theorem 2.5. First, note that since |g(t)| ≤ 1 for all t ≥ 0, it follows that
∫ t

0

g2(t)dt ≤ t and

∫ t

0

gp+2(t)dt ≤ t

for all t ≥ 0. Inserting the simple estimates

−2g(t)ux(0, t) ≤ 2|g(t)|‖ux(·, t)‖L∞ ≤ 2
3
2 |g(t)|‖ux(·, t)‖ 1

2 ‖uxx(·, t)‖ 1
2

and
∫ t

0

[

2

p + 2
gp+2 + g2 − 2νgux(0, τ) + 2g′ux(0, τ)

]

dτ

≤ p + 4

p + 2
t + 2(ν + C0)t

1
2

(∫ t

0

u2
x(0, τ)dτ

)

1
2

into (28), there obtains

‖u(·, t)‖2 + ‖ux(·, t)‖2 + 2ν

∫ t

0

∫ ∞

0

u2
x(x, τ)dxdτ (31)

≤ C(t + 1) + 2
3
2 ‖ux(·, t)‖ 1

2 ‖uxx(·, t)‖ 1
2 + C′t

1
2

(∫ t

0

u2
x(0, τ)dτ

)

1
2

.
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The constant C depends on ‖f‖1 while C′ depends on ν and C0. Since |g(t)| ≤ 1,
it follows from (29) that

‖ux(·, t)‖2 + ‖uxx(·, t)‖2 + 2 ν

∫ t

0

‖uxx(·, τ)‖2dτ +
1

2

∫ t

0

u2
x(0, τ)dτ ≤ C′′(t + 1)

+
√

2p sup
0≤s≤t

{

‖u(·, s)‖ p−1
2 ‖ux(·, s)‖ p

2 ‖uxx(·, s)‖ 1
2

}

∫ t

0

∫ ∞

0

u2
x(x, τ)dxdτ

where C depends on ‖f‖2 and C0. Using the bounds in (31), the latter inequality
can be extended to

‖ux(·, t)‖2 + ‖uxx(·, t)‖2 + 2 ν

∫ t

0

‖uxx(·, τ)‖2dτ +
1

2

∫ t

0

u2
x(0, τ)dτ

≤ C′′(t + 1) +
1

2ν
sup

0≤s≤t
‖uxx(·, s)‖ 1

2

×
[

C(t + 1) + 2
3
2 sup

0≤s≤t
‖ux(·, s)‖ 1

2 ‖uxx(·, s)‖ 1
2 + C′t

1
2

(∫ t

0

u2
x(0, τ)dτ

)

1
2

]

2p+3
4

.

The simple inequality (a + b)p ≤ 2p−1(ap + bp), which holds for a ≥ 0, b ≥ 0 and
p ≥ 1, allows us to infer further that

‖ux(·, t)‖2 + ‖uxx(·, t)‖2 + 2 ν

∫ t

0

‖uxx(·, τ)‖2dτ +
1

2

∫ t

0

u2
x(0, τ)dτ

≤ C′′(t+1)+C′′′(t+1)
2p+3

4 sup
0≤s≤t

‖uxx(·, s)‖ 1
2 +C1 sup

0≤s≤t
‖ux(·, s)‖ 2p+3

8 ‖uxx(·, s)‖ 2p+7
8

+Civt
2p+3

8

(∫ t

0

u2
x(0, τ)dτ

)

2p+3
8

sup
0≤s≤t

‖uxx(·, s)‖ 1
2 .

Here, C′′, C′′′ and Civ depend upon C0 and ‖f‖2, but C1 is a constant depending
only on ν−1. By Young’s inequality, for p < 3

2 ,

‖ux(·, t)‖2 + ‖uxx(·, t)‖2 + 2 ν

∫ t

0

‖uxx(·, τ)‖2dτ +
1

2

∫ t

0

u2
x(0, τ)dτ

≤
[

C′′(t + 1) + Cv(t + 1)
2p+3

3 +
1

4
sup

0≤s≤t
‖uxx(·, s)‖2

]

+
[

C2 +
1

2
sup

0≤s≤t
‖ux(·, s)‖2 +

1

4
Cv sup

0≤s≤t
‖uxx(·, s)‖2

]

+
[

Cvi(t + 1)
2p+3
3−2p +

1

4
sup

0≤s≤t
‖uxx(·, s)‖2 +

1

4

∫ t

0

u2
x(0, τ)dτ

]

.

The constants Cv and Cvi depend on C0 and on ‖f‖2, while C2 depends only on
ν−1 and p. If we let

M(t) = sup
0≤s≤t

‖ux(·, s)‖2 + sup
0≤s≤t

‖uxx(·, s)‖2,

then since the right-hand side of the last inequality is increasing with t, it follows
that

M(t) + 2ν

∫ t

0

‖uxx(·, τ)‖2dτ +
1

2

∫ t

0

u2
x(0, τ)dτ

≤ Cvi(t + 1)
2p+3

3 +
1

2
M(t) +

1

4

∫ t

0

u2
x(0, τ)dτ,
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from which it is deduced that, for all t ≥ 0,

‖ux(·, t)‖2 + ‖uxx(·, t)‖2 + 4ν

∫ t

0

‖uxx(·, τ)‖2dτ +
1

2

∫ t

0

u2
x(0, τ)dτ

≤C(t + 1)
2p+3
3−2p ,

which is to say,

‖ux(·, t)‖ ≤ C(t + 1)
2p+3

2(3−2p) , ‖uxx(·, t)‖ ≤ C(t + 1)
2p+3

2(3−2p) ,
∫ t

0

‖uxx(·, τ)‖2dτ ≤ C(t + 1)
2p+3
3−2p ,

∫ t

0

u2
x(0, τ)dτ ≤ C(t + 1)

2p+3
3−2p .

Using the inequality 2‖ux‖
1
2 ‖uxx‖

1
2 ≤ ‖ux‖ + ‖uxx‖ in (31), there obtains

‖u(·, t)‖2 ≤ C(t + 1) +
√

2‖ux(·, t)‖ +
√

2‖uxx(·, t)‖ + C′t
1
2

(∫ t

0

u2
x(0, τ)dτ

)

1
2

which certainly implies that

‖u(·, t)‖ ≤ C(t + 1)
3

2(3−2p) .

Combining these inequalities gives immediately that

‖u(·, t)‖L∞ ≤ C(t + 1)
p+3

2(3−2p) .

2.4. The KdV-Burgers equation. Attention is turned to the IBVP for the gen-
eralized KdV-Burgers equation

ut + ux + upux − νuxx + uxxx = 0 for x, t ≥ 0, (32)

with
u(x, 0) = f(x) for x ≥ 0,
u(0, t) = g(t) for t ≥ 0.

(33)

Multiplying the equation by 2u and by 2uxx+ 2
p+1up+1, respectively, and integrating

over R
+ × [0, t] leads to

‖u(·, t)‖2 + 2ν

∫ t

0

∫ ∞

0

u2
x dxdτ +

∫ t

0

u2
x(0, τ)dτ (34)

= ‖f‖2 +

∫ t

0

[

2

p + 2
gp+2 + g2 − 2νgux(0, τ) + 2guxx(0, τ)

]

dτ

and

‖ux(·, t)‖2 + 2ν

∫ t

0

∫ ∞

0

u2
xx dxdτ +

∫ t

0

u2
x(0, τ)dτ +

∫ t

0

[

uxx(0, τ) +
1

p + 1
gp+1

]2

dτ

= ‖f ′‖2 +
2

(p + 1)(p + 2)

∫ ∞

0

up+2 dx − 2

(p + 1)(p + 2)

∫ ∞

0

fp+2 dx

+2ν

∫ t

0

∫ ∞

0

upu2
x dxdτ

−
∫ t

0

[ 2

(p + 1)(p + 2)
gp+2 − 2ν

p + 1
gp+1ux(0, τ) + 2g′(τ)ux(0, τ)

]

dτ. (35)
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It is found that solutions of the generalized KdV-Burgers equation possess alge-
braic growth bounds.

Theorem 2.6. Let f ∈ H1(R+) and g ∈ C1(R+). Suppose that 0 ≤ p < 4
3 and

that there exists a constant C0 such that
∫ t

0

g(τ)2dτ ≤ C0t,

∫ t

0

g′(τ)2dτ ≤ C0t,

∫ t

0

g(τ)2p+2dτ ≤ C0t

for t ≥ 0. Then the associated solution u of the IBVP (32)-(33) has temporal growth
bounded above as follows:

‖u(·, t)‖ ≤ C(t + 1)
4−p
8−6p , ‖ux(·, t)‖ ≤ C(t + 1)

p+4
4−3p . (36)

In particular, if p = 1,

‖u(·, t)‖ ≤ C(t + 1)
3
2 , ‖ux(·, t)‖ ≤ C(t + 1)

5
2 .

The constant C depends only on C0 and ‖f‖1.

Proof. After inserting the inequalities
∫ ∞

0

∣

∣up+2
∣

∣ dx ≤
√

2‖u(·, t)‖2+ p
2 ‖ux(·, t)‖ p

2

and

2ν

∫ t

0

∫ ∞

0

|u|pu2
x dxdτ ≤ 2 max

0≤s≤t
‖u(·, s)‖p

L∞

[

ν

∫ t

0

∫ ∞

0

u2
x dxdτ

]

in (35) and applying some straightforward estimates, we obtain

‖ux(·, t)‖2 +

∫ t

0

u2
xx(0, τ)dτ ≤ C(t + 1)

+C

[

[(t + 1) + (t + 1)
1
2

(∫ t

0

u2
xx(0, τ)dτ

)

1
2

]1+ p
4

‖ux(·, t)‖ p
2 .

This estimate is similar to those obtained in (23); the inequality (36) follows imme-

diately.

3. Eventual periodicity. Our goal in this section is to demonstrate that solutions
of the linearized versions of the equations under consideration are eventually peri-
odic if the boundary data g is periodic. At the outset, it is interesting to consider
again the first-order linear wave equation

ut + ux = 0, for x, t ≥ 0,

with the initial and boundary conditions

u(x, 0) = f(x) for x ≥ 0, u(0, t) = g(t) for t ≥ 0.

Its solution is indeed eventually periodic if g is periodic. In fact,

u(x, t) = g̃(t − x),

where

g̃(z) =

{

g(z) if z ≥ 0,
f(−z) if z ≤ 0.

The function g̃ is continuous on account of the consistency condition (9). If x = x0

is fixed, then for t > x0, u(x0, t) = g(t − x0) is exactly periodic.
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In this section, we study in detail the eventual periodicity properties for the more
complex problems presented by the linear IBVP for the BBM-Burgers equation, the
KdV-Burgers equation, and also for their non-dissipative counterparts.

3.1. The linear BBM-Burgers equation. We start with the linear BBM-Burgers
equation

ut + ux − uxxt − νuxx = 0 for x, t ≥ 0 (37)

with ν > 0 and

u(x, 0) = f(x) for x ≥ 0, u(0, t) = g(t) for t ≥ 0. (38)

Assume that g is periodic so that for some T > 0,

g(T + t) = g(t) for any t ≥ 0.

It is our aim to show that any solution of IBVP (37)-(38) is eventually periodic of
the same period, which is to say

‖u(·, T + t) − u(·, t)‖L∞ → 0, as t → ∞. (39)

To proceed, consider a new function v(x, t) = u(x, T + t) − u(x, t) which satisfies

vt + vx − vxxt − νvxx = 0 for x, t ≥ 0,
v(x, 0) = u(x, T ) − f(x) = F (x) for x ≥ 0,
v(0, t) = 0 for t ≥ 0.

(40)

Then (39) is equivalent to

‖v(·, t)‖L∞ → 0, as t → ∞. (41)

Of course, the function F depends both explicitly and implicitly on f and on g(t),
0 ≤ t ≤ T . By the well-posedness theory for this problem (see [7]), if f ∈ H2(R+),
say, and g ∈ C1(R+), then u(·, T ) lies in H2(R+) and hence so does F .

Theorem 3.1. Let v be the solution of (40). Then, it follows that

(a) ‖v(·, t)‖1 ≤ ‖F‖1, |v(x, t)| ≤ ‖F‖1 for all x, t ∈ R
+;

(b) vx ∈ L2(R
+ × R

+), vxx ∈ L2(R
+ × R

+);

(c) ‖vx(·, t)‖, ‖vxx(·, t)‖, ‖v(·, t)‖L∞ → 0 as t → ∞.

In consequence, the solution u of (37)-(38) with g periodic of period T is eventually
periodic of period T .

Proof. Multiply the equation by 2v(x, t) and integrate over R
+ × [0, t]. Integration

by parts and use of the zero boundary condition lead to

‖v(·, t)‖2
1 + 2ν

∫ t

0

∫ ∞

0

v2
x dx dτ = ‖F‖2

1.

This time-independent bound implies (a) and the first part of (b). To complete
the proof, multiply the equation by 2vxx and integrate over R

+ to obtain, after
integration by parts, the exact relation

d

dt

∫ ∞

0

[

v2
x + v2

xx

]

dx = −2ν

∫ ∞

0

v2
xxdx − v2

x(0, t). (42)

Integrate (42) over the temporal interval [0, t], thereby reaching the relation
∫ ∞

0

[

v2
x + v2

xx

]

dx + 2ν

∫ t

0

∫ ∞

0

v2
xx dxdτ +

∫ t

0

v2
x(0, τ)dτ =

∫ ∞

0

[

F 2
x + F 2

xx

]

dx,



1154 JERRY L. BONA AND JIAHONG WU

which implies that

vxx ∈ L2(R
+ × R

+) and v2
x(0, t) ∈ L1(R

+).

Returning to (42), the quantity

V (t) ≡
∫ ∞

0

[

v2
x + v2

xx

]

dx (43)

is determined to be decreasing and is obviously bounded below, hence it approaches
a limit as t → ∞. The limit must be zero since V lies in L1(0,∞). That is,
‖vx(·, t)‖, ‖vxx(·, t)‖ → 0 as t → ∞. Indeed, since V ≥ 0 is a decreasing L1-
function, we must have that

V (t) ≤ max

{

V (0),
1

t
‖V ‖L1(R+)

}

≤ C

t + 1

for t ≥ 0, where C = max{V (0), 2‖V ‖L1(R+)}, say.

It then follows from part (a) that

‖v(·, t)‖2
L∞ ≤ ‖v(·, t)‖‖vx(·, t)‖ ≤ ‖F‖‖vx(·, t)‖,

whence,

‖v(·, t)‖L∞ → 0 as t → ∞,

as advertised. (Indeed, it follows that ‖v(·, t)‖L∞ ≤ C t−1/4 as t → ∞). Thus, the
solution u of the linear equation is eventually periodic of period T .

3.2. The linear KdV-Burgers equation. Attention is now given to the linear
KdV-Burgers equation

ut + ux + uxxx − νuxx = 0 (44)

with

u(x, 0) = f(x) for x ≥ 0, u(0, t) = g(t) for t ≥ 0. (45)

We show that its solution is eventually periodic if g is periodic. The approach is,
as for the BBM-Burgers equation, to consider the function

v(x, t) = u(x, t + T ) − u(x, t). (46)

One easily verifies that v solves

vt + vx + vxxx − νvxx = 0

with

v(x, 0) = u(x, T )− f(x) = F (x) and v(0, t) = 0.

Theorem 3.2. Suppose to be given an initial datum f ∈ H1(R+) and boundary data
g ∈ C1(R+) which is periodic of period T > 0. Let u be the solution of (44)-(45)
and let v be as defined in (46). Then v satisfies

(a) ‖v(·, t)‖1 ≤ ‖F‖, vx, vxx ∈ L2(R
+ × R

+),

(b) ‖vx(·, t)‖, ‖v(·, t)‖L∞ → 0 as t → ∞.

Thus the solution u is eventually periodic of period T .

This theorem can be proven in a the same fashion as was Theorem 3.1. The
details are therefore omitted.
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3.3. The Linear KdV equation. Attention is now turned to a more complex
issue, which is the same problem as considered in the previous subsection, but with
ν = 0, thus, the issue is eventual periodicity without the aid of a dissipative term.
The simple energy-type analysis effected in the previous two subsections appears to
have little chance of success without a sink for energy. Indeed, the solution of the
IBVP for the linear KdV-equation

ut + ux + uxxx = 0 for x, t ≥ 0 (47)

with

u(x, 0) = f(x) for x ≥ 0, u(0, t) = g(t) for t ≥ 0, (48)

is expected to possess infinite energy in the limit as t → ∞. This is because energy
is being continually supplied and in the absence of dissipation there is no obvious
mechanism for its reduction. (There is, however, a subtle damping effect associated
with the implementation of a boundary condition at x = 0. This is explained in [10]
and [11], for example, and its ramifications appear in the present analysis.) Thus an
analysis leading to some kind of eventual periodicity will have to be more involved.
It will be shown that in a weaker sense, eventual periodicity still obtains.

We will study the special case wherein the initial configuration f is zero. This
corresponds to a semi-infinite stretch of the medium of propagation being at rest,
and then disturbed by periodic input at one end. The case where f 6= 0 can also
be handled, but the ideas are clearer if the medium is initially at rest.

As the solution of (47) is defined in the quarter plane R
+ × R

+, it is natural to
think of using the Laplace transform as in [10]. In the proof of the following theorem,
the linear KdV equation is solved using the Laplace transform with respect to the
temporal variable. The resulting representation of the solution allows one to deduce
eventual periodicity.

Theorem 3.3. Suppose g ∈ C1(R+) to be periodic of period T > 0. Then the
solution u of the IBVP (47)-(48) is eventually periodic in the sense that

u(·, t + T ) − u(·, t) → 0

as t → ∞, uniformly on compact subsets of (0,∞).

Proof. An explicit representation of solutions of the linear KdV equation (47) is
derived via the Laplace transform. Let v(x, σ) denote the Laplace transform of
u(x, t) in the temporal variable, which is to say,

v(x, σ) = L(u)(x, σ) =

∫ ∞

0

e−σtu(x, t)dt.

The original function u can be recovered from v through the inverse Laplace trans-
form

u(x, t) =
1

2π i
lim

L→∞

∫ b+iL

b−iL

eσtv(x, σ)dσ.

(This formula holds for any b > 0 since v is analytic in the right-half plane.) Taking
the Laplace transform with respect to t of (47) and remembering the auxiliary
condition (48), the IBVP (47)-(48) is converted into a one-parameter family of
third-order boundary value problems, viz.

σv + vx + vxxx = 0
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with boundedness conditions as x → ∞ and with

v(0, σ) = G(σ)

where G(σ) denotes the Laplace transform of g(t). Solving this equation leads to

v(x, σ) = eR(σ)xG(σ)

where R(σ) is the unique solution of

σ + R + R3 = 0

whose real-part is non-positive. Through the inverse Laplace transform, u is then
given formally by

u(x, t) =
1

2πi

∫ b+∞ i

b−∞ i

eσt
[

eR(σ)xG(σ)
]

dσ (49)

for x, t ≥ 0 and any fixed b > 0. In fact, as (49) does not depend on b > 0, we
can contemplate the limit as b → 0. It is straightforward to see that this latter
limit exists as a convergent integral, so we may take b = 0, which makes the further
calculations easier (see again [10]). Elementary manipulations with these integrals
allows one to write this last representation in the alternative form

u(x, t) =

∫ t

0

g(t − s)M(x, s)ds

where

M(x, s) =
1

2π

∫ ∞

−∞
eiys+r(y)xdy (50)

with r(y) = R(iy). It will be shown presently that the kernel M has the property
that corresponding to any compact set [α, A] where 0 < α < A < ∞, there is a
constant C = C(α, A) such that

|M(x, t)| ≤ C

t3/2
. (51)

Similar estimates hold for ∂j
xM(x, t) for j = 1, 2, · · · .

Consider now the function

u(x, t + T ) − u(x, t) =

∫ t+T

0

g(t + T − s)M(x, s)ds −
∫ t

0

g(t − s)M(x, s)ds

=

∫ t+T

t

g(t − s)M(x, s)ds,

for x > 0, where we have used the periodicity of g. For fixed α > 0 and A < ∞,
the inequality (51) implies that

sup
α≤x≤A

|u(x, t + T ) − u(x, t)| ≤ ‖g‖L∞T
C

t3/2

from which it is clear that u is eventually periodic, uniformly on compact subsets
of (0,∞).

Corollary 3.4. Under the hypotheses of Theorem 3.3, the solution u of (47)-(48)
converges as t → ∞ to a function u∞(x, t) which is a strictly periodic function of t
of period T , and which takes on the boundary value g at x = 0.
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Proof. Define, for n = 0, 1, 2, · · · ,

un(x, t) = u(x, t + nT ).

Fix constants α and A with 0 < α < A < +∞. We claim that {un}∞0 is a Cauchy
sequence in X = Cb([α, A] × [0,∞)). In fact, as above, there is a constant C
depending on α and A such that for any s ≥ 0,

sup
x∈[α,A]

|un+1(x, s) − un(x, s)| ≤ ‖g‖∞TC

(nT )3/2
=

C′

n3/2
.

Thus there is a constant C independent of u such that

‖un+1 − un‖X ≤ C

n3/2
.

It follows that
∞
∑

n=1

‖un+1 − un‖X < ∞,

from which one concludes immediately that {un}∞1 is a Cauchy sequence in X since,
if n > m, then

‖un − um‖X ≤
n−1
∑

k=m

‖uk+1 − uk‖X ≤ C′
n−1
∑

k=m

1

k3/2
≤ C′′

m1/2
.

Let

u∞ = lim
n→∞

un.

The function u∞ is periodic of period T because

|u∞(x, t + T ) − u∞(x, t)| ≤ |u∞(x, t + T ) − un+1(x, t)| + |un+1(x, t) − u∞(x, t)|
= |u∞(x, t + T ) − un(x, t + T )| + |un+1(x, t) − u∞(x, t)| → 0,

as n → ∞. This function is defined for [α, A] × [0,∞) for arbitrary fixed α and
A. One easily obtains a globally defined function on R

+ × R
+ using these local

functions and the uniqueness part of the well-posedness theory.

Finally it is shown that for α ≤ x ≤ A,

|u(x, t) − u∞(x, t)| ≤ C′′

t1/2

where C′′ depends on α, A and T . To see this, argue as follows. As u = u0, we may
write

u(x, t) − uk(x, t) =

k−1
∑

n=0

(

un(x, t) − un+1(x, t)
)

.

It thus transpires that

|u(x, t) − uk(x, t)| ≤
k−1
∑

n=0

|un(x, t) − un+1(x, t)|

≤
∞
∑

n=0

‖g‖∞TC

(t + nT )3/2
≤ C′

t1/2
.

Similar arguments applied to

∂j
xu∗ =

∫ t

0

∂j
xM(x, s) g(t − s)ds
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show that the sequence {un}∞n=0 is in fact Cauchy in Ck
b ([α, A] × [0,∞)) for any k

and that
∣

∣∂j
xu(x, t) − ∂j

xu∞(x, t)
∣

∣ ≤ Cj

t1/2

for a constant Cj depending on j, α, T , A and ‖g‖L∞(R+). It follows that u and u∞
are C∞-functions on (0,∞) × (0,∞) and that u∞ solves the linear KdV equation.
Thus u∞ is, as advertised, a T -periodic solution of the evolution equation whose
boundary trace at x = 0 is g.

Attention is now given over to the verification that the kernel M has the requisite
properties used in the above analysis.

Lemma 3.5. For any fixed j ∈ N and 0 < α < A < +∞, there is a constant
Cj = Cj(α, A) for which the kernel

M(x, t) =
1

2π

∫ ∞

−∞
eiλt er(λ)xdλ

has the property

|∂j
x M(x, t)| ≤ Cj

t3/2
(52)

for all t > 0.

Proof. Consider first the case j = 0. Integration by parts once results in

M(x, t) =
ix

2πt

∫ ∞

−∞
eiy ter(y)xr′(y)dy. (53)

Here, we have used the fact that r(y) has negative real part for large values of y
and that x ∈ [α, A] to eliminate the boundary terms. It follows that

|M(x, t)| ≤ C

t
,

uniformly for x ∈ [α, A]. Further progress depends on analyzing the integral in (53).
Break it into three parts, viz.

I + II + III =
∫ − 2

3
√

3

−∞
eiyter(y)x r′(y)dy +

∫ 2
3
√

3

− 2
3
√

3

eiyter(y)x r′(y)dy +

∫ ∞

2
3
√

3

eiyter(y)x r′(y)dy

where r(y) = s(y)+ i τ(y) has a negative or zero real part. One determines straight-
forwardly that

s = −
√

3τ2 − 1, 8 τ3 − 2τ + y = 0 if y ∈
(

−∞,− 2
3
√

3

]

, where τ ≥ 1√
3

;

s = 0, τ3 − τ − y = 0 if y ∈
[

− 2
3
√

3
, 2

3
√

3

]

, where τ ∈
[

− 1√
3
, 1√

3

]

;

s = −
√

3τ2 − 1, 8 τ3 − 2τ + y = 0 if y ∈
[

2
3
√

3
,∞
)

, where τ ≤ − 1√
3
.

Consider the second term and make the change of variables

y = z3 − z, z ∈
[

− 1√
3
,

1√
3

]

.

Noticing that y is a monotonic function of z whenever −1/
√

3 ≤ z ≤ 1/
√

3, we have

τ(z) = z, τ ′(y) =
1

3τ2 − 1
=

1

3z2 − 1
, dy = (3z2 − 1)dz,
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whence, as an integral in the z−variable,

II =

∫ 1√
3

− 1√
3

ei(z3−z)teizxdz.

Break up this integral further by integrating over [− 1√
3
, 0] and [0, 1√

3
] separately;

II = II1 + II2 =

∫ 0

− 1√
3

e−ip(z)tq(z)dz +

∫ 1√
3

0

eip(z)tq(z)dz

with

p(z) = −z3 + z and q(z) = eizx.

It then follows from the theory of stationary phase (Theorem A.1) that

II1 ∼
√√

3π e
−i( π

4 + x√
3
− 2t

3
√

3
)

2
√

t
(54)

as t → ∞. Details leading to this asymptotic approximation are provided in the
Appendix. Similarly,

II2 ∼ O
( 1√

t

)

as t → ∞.

Since I and III are virtually the same, it suffices to consider I. Make the change
of variable

y = −8z3 + 2z, for z ∈
[ 1√

3
,∞
)

.

For z in this range, y is a monotonic function of z. Correspondingly,

τ(z) = z, r(z) = s(z) + iτ(z) = −
√

3z2 − 1 + iz,

r′(y) = r′(z)
dz

dy
=
(

i − 3z√
3z2 − 1

)dz

dy
.

Therefore,

I =

∫ ∞

1√
3

e(−i)(8z3−2z)t e(−
√

3z2−1+iz)x
( 3z√

3z2 − 1
− i
)

dz. (55)

As in the Appendix, one concludes that

I ∼
√

π e
−i( π

4 − x√
3
+ 2t

3
√

3
)

2
√

2t
(56)

as t → ∞. The lemma is thereby established.

3.4. The linear BBM equation. Consider the IBVP

ut + ux − uxxt = 0 for x, t ≥ 0,
u(x, 0) = 0 and u(0, t) = g(t)

(57)

for the linear BBM equation. The approach to proving that u is eventually periodic
is similar to that in the previous subsection. Taking the Laplace transform with
respect to t and using the initial and boundary condition, there appears

σv + v′ − σv′′ = 0

with

v(0, σ) = G(σ), v(∞, σ) = 0
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where G(σ) is, as before, the Laplace transform of g in the temporal variable.
Solving this ordinary differential equation, we find that

v(x, σ) = G(σ)eR(σ) x,

where R(σ) solves the equation

σ R2 − R − σ = 0.

It is propitious to write v in the form

v(x, σ) = G(σ)
[

eR(σ) x − e−x
]

+ G(σ) e−x.

Applying the inverse Laplace transform to this formula yields

u(x, t) = g(t) e−x +

∫ t

0

M(x, s) g(t − s)ds

where

M(x, t) =
1

2π i

∫ i∞

−i∞
eσt
[

eR(σ)x − e−x
]

dσ. (58)

As for the linear KdV equation, it is the case that for 0 < α < A < ∞, there are
constants Cj , j = 0, 1, 2, · · · , such that

∣

∣∂j
x M(x, t)

∣

∣ ≤ Cj

t3/2
(59)

for t > 0 and uniformly for x ∈ [α, A]. To this end, substitute σ = iy in (58) to
obtain

M(x, t) =
1

2πi

∫ i∞

−i∞
eiyt

[

er(y)x − e−x
]

dy

=
1

2π

∫ ∞

−∞
eiytΛ(y, x)dy

where r(y) = R(iy). Notice that Λ(y, x) ≡ er(y)x−e−x ∼ cx/y2 as y → ±∞, so this
integral exists as a Lebesgue integral or as an improper Riemann integral, uniformly
for x on bounded sets. An integration by parts reveals that

M(x, t) =
x

2πt

∫ ∞

−∞
eiyt er(y)xr′(y)dy.

We are interested in the behavior as t → ∞ of the integral in the last formula.
The standard methods of asymptotic analysis will come to our rescue after some
preliminary machinations. Break the integral into three parts, viz.

I + II + III

=

∫ − 1
2

−∞
eiyt er(y)xr′(y)dy +

∫ 1
2

− 1
2

eiyt er(y)xr′(y)dy +

∫ ∞

1
2

eiyt er(y)xr′(y)dy. (60)
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Here, r(y) is the root of the equation iyr2 − r − iy = 0 with negative or zero real
part. More explicitly, it is given by the formulas

r(y) = − i

2y
+

√

4y2 − 1

2y
for −∞ < y ≤ − 1

2 ;

r(y) = − i

2y
−
√

4y2 − 1

2y
for 1

2 ≤ y < ∞;

r(y) =

√

1 − 4y2 − 1

2y
i for − 1

2 ≤ y ≤ 1
2 .

Thus, the three integrals in (60) can be written in the more detailed form

I =

∫ − 1
2

−∞
eiyt exp

([

− i

2y
+

√

4y2 − 1

2y

]

x

)[

2
√

4y2 − 1
+

i −
√

4y2 − 1

2y2

]

dy,

II = i

∫ 1
2

− 1
2

eiyt exp

([

√

1 − 4y2 − 1

2y

]

ix

)[

−2
√

1 − 4y2
+

1 −
√

1 − 4y2

2y2

]

dy,

III =

∫ ∞

1
2

eiyt exp

([

− i

2y
−
√

4y2 − 1

2y

]

x

)[

−2
√

4y2 − 1
+

i +
√

4y2 − 1

2y2

]

dy.

To deal with III, make the change of variables

4y2 − 1 = z2 for y ≥ 1
2

to obtain

III =

∫ ∞

0

ei 1
2

√
1+z2te

− z+i√
1+z2

x
[

2(z + i)

1 + z2
− 2

z

]

z

2
√

z2 + 1
dz

=

∫ ∞

0

ei 1
2

√
1+z2te

− z+i√
1+z2

x
[

z(z + i)

(1 + z2)
3
2

− 1√
1 + z2

]

dz

=

∫ ∞

0

ei 1
2

√
1+z2te

− z+i√
1+z2

x −1 + iz

(1 + z2)
3
2

dz = III(t, x).

The integral over (−∞,− 1
2 ) can be transformed in a similar manner to reach the

expression

I = −
∫ ∞

0

e−i 1
2

√
1+z2t e

− z+i√
1+z2

x
[ −1 + iz

(1 + z2)
3
2

]

dz.

A further, straightforward integration by parts does not appear to be in the cards,
so the integral is analyzed directly. Write it as

III(t, x) =

∫ ∞

0

eip(y)tq(y)dy

where

p(y) =
1

2

√

1 + y2 and q(y) = e
− y+i√

1+y2
x
[ −1 + iy

(1 + y2)
3
2

]

.

A straightforward application of the method of the stationary phase (see Appendix)
allows the inference

III(t, x) ∼ −ei π
4

e−ix

2
Γ
(1

2

) eit/2

(t/4)
1
2

=
−√

π ei( π
4 −x+ t

2 )

√
t

(61)

as t → ∞. Similar considerations apply to the integral I.



1162 JERRY L. BONA AND JIAHONG WU

The second term

II = i

∫ 1
2

− 1
2

eiyte−i
1−

√
1−4y2

2y x

√

1 − 4y2 − 1

2y2
√

1 − 4y2
dy

is a little more interesting. Notice there is a square root singularity at ± 1
2 . Break

the integral up by integrating over [− 1
2 , 0] and [0, 1

2 ] separately. By making the
change of variables

z2 =
1

4
− y2, 0 ≤ y ≤ 1

2
,

the integral over [0, 1
2 ] becomes

II2(t, x) =

∫ 1
2

0

eit
√

1
4−z2

e

2z−1

2
√

1
4
−z2

ix 1

(1 + 2z)
√

1
4 − z2

dz.

The integral over
[

− 1
2 , 0
]

can be similarly transformed. Both integrals are of the
form

∫ 1
2

0

eip(z)t q(z)dz.

Elementary considerations (see the Appendix) then demonstrate that

II(t, x) ∼ e−
π
4 ie−ixΓ

(

1
2

)

eit/2

t1/2
=

√
πe−i( π

4 +x−t/2)

√
t

(62)

as t → ∞.

With the inequality for the kernel M (59) at our disposal, the following theorem
concerning solutions of the BBM equation emerges via arguments similar to those
in the previous subsection.

Theorem 3.6. Suppose g ∈ C1(R+) to be periodic of period T > 0. Then any
solution u of the linearized BBM equation

ut + ux − uxxt = 0, for x, t ≥ 0

with u(x, 0) = 0 and u(0, t) = g(t) converges as t → ∞ to a function u∞(x, t) which
is a strictly periodic function of t of period T , and which takes on the boundary
value g at x = 0.

In particular, u is eventually periodic in the sense that

u(·, t + T ) − u(·, t) → 0

as t → ∞, uniformly on compact subsets of (0,∞).

4. Conclusion. To recapitulate, analysis of the initial- and boundary-value prob-
lems

ut + ux + upux − νuxx − uxxt = 0 for x, t ≥ 0,

ut + ux + upux − νuxx + uxxx = 0 for x, t ≥ 0

has been offered that bears upon a number of interesting questions. These problems
arise in wave propagation in nonlinear, dispersive media when long-crested (one-
dimensional) waves enter from the left a semi-infinite stretch of the medium. The
waves might be incoming waves from other parts of the system or waves generated
by a wavemaker at the left-hand end of the physical domain of propagation.
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In Section 2, the issue of the growth of energy in the wavefield is considered. If
we agree to initiate the system with a disturbance of finite energy, as measured by
the H1(R+)-norm, and to make suitably bounded disturbances at the left, then a
natural question arises. How, if at all, does the total energy in the channel grow as
a function of time?

We are able to provide temporal growth rates for a very restricted range of p
and with ν = 0 or ν > 0 in both the KdV and the BBM cases. These are obtained
via energy estimates. The energy growths are all algebraic and in the linear case

(p = 0), the theory generally gives growth rates of order t
1
2 as t → ∞, whether

or not dissipation is present. These are probably sharp and are in contrast to the
uniform boundedness one obtains for the damping µu featured in equations (4)
and (5). However, when the nonlinearity is included, say at the quadratic level,
the simple energy methods give larger growth rates, and, what is surprising, the
growth rates obtained with ν > 0 are larger than those established for ν = 0. This
seems counterintuitive and is perhaps a consequence of the methods. An obvious
avenue for further investigation is to understand what are the sharp growth rates
as p varies, and to extend the range of p for which one has theory.

Section 3 is concerned with the issue of what has been called eventual periodicity.
This is very clearly observed in water wave experiments in a laboratory setting (cf.
[9]) and begs for theoretical confirmation. It has been established in the context
of the equations (4) and (5) when µ > 0. Our results supplement those derived
in [11] by including the case µ = 0. With the damping −νuxx, which is much
weaker for long waves than is µu, we are at present only able to handle the linear
equations (37) and (47) with ν ≥ 0. Another very interesting issue worth further
consideration is to establish eventual periodicity when nonlinearity is included as in
(1) and (2). This is likely to be a little harder in this case than it was for (4) and (5)
because very long waves are not much damped with the Burgers’-type dissipation,
so resulting in less useful a priori bounds of various sorts.

Finally, the same range of questions naturally present themselves for more general
dispersion relations than exhibited by the KdV or BBM equations (see, e.g. [1] and
the references contained therein).

Appendix

A slightly more expanded commentary on the asymptotic analysis of the various
oscillatory integrals arising in subsections 3.3 and 3.4 is now offered. The analysis
relies upon standard results in the theory of stationary phase, as expounded in
Theorem 13.1 in F. Olver’s book [16], for example. For the readers’ convenience,
this theory is summarized below.

Suppose that in the integral

I(t) =

∫ b

a

eitp(y) q(y) dy

the limits a and b are independent of t, a being finite and b (> a) finite or infinite.
The functions p(y) and q(y) are independent of t, p(y) being real and q(y) either
real or complex. Assume that the only point at which p′(y) vanishes is a. Without
loss of generality, both t and p′(y) are taken to be positive; cases in which one of
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them is negative can be handled by changing the sign of i throughout. We require
the following.

(i) In (a, b), the functions p′(y) and q(y) are continuous, p′(y) > 0, and p′′(y) and
q′(y) have at most a finite number of discontinuities and infinities.

(ii) As y → a+,

p(y) − p(a) ∼ P (y − a)µ, q(y) ∼ Q(y − a)λ−1, (A.1)

the first of these relations being differentiable. Here P , µ and λ are positive
constants, and Q is a real or complex constant.

(iii) For each ǫ ∈ (0, b − a),

Va+ǫ,b

{ q(y)

p′(y)

}

≡
∫ b

a+ǫ

∣

∣

∣

∣

( q(y)

p′(y)

)′
∣

∣

∣

∣

dy < ∞.

(iv) As t → b−, the limit of q(y)/p′(y) is finite, and this limit is zero if p(b) = ∞.

With these conditions, the nature of the asymptotic approximation to I(t) for large
t depends on the sign of λ − µ. In the case λ < µ, the following result obtains.

Theorem A.1. In addition to the above conditions, assume that λ < µ, the first
of (A.1) is twice differentiable and the second of (A.1) is differentiable. Then, the
asymptotic condition

I(t) ∼ eλπi/(2µ) Q

µ
Γ
(λ

µ

) eitp(a)

(Pt)λ/µ

holds as t → ∞.

With this result in hand, the details leading to (54) can be made explicit. Apply
Theorem A.1 to the integral

II1 =

∫ 0

− 1√
3

e(−i)p(z)t q(z) dz

with
p(z) = −z3 + z and q(z) = eizx.

The reason that we write −i instead of i in this integral is to insure p′(z) > 0 for
z ∈ (− 1√

3
, 0]. Thus,

p′(z) = −3z2 + 1, p′′(z) = −6z, q′(z) = ixeizx.

In addition, as z → − 1√
3
+,

p(z) − p
(

− 1√
3

)

∼ 1√
3

(

z +
1√
3

)2

, q(z) → e
−i 1√

3
x
.

Now, notice that
q

p′
=

eizx

−3z2 + 1
→ 1 as z → 0

and that V− 1√
3
+ǫ,0 is finite for any fixed ǫ > 0. In fact,

p′q′ − qp′′

(p′)2
= eixz ix(−3z2 + 1) + 6z

(3z2 − 1)2

and thus

V− 1√
3
+ǫ,0 =

∫ 0

− 1√
3
+ǫ

∣

∣

∣

∣

p′q′ − qp′′

(p′)2

∣

∣

∣

∣

dz < ∞.
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Theorem A.1 then implies that as t → ∞,

II1 =

∫ 0

− 1√
3

e(−i)p(z)t q(z) dz ∼ e−iπ/4 e
−i 1√

3
x

2
Γ
(1

2

)e
−it(− 2

3
√

3
)

(t/
√

3)1/2
,

which can be simplified to yield (54).

Attention is now turned to the asymptotic approximation (56). It suffices to
check the conditions of Theorem A.1 for the integral defined in (55). For this
integral, the auxiliary parameters and functions have the form

a =
1√
3
, b = ∞, p(z) = 8z3 − 2z, q(z) = e(−

√
3z2−1+iz)x

( 3z√
3z2 − 1

− i
)

;

consequently,

p′(z) = 24z2 − 2, p′′(z) = 48z,

q′(z) = e(−
√

3z2−1+iz)x

(

−x
( 3z√

3z2 − 1
− i
)2

− 3
√

(3z2 − 1)3

)

.

As z → 1√
3
+,

p(z) − p
( 1√

3

)

∼ 6
(

z − 1√
3

)

, q(z) →
√

3

2
e

i 1√
3

x
(

z − 1√
3

)−1/2

.

Furthermore, as z → ∞, p(z) → ∞ and q/p′ → 0. For any ǫ > 0, it is easily checked
that

V 1√
3
+ǫ,∞

{

q

p′

}

=

∫ ∞

1√
3
+ǫ

∣

∣

∣

∣

p′q′ − qp′′

(p′)2

∣

∣

∣

∣

dz < ∞.

The asymptotic relation (56) is then a consequence of Theorem A.1.

Here are the details leading to the conclusion expressed in (61). As before, the
relevant integral is of the form I(t) where

p′(y) =
1

2

y
√

1 + y2
, p′′(y) =

1

2

1

(1 + y2)
3
2

,

q′(y) = e
− y+i√

1+y2
x

{

x

[ −1 + iy

(1 + y2)
3
2

]2

+
−2iy2 + 3y + i

(1 + y2)
3
2

}

.

As y → 0,

p(y) − p(0) =
1

2
(
√

1 + y2 − 1) ∼ 1

4
y2, q(t) ∼ −e−ix.

As y → ∞,

p(y) → ∞, p′(y) → 1

2
, q(y) → 0 and

q(y)

p′(y)
→ 0.

It then suffices to verify that for any ǫ > 0,

Vǫ,∞

(

q

p′

)

< ∞.

to this end, compute

p′q′ − qp′′ =
1

2

y
√

1 + y2
xe

− y+i√
1+y2

x

{

[ −1 + iy

(1 + y2)
3
2

]2

+
−2iy2 + 3y + i

(1 + y2)
3
2

}
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−e
− y+i√

1+y2
x
[ −1 + iy

(1 + y2)
3
2

]

1

2

1

(1 + y2)
3
2

and

(p′)2 =
1

4

y2

1 + y2
.

It is easily checked that |(p′q′−qp′′)/(p′)2| behaves like 1
y2 at both y = 0 and y = ∞.

Therefore, Vǫ,∞

(

q
p′

)

< ∞.

Here are the details verifying the conditions in Theorem A.1 in pursuit of estab-
lishing that (62) is correct. The integral under consideration is

∫ 1
2

0

e(−i)p(z)t q(z)dz

with

p(z) = −
√

1

4
− z2, q(z) = e

2z−1

2

√
1
4
−z2

ix 1

(1 + 2z)
√

1
4 − z2

.

Therefore,

p′(z) =
z

√

1
4 − z2

, p′′(z) =
1

4
(

1
4 − z2

)3/2
,

q′(z) = e

2z−1

2

√
1
4
−z2

ix











ix





1

(1 + 2z)
√

1
4 − z2





2

+
4z2 + z + 1

2

(1 + 2z)2
(

1
4 − z2

)3/2











.

As z → 0+,

p(z) − p(0) = −
√

1

4
− z2 +

1

2
∼ z2, q(z) ∼ 2e−ix.

As z → 1
2−,

q(x)

p′(x)
=



e

2z−1

2
√

1
4
−z2

ix 1

(1 + 2z)
√

1
4 − z2





/





z
√

1
4 − z2



→ 1.

Finally, consider the integral

Vǫ, 1
2

(

q

p′

)

=

∫ 1
2

ǫ

∣

∣

∣

∣

p′q′ − qp′′

(p′)2

∣

∣

∣

∣

dz

for fixed ǫ > 0. Elementary calculations show that
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p′q′ − qp′′

=
−z

√

1
4 − z2

e

2z−1

2

√
1
4
−z2

ix











ix





1

(1 + 2z)
√

1
4 − z2





2

+
4z2 + z − 1

2

(1 + 2z)2
(

1
4 − z2

)3/2











− e

2z−1

2

√
1
4
−z2

ix 1

(1 + 2z)
√

1
4 − z2

−1

4
(

1
4 − z2

)3/2

=e

2z−1

2

√
1
4
−z2

ix
{

−ixz

(1 + 2z)2
(

1
4 − z2

)3/2
+

2(8z2 + 6z + 1)

(1 + 2z)4
(

1
2 − z

)

}

and that

(p′)2 =





−z
√

1
4 − z2





2

.

In summary, (p′q′−qp′′)/(p′)2 behaves like 1/z2 at z = 0 and behaves like 1/
√

1
4 − z2

near z = 1
2 . Thus, the integral Vǫ, 12

is bounded.
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