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Abstract

This work investigates the solvability, regularity and vanishing viscosity limit of the 3D viscous magne-
tohydrodynamic system in a class of bounded domains with a slip boundary condition.
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1. Introduction

Let Ω ⊂ R3 be a bounded smooth domain, we consider the initial- and boundary-value prob-
lem (IBVP) for the system of viscous MHD equations

∂tv − ν�v + (∇ × v) × v + H × (∇ × H) + ∇p = 0 in Ω, (1.1)

∇ · v = 0 in Ω, (1.2)

∂tH − μ�H + v · ∇H − H · ∇v = 0 in Ω, (1.3)

∇ · H = 0 in Ω (1.4)
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with the following slip without friction boundary conditions

v · n = 0, ∇ × v · τ = 0 on ∂Ω, (1.5)

H · n = 0, ∇ × H · τ = 0 on ∂Ω. (1.6)

Here ∇· and ∇× denote the div and curl operators, and n the outward normal vector and τ any
unit tangential vector of ∂Ω , respectively. We investigate the solvability, regularity and vanishing
viscosity limit of the IBVP (1.1)–(1.6).

The boundary condition (1.5) on the velocity is a special Navier-type slip boundary condi-
tion, which allows the fluid to slip at a slip velocity proportional to the shear stress introduced
by Navier [20], this type of boundary conditions have been used in many fluid problems (see
e.g. [1,3,4,9,15,18,19,21,25,28]). We also observed that the similar boundary condition (1.6) on
the magnetic field H is adaptable to the systems since it ensured the boundary balance of the
quantities on the boundary (see Lemma 2.3 and Lemma 2.4 below).

The viscous MHD system in the whole space or with non-slip boundary conditions have been
studied extensively and there is a large literature on various topics concerning the MHD system
such as the well-posedness in various functional spaces (see e.g. [2,6,8,12–14,24,29,30]). How-
ever, very little is known about the MHD system with a slip boundary condition. The solvability
of (1.1)–(1.6) is far from being obvious due to the compatibility issues of the nonlinear terms
with the slip boundary conditions. To deal with this difficulty, we follow the approach of [31]
and formulate the boundary-value problem in a suitable functional setting so that the Stokes
operator is well-behaved. In these functional settings, the nonlinear terms naturally fall into de-
sired functional spaces. These facts allow us to establish the existence and regularity of solutions
through the Galerkin approximation and appropriate a priori bounds.

With this well-posedness theory at our disposal, we pursue the vanishing viscosity limit of
(1.1)–(1.6). The issue of vanishing viscosity limits of the Navier-Stokes equations and the viscous
MHD equations is classical and of fundamental importance in fluid dynamics and turbulence
theory (see e.g. [11,16,17,22,23,26,27,32]). When a non-slip boundary condition is imposed,
the vanishing viscosity limit of the MHD equations is not well understood due to the formation
of turbulent boundary layer. Mathematically, one difficulty is due to the mismatch between the
boundary condition for the viscous MHD system and that for its potential limit, the ideal MHD
system. The ideal MHD system is usually equipped with the slip boundary condition, namely

∂tv + (∇ × v) × v + H × (∇ × H) + ∇p = 0 in Ω, (1.7)

∇ · v = 0 in Ω, (1.8)

∂tH + v · ∇H − H · ∇v = 0 in Ω, (1.9)

∇ · H = 0 in Ω, (1.10)

v · n = 0, H · n = 0. (1.11)

As pointed out in [16], the key in studying the vanishing viscosity limit is to control the vor-
ticity created at the boundary. Thus to obtain a uniform convergence of solutions of (1.1)–(1.6)
to that of the ideal problem (1.7)–(1.11), one needs to obtain some uniform estimates on vor-
ticity (see the proof of Proposition 5.1). Our approach here is motivated by the idea introduced
in [31] to study the same problem for the Navier–Stokes equations and is based on the following
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observations: First, note that (see [28,31]) the boundary conditions in (1.5)–(1.6) are equivalent
to

v · n = 0, ∂nvτ = 0 on ∂Ω, (1.12)

H · n = 0, ∂nHτ = 0 on ∂Ω (1.13)

on the flat portions of the boundary ∂Ω , where vτ = v · τ and Hτ = H · τ . Second, and more
importantly, on the flat portions of the boundary ∂Ω , if v and H satisfy (1.12) and (1.13) respec-
tively, so do B1(v,H) = (∇ × v) × v + H × (∇ × H) + ∇p and B2(v,H) = v · ∇H − H · ∇v,
see Propositions 2.5 and 2.6. These facts enable us to obtain high order uniform estimates in the
case that the boundary consists of flat portions. It should be noted that this approach encounters
great difficulties for general domains as pointed out by [5]. Thus, following [5], we restrict the
problem to a cubic domain Q = [0,1]2

per × (0,1) with the boundary conditions on two opposite
faces z = 0 and z = 1, and others be assumed periodic, which was called flat boundary case.
Then, we are able to show that any regular solution of (1.1)–(1.6) converges to a corresponding
solution of the ideal MHD system (1.7)–(1.11) as (ν,μ) → 0 in the flat boundary case.

The major results are organized into four sections. Section 2 contains several notation and
results to be used in the subsequent sections. Section 3 establishes the existence of global weak
solutions through the method of Galerkin approximation. Strong solutions are studied in Sec-
tion 4 for general domains. The vanishing viscosity limit results for the flat boundary case are
presented in Section 5.

2. Preliminaries

Some results for the Stokes operator are recalled, the functional spaces in which the solutions
of (1.1)–(1.6) are sought are provided and the fact that the nonlinear terms of the MHD system
are in suitable functional spaces and some calculations on the boundary for the flat boundary
case are established.

Throughout the rest of this paper, Ω ⊂ R3 denotes a simply connected domain or the cubic
domain Q, and ∂Q = {(x1, x2, x3);x3 = 0,1} ∩ Q̄. Hs(Ω) with s � 0 denotes the standard
Sobolev spaces and H−s(Ω) with s � 0 denotes the dual of Hs

0 (Ω) (the closure of C∞
0 (Ω)

in Hs(Ω)). Correspondingly, H−s(Q) denotes the dual of the subspace of Hs(Q) that contains
functions periodic in x1 and x2 and equal to zero on ∂Q. For notational convenience, Ω and Q

may be omitted when we write these spaces without confusion.
The following lemma (see [10,31]) allows us to control the Hs -norm of a vector-valued func-

tion u by its Hs−1-norms of ∇ × u and ∇ · u, together with the Hs− 1
2 (∂Ω)-norm of u · n.

Lemma 2.1. Let s � 0 be an integer. Let u ∈ Hs be a vector-valued function. Then

‖u‖s � C
(‖∇ × u‖s−1 + ‖∇ · u‖s−1 + |n · u|

s− 1
2
+ ‖u‖s−1

)
. (2.1)

A similar result holds if u · n is replaced by u × n (see [7,31]).

Lemma 2.2. Let s � 0 be an integer. Let u ∈ Hs(Ω) (an additional assumption
∫
Q

u ·∇x3 dx = 0
should be made when Ω = Q). Then

‖u‖s � C
(‖∇ × u‖s−1 + ‖∇ · u‖s−1 + |u × n|

s− 1
2
+ ‖u‖s−1

)
. (2.2)
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Remark. The assumption
∫
Q

u · ∇x3 dx = 0 is imposed for the cubic domain so that any func-
tion u satisfies this condition and ∇ × u = 0, ∇ · u = 0 in Q and u × n = 0 on ∂Q is identically
zero.

Let

X = {
u ∈ L2; ∇ · u = 0, u · n = 0

}

be the Hilbert space with the L2 inner product, and let

V = H 1 ∩ X ⊂ X,

W = {
u ∈ V ∩ H 2; (∇ × u) × n = 0 on ∂Ω

} ⊂ X.

In addition, V ∗ will denote the dual of V . As special consequences of (2.1) and (2.2), for any
u ∈ V ,

‖u‖1 � C‖∇ × u‖.

It is easy to check that for any u ∈ W and v ∈ V ,

(−�u,v) = (∇ × u,∇ × v).

Therefore, −� can be extended to the closure of W in V. The extended operator is denoted
by A and its domain by D(A). Obviously,

W ⊆ D(A) ⊂ V.

The following lemma states that A is well-behaved in these functional settings.

Lemma 2.3. The Stokes operator A = −� with D(A) = W ⊂ V satisfying

(Au,v) = a(u, v) ≡
∫

Ω

∇ × u · ∇ × v dx

is a self-adjoint and positive operator, with its inverse being compact. Consequently, its countable
eigenvalues can be listed as

0 < λ1 � λ2 � · · · → ∞

and the corresponding eigenvectors {ej } ⊂ W ∩ C∞ make an orthogonal complete basis of X.

For notational convenience, we still write −� for A. Now, we consider the nonlinear terms in
these functional settings. For v,H ∈ C∞ ∩ W , define

B1(v,H) = (∇ × v) × v + H × (∇ × H) + ∇p,
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where p satisfies

�p = ∇ · ((∇ × v) × v + H × (∇ × H)
)
,

∇p · n = (
(∇ × v) × v + H × (∇ × H)

) · n

and

B2(v,H) = v · ∇H − H · ∇v.

Obviously, B1(v,H) ∈ X. Indeed, we also have B2(v,H) ∈ X that make the balance of the
systems on the boundary. Using the boundary condition H · n = 0, v · n = 0 on ∂Ω , we have

(H × v) × n = (H · n)v − (v · n)H = 0 on ∂Ω.

Since X = ∇ × {u ∈ H 1; ∇ · u = 0, n × u = 0}, which can be verified directly, we have

B2(v,H) · n = ∇ × (H × v + ∇ϕ) · n = 0 on ∂Ω,

where ϕ is the solution of the Dirichlet problem

−�ϕ = H × v, in Ω,

ϕ = 0, on ∂Ω.

Next, we give some calculation of the nonlinearities on the boundary associated with the bound-
ary conditions in the flat boundary case (Ω = Q) which will be used to get vanishing viscosity
limit. It is easy to see that

Lemma 2.4. Let u ∈ C∞(Q). Then the boundary condition u · n = 0, (∇ × u) × n = 0 is equiv-
alent to u3 = 0, ∂3uj = 0, j = 1,2 on the boundary.

It follows from a simple calculation that

∇ × B1(v,H) = (
v · ∇(∇ × v) − ∇ × v · ∇v

)
−(

H · ∇(∇ × H) − ∇ × H · ∇H
)
.

Following the argument in [31], we have the following two propositions:

Proposition 2.5. For v,H ∈ C∞(Q) ∩ W , B1(v,H) ∈ C∞(Q) ∩ W .

Proposition 2.6. Let v,H ∈ C∞(Q) ∩ W . Then B2(v,H) ∈ C∞(Q) ∩ W .

For the sake of completeness, we present the proof of Proposition 2.6.

Proof. Obviously, B2(v,H) ∈ C∞(Q), and, we have shown (B2(v,H))3 = B2(v,H) · n = 0
on ∂Q. It remains to show

(∇ × B2(v,H)
)
j

= 0, j = 1,2 on ∂Q.
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As in Lemma 2.4, it follows from the boundary conditions that

v3 = H3 = 0, ∂3vj = ∂3Hj = 0 for j = 1,2 on ∂Q.

Consequently,

∂i,3vj = 0, ∂i,3Hj = 0 for i, j = 1,2 on ∂Q.

Therefore

(∇ × B2(v,H)
)

1 = −∂3
(
B2(v,H)

)
2 (2.3)

= −(v1∂1,3H2 + v2∂2,3H2) + (H1∂1,3v2 + H2∂2,3v2) (2.4)

= 0 on ∂Q. (2.5)

Similarly,
(∇ × B2(v,H)

)
2 = 0 on ∂Q.

This completes the proof of Proposition 2.6. �
3. The weak solutions

This section establishes the global existence of weak solutions to the MHD system (1.1)–(1.6).
The approach is the Galerkin approximation following the argument of Constantin and
Foias [10]. Here as in the next section, we consider a general smooth bounded simply connected
domain in R3 unless stated otherwise.

Definition 3.1. (v,H) is called a weak solution of (1.1)–(1.6) with the initial data (v0,H0) ∈ X

on the time interval [0, T ) if (v,H) ∈ L2(0, T ;V ) ∩ Cw([0, T );X) satisfies (u′,H ′) ∈
L1(0, T ;V ∗) and

(v′, φ) + ν(ωv,∇ × φ) + (ωv × v,φ) + (H × ωH ,φ) = 0,

(H ′, φ) + μ(ωH ,∇ × φ) + (v · ∇H − H · ∇v,φ) = 0

for all φ ∈ V and for a.e. t ∈ [0, T ), and

v(0) = v0, H(0) = H0,

where ωv = ∇ × v and ωH = ∇ × H .

The major result of this section is the global existence of a weak solution.

Theorem 3.2. Let (v0,H0) ∈ X. Let T > 0. Then there exists at least one weak solution (u,H)

of (1.1)–(1.6) on [0, T ) which satisfies the energy inequality

d

dt

(‖v‖2 + ‖H‖2) + 2
(
ν‖∇ × v‖2 + μ‖∇ × H‖2) � 0 (3.1)

in the sense of distribution.
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Proof. We start with a sequence of approximate functions (v(m),H (m)),

v(m)(t) =
m∑

j=1

vj (t)ej , H (m)(t) =
m∑

j=1

Hj(t)ej ,

where vj and Hj for j = 1, . . . ,m, solve the following ordinary differential equations

v′
j (t) + νλjvj (t) + g1

j (U) = 0, (3.2)

H ′
j (t) + μλjHj (t) + g2

j (U) = 0, (3.3)

vj (0) = (v0, ej ), Hj (0) = (H0, ej ), (3.4)

with U = (v1, v2, . . . , vm,H1,H2, . . . ,Hm) and

g1
j (U) = (

B1
(
v(m),H (m)

)
, ej

)
,

g2
j (U) = (

B2
(
v(m),H (m)

)
, ej

)
.

Since (gk
j (U)) are Lipshitz in U , (3.2)–(3.4) is locally well posed, say on [0, T ). Consequently,

for any t ∈ [0, T ), (v(m),H (m)) solves the following system of equations

(
v(m)

)′ − ν�v(m) + PmB1
(
v(m),H (m)

) = 0, (3.5)
(
H(m)

)′ − μ�H(m) + PmB2
(
v(m),H (m)

) = 0, (3.6)

v(m)(0) = Pmv0, H (m)(0) = PmH0, (3.7)

where Pm denotes the projection of X onto the space spanned by {ej }m1 .
Taking the inner products ((3.5), v(m)) and ((3.6),H (m)), adding them up, and noting that

(
PmB1

(
v(m),H (m)

)
, v(m)

) =
∫

Ω

(
H(m) × (∇ × H(m)

)) · v(m) dx,

(
PmB2

(
v(m),H (m)

)
, v(m)

) =
∫

Ω

H(m) · ∇ × (
H(m) × v(m)

)
dx

=
∫

Ω

∇ × H(m) · (H(m) × v(m)
)
dx,

we obtain by simple algebraic identities,

d

dt

(∥∥v(m)
∥∥2 + ∥∥H(m)

∥∥2) + 2
(
ν
∥∥∇ × v(m)

∥∥2 + μ
∥∥∇ × H(m)

∥∥2) = 0. (3.8)
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Therefore,

(
v(m),H (m)

)
is bounded in L∞(0, T ;X), uniformly for m, (3.9)(∇ × v(m),∇ × H(m)

)
is bounded in L2(0, T ;V ), uniformly for m. (3.10)

Note that for φ ∈ V , we have

∣∣(−�v(m)
)
, φ)

∣∣ = ∣∣(∇ × v(m),∇ × φ
)∣∣.

Therefore,

{−�v(m)
}

is bounded in L2(0, T ;V ∗).

Similarly,

{−�H(m)
}

is bounded in L2(0, T ;V ∗).

For the nonlinear terms, we have, for any φ ∈ V ,

∣∣(PmB1
(
v(m),H (m)

)
, φ

)∣∣ = ∣∣(B1
(
v(m),H (m)

)
, φm

)∣∣
� C

(∥∥v(m)
∥∥ 1

2
∥∥v(m)

∥∥ 3
2
1 + ∥∥v(m)

∥∥ 1
2
∥∥v(m)

∥∥ 3
2
1

)‖φm‖1,

where φm = Pmφ. Because of the uniform bound for ‖v(m)‖ in (3.9) and the bound for ‖v(m)‖1
in (3.10), we obtain

{
B1

(
v(m),H (m)

)}
is bounded in L

4
3 (0, T ;V ∗).

Similarly,

{
B2

(
v(m),H (m)

)}
is bounded in L

4
3 (0, T ;V ∗).

Therefore,

((
v(m)

)′
,
(
H(m)

)′)
is bounded in L

4
3 (0, T ;V ∗).

The rest of the proof is similar to the arguments in Constantin and Foias [10] and thus further
details are omitted. This completes the proof of Theorem 3.2. �
4. The strong solutions

This section studies the local well-posedness of the strong solution of (1.1)–(1.6) correspond-
ing to an initial data (v0,H0) ∈ V and its higher regularities.

Let (v0,H0) ∈ V and let (v(m),H (m)) be the Galerkin approximation constructed in the pre-
vious section. To obtain regularity estimates for (v(m),H (m)), we set ω

(m)
v = ∇ × v(m) and

ω
(m)
H = ∇ × H(m), and obtain their equations by taking the curl of (3.5) and (3.6),



Author's personal copy

Y. Xiao et al. / Journal of Functional Analysis 257 (2009) 3375–3394 3383

(
ω(m)

v

)′ − ν�ω(m)
v + Σg1

j∇ × ej = 0, (4.1)
(
ω

(m)
H

)′ − μ�ω
(m)
H + Σg2

j∇ × ej = 0, (4.2)

ω(m)
v (0) = ∇ × v(m)(0), ω

(m)
H (0) = ∇ × H(m)(0), (4.3)

where we recall g1
j satisfies

∑m
j=1 g1

j ej = PmB1(v
(m),H (m)). Taking the inner product

((4.1),ω
(m)
v ) + ((4.2),ω

(m)
H ), and noting that

(∇ × ei,∇ × ej ) = λj (ei, ej ),

we obtain

d

dt

(∥∥ω(m)
v

∥∥2 + ∥∥ω
(m)
H

∥∥2) + 2
(
ν
∥∥∇ × ω(m)

v

∥∥2 + μ
∥∥∇ × ω

(m)
H

∣∣2)

+ 2
((∇ × B1

(
v(m),H (m)

)
,ω(m)

v

) + (∇ × B2
(
v(m),H (m)

)
,ω

(m)
H

)) = 0. (4.4)

Applying the Agmon inequality

‖φ‖2
L∞ � ‖φ‖1‖φ‖2, ∀φ ∈ H 2,

we find

(∇ × B1
(
v(m),H (m)

)
,ω(m)

v

)
� C

(∥∥ω(m)
v

∥∥ 3
2 + ∥∥ω

(m)
H

∥∥ 3
2
)(∥∥�v(m)

∥∥ 1
2 + ∥∥�H(m)

∥∥ 1
2
)∥∥�v(m)

∥∥,

(∇ × B2
(
v(m),H (m)

)
,ω

(m)
H

)
� C

(∥∥ω(m)
v

∥∥ 3
2 + ∥∥ω

(m)
H

∥∥ 3
2
)(∥∥�v(m)

∥∥ 1
2 + ∥∥�H(m)

∥∥ 1
2
)∥∥�H(m)

∥∥
and

d

dt

(∥∥ω(m)
v

∥∥2 + ∥∥ω
(m)
H

∥∥2) + ν
∥∥�v(m)

∥∥2 + μ
∥∥�H(m)

∥∥2 � C
(∥∥ω(m)

v

∥∥ + ∥∥ω
(m)
H

∥∥)6
,

where C depends on ν and μ. Comparing with the ordinary differential equation

d

dt
y = Cy3, (4.5)

we find that there is time T0 > 0 such that, for any fixed T ∈ (0, T0)

(
v(m),H (m)

)
is bounded in L∞(

0, T ;H 1),(
v(m),H (m)

)
is bounded in L2(0, T ;H 2).

Note that

∥∥Pm(v × u)
∥∥ � ‖v × u‖ � C‖v‖‖u‖L∞, (4.6)

it follows that

{(
v(m)

)′}
,
{(

H(m)
)′} is bounded in L2(0, T ;L2). (4.7)
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The standard compactness results allow us to find a subsequence of (v(m),H (m)) (still denoted
by (v(m),H (m))) and (v,H) such that

v(m) → v, H(m) → H in L∞(
0, T ;H 1) weak-star,

v(m) → v, H(m) → H in L2(0, T ;H 2) weakly,

v(m) → v, H(m) → H in L2(0, T ;H 1) strongly.

Passing to the limit, we find the weak solution obtained in the previous section may be chosen
such that (v,H) ∈ L∞(0, T ;H 1)∩L2(0, T ;H 2). From (4.7), we find v′,H ′ ∈ L2(0, T ;L2) and
thus v,H ∈ C([0, T ];H 1). We call such solution a strong solution. To show that strong solutions
are unique, we consider two strong solutions (v1,H1) and (v2,H2). Then their difference ṽ =
v1 − v2, H̃ = H1 − H2 satisfies

ṽ′ − ν�ṽ + B1(v1,H1) − B1(v2,H2) = 0, (4.8)

H̃ ′ − μ�H̃ + B2(v1,H1) − B1(v2,H2) = 0. (4.9)

Taking the inner products ((5.6), ṽ) + ((5.7), H̃ ), we find

d

dt

(‖ṽ‖2 + ‖H̃‖2) � g(t)
(‖ṽ‖2 + ‖H̃‖2)

on [0, T ] for some positive integrable function g(t). Then, v1 = v2, H1 = H2 follows from
ṽ(0) = 0, H̃ (0) = 0 and the Gronwall inequality. From the standard extension method of time
evolution, we can conclude

Theorem 4.1. Let (v0,H0) ∈ V . Then there is T ∗ > 0 depending on ν,μ and the H 1-norm of
(v0,H0) only such that (1.1)–(1.6) has a unique strong solution (v,H) on [0, T ∗) satisfying

v,H ∈ L2(0, T ;W) ∩ C
([0, T ∗);V )

,

v′,H ′ ∈ L2(0, T ;X)

for any T ∈ (0, T ∗). In addition, the energy equation

d

dt

(‖ωv‖2 + ‖ωH ‖2) + 2
(
ν‖�v‖2 + μ‖�H‖2)

+ 2
(∇ × B1(v,H),ωv

) + (∇ × B2(v,H),ωH

) = 0

holds, where ωv = ∇ × v and ωH = ∇ × H .

We emphasize that all results above valid for both Ω and Q. Now, we begin to investigate the
vanishing viscosity limit for the flat boundary case, i.e., Ω = Q.

To explore higher regularities of the strong solution, we let (v0,H0) ∈ W and consider
ψ

(m)
v (t, x) = −�v(m)(t, x), ψ

(m)
H (t, x) = −�H(m)(t, x). It follows from (3.5) and (3.6) that
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(
ψ(m)

v

)′ − ν�ψ(m)
v + Σg1

j λj ej = 0, (4.10)
(
ψ

(m)
H

)′ − μ�ψ
(m)
H + Σg2

j λj ej = 0, (4.11)

ψ(m)
v (0) = −Pm(�v0), ψ

(m)
H (0) = −Pm(�H0). (4.12)

According to Propositions 2.5 and 2.6, Bk(v
(m),H (m)) ∈ W for k = 1,2 and we can integrate by

parts to obtain, for i = 1,2, . . . ,m,

(−�PmBk

(
v(m),H (m)

)
, ei

) = (
Σgk

j λj ej , ei

)
= (

Bk

(
v(m),H (m)

)
,−�ei

)
= (−�Bk

(
v(m),H (m)

)
, ei

)

to find

−�PmBk

(
v(m),H (m)

) = Pm

(−�Bk

(
v(m),H (m)

))
. (4.13)

Here we have used ∇ ×ei ×n = 0 and ∇ ×Bk(v
(m),H (m))×n = 0 for k = 1,2, on the boundary.

Since (∇ ×Bk(v
(m),H (m)))×n = 0 on ∂Q, we integrate by parts and apply Hölder’s inequal-

ity to obtain

(
�B1

(
v(m),H (m)

)
,ψ(m)

v

)
� C

(∥∥v(m)
∥∥

L∞(Q)

∥∥v(m)
∥∥

2 + ∥∥H(m)
∥∥

L∞(Q)

∥∥H(m)
∥∥

2

)∥∥∇ × ψ(m)
v

∥∥
+ C

(∥∥∇v(m)
∥∥2

L4(Q)
+ ∥∥∇H(m)

∥∥2
L4(Q)

)∥∥∇ × ψ(m)
v

∥∥,

(�B2(v
(m),H (m)),ψ

(m)
H ) can be similarly bounded. It then follows from the Sobolev embedding

H 1 ⊂ L4 and Lemma 2.2 that

d

dt

(∥∥ψ(m)
v

∥∥2 + ∥∥ψ
(m)
H

∥∥2) + 2
(
ν
∥∥∇ × ψ(m)

v

∥∥2 + μ
∥∥∇ × ψ

(m)
H

∥∥2)

� C
(∥∥ψ(m)

v

∥∥2 + ∥∥ψ
(m)
H

∥∥2)2
,

where C depends on ν and μ. That is,

(
v(m),H (m)

)
remains bounds in L∞(

0, T ;H 2),(
v(m),H (m)

)
remains bounds in L2(0, T ;H 3).

We thus have established the following regularity result.

Theorem 4.2. Consider Ω = Q. Let (v0,H0) ∈ W . Then the unique strong solution (v,H) ob-
tained in Theorem 4.1 belongs to C([0, T ∗);W). Moreover,

(v,H) ∈ L2(0, T ;H 3(Q)
) ∩ C

([0, T ∗);W),

(v′,H ′) ∈ L2(0, T ;V )
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for any T ∈ [0, T ∗) and the energy equation

d

dt

(‖ψv‖2 + ‖ψH ‖2) + 2
(
ν‖∇ × ψv‖2 + μ‖∇ × ψH ‖2)

+ 2
((−�B1(v,H),ψv

) + (−�B2(v,H),ψH

)) = 0

holds for ψv = −�v, ψH = −�H and t ∈ [0, T ∗).

Similarly, If (v0,H0) ∈ W ∩ H 3, we obtain

(
v(m),H (m)

)
bounded in L∞(

0, T ;H 3),
(
v(m),H (m)

)
bounded in L2(0, T ;H 4),

((
v(m)

)′
,
(
H(m)

)′) bounded in L2(0, T ;W).

This is obtained by considering the equations for (∇ × ψ
(m)
v ,∇ × ψ

(m)
H ),

d

dt

(∥∥∇ × ψ(m)
v

∥∥2 + ∥∥∇ × ψ
(m)
H

∥∥2) + 2
(
ν
∥∥�ψ(m)

v

∥∥2 + μ
∥∥�ψ

(m)
H

∥∥2)

+ (
(∇×)3B1

(
v(m),H (m)

)
,∇ × ψ(m)

v

) + (
(∇×)3B2

(
v(m),H (m)

)
,∇ × ψ

(m)
H

) = 0

going through a similar process. Thus, we have the following further regularity result.

Theorem 4.3. Consider Ω = Q. Assume (v0,H0) ∈ W ∩H 3(Q). Then the unique strong solution
(v,H) obtained in Theorem 4.1 satisfies

(v,H) ∈ L2(0, T ;H 4(Q)
) ∩ C

([0, T ∗);H 3(Q)
)
,

(v′,H ′) ∈ L2(0, T ;W)

and the energy equation

d

dt

(‖∇ × ψv‖2 + ‖∇ × ψH ‖2) + 2
(
ν‖�ψv‖2 + μ‖�ψH ‖2)

+ (
�B1(v,H),�ψv

) + (
�B2(v,H),�ψH

)
) = 0

for ψv = −�v, ψH = −�H . Moreover, ψv,ψH satisfies

(∇ × ψv) · τ = 0, (∇ × ψH ) · τ = 0 on ∂Q (4.14)

for all τ tangent to the boundary.
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Remark. Indeed, we have shown that ψv,ψH satisfies

∂tψv − ν�ψv − �(ωv × v + H × ωH ) = 0 in Q,

∂tψH − μ�ψH − �(H · ∇v − v · ∇H) = 0 in Q,

∇ · ψv = 0, ∇ · ψH = 0 in Q,

ψv · n = 0, ψH · n = 0 on ∂Q

(∇ × ψv) · τ = 0, (∇ × ψH ) · τ = 0 on ∂Q (4.15)

for the corresponding solutions.

5. The vanishing viscosity limit

This section focuses on the vanishing viscosity limit of the MHD system for the case Ω = Q.
We start with the following uniform estimate:

Proposition 5.1. Let (v0,H0) ∈ W ∩ H 3(Q). Then there is a T0 > 0 depending on ‖(v0,H0)‖H 3

only such that the strong solution v = v(ν,μ), H = H(ν,μ) of the MHD system (1.1)–(1.6) with
the initial data (v0,H0) obeys the following uniform bound

∥∥v(·, t)∥∥3 + ∥∥H(·, t)∥∥3 � C for t ∈ [0, T0],

where C is a constant independent of ν and μ.

Proof. According to Theorems 4.1 and 4.3, for any ν,μ > 0, there is T ∗ = T ∗(ν,μ) > 0 such
that the solution v = v(ν,μ), H = H(ν,μ) satisfies

v,H ∈ L2(0, T ;H 4(Q)
) ∩ C

([0, T ∗);H 3(Q)
)
, (5.1)

‖v‖1 + ‖H‖1 → ∞, as t → T ∗ if T ∗ < ∞, (5.2)

for any T < T ∗, and, for ψv = −�v(ν,μ), ψH = −�H(ν,μ),

d

dt

(‖∇ × ψv‖2 + ‖∇ × ψH ‖2) + 2
(
ν‖�ψv‖2 + μ‖�ψH ‖2)

+ (
�B1(v,H),�ψv

) + (
�B2(v,H),�ψH

)
) = 0. (5.3)

We claim that T ∗(ν,μ) bounded from below for all ν,μ > 0. Due to the boundary condi-
tion (4.15), we can integrate by parts to get

(
�B1(v,H),�ψv

) = (
(∇×)3B1(v,H),∇ × ψv

)

and

(
�B2(v,H),�ψH

) = (
(∇×)3B2(v,H),∇ × ψH

)
.
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After some calculations, we find

(∇×)3B1(v,H) = (v · ∇)∇ × ψv − (H · ∇)∇ × ψH

+ Σi,j=1,2,3; i+j=4Fi,j

(
Div,Djv

) − Σi,j=1,2,3; i+j=4Fi,j

(
DiH,DjH

)

and

(∇×)3B2(v,H) = (v · ∇)∇ × ψH − (H · ∇)∇ × ψv

+ Σi,j=1,2,3; i+j=4Fi,j

(
Div,DjH

) − Σi,j=1,2,3; i+j=4Fi,j

(
DiH,Djv

)
,

where Fi,j (D
iu,Dju)’s are bilinear forms and Di ’s are the i-th order differential operators.

Using the basic fact

(
(u · ∇)v,w

) + (
(u · ∇)w,v

) = 0

valid for any H 1 vectors u, v and w with ∇ · u = 0 in Q and u · n = 0 on ∂Q and the bound

∥∥Σi,j=1,2,3; i+j=4Fi,j

(
Diu,Djv

)∥∥ � C‖u‖3‖v‖3,

we get

∣∣(�B1(v,H),�ψv

) + (
�B2(v,H),�ψH

)∣∣
� C

(‖∇ × ψv‖ + ‖∇ × ψH ‖)3

after applying Lemma 2.2, where C is independent of ν and μ. It then follows from (5.3) that

d

dt

(‖∇ × ψv‖2 + ‖∇ × ψH ‖2)

+ 2ν‖�ψv‖2 + 2μ‖�ψv‖2 � C
(‖∇ × ψv‖2 + ‖∇ × ψH ‖2) 3

2 .

Comparing with the ordinary differential equation

y′(t) = Cy(t)
3
2 ,

y(0) = ∥∥∇ × ψv(0)
∥∥2 + ∥∥∇ × ψH (0)

∥∥2

and denote by T0 the blow up time, it follows that

T ∗(ν,μ) � T0 for all ν,μ > 0.

This completes the proof of Proposition 5.1. �
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Theorem 5.2. Let (v0,H0) ∈ W ∩ H 3(Q). Let T0 > 0 and let v = v(ν,μ),H = H(ν,μ) be the
corresponding strong solution of the MHD system (1.1)–(1.6) on [0, T0]. Then, as ν,μ → 0,
(v,H) converges to the unique solution (v0,H 0) of the ideal MHD system with the same initial
data (1.7)–(1.11) in the sense

v(ν,μ),H(ν,μ) → (
v0,H 0) in Lq

(
0, T ;H 3(Q)

)
, (5.4)

v(ν,μ),H(ν,μ) → (
v0,H 0) in C

([0, T ];H 2(Q)
)

(5.5)

for any 1 � q < ∞.

Proof. It follows from Proposition 5.1 that

v(ν,μ),H(ν,μ) is uniformly bounded in C
([0, T0];H 3(Q)

)
,

v′(ν,μ), v′(ν,μ) is uniformly bounded in L2(0, T0;W)

for all ν,μ > 0. By the standard compactness result, there is a subsequence νn,μn of ν,μ and
vector functions v0,H 0 such that

(
v(νn,μn),H(νn,μn)

) → (
v0,H 0) in Lq

(
0, T ;H 3(Q)

)
,(

v(νn,μn),H(νn,μn)
) → (

v0,H 0) in C
([0, T ];H 2(Q)

)

for any 1 � q < ∞, as νn,μn → 0. Passing to the limit, we find the limit (v0,H 0) solves the
following limit equations

∂tv
0 + (∇ × v0) × v0 + H 0 × (∇ × H 0) + ∇p = 0 in Q,

∇ · v0 = 0 in Q,

∂tH
0 + v0 · ∇H 0 − H 0 · ∇v0 = 0 in Q,

∇ · H 0 = 0 in Q

with the boundary conditions

v0 · n = 0,
(∇ × v0) · τ = 0 on ∂Q,

H 0 · n = 0,
(∇ × H 0) · τ = 0 on ∂Q

and p satisfying

�p = ∇ · ((∇ × v0) × v0) − ∇ · ((∇ × H 0) × H 0),
∇p · n = 0 on ∂Q.

As in the proof of the uniqueness of the strong solutions of the MHD system in the previous sec-
tion, we can show that (v0,H 0) is unique. We then show the convergence of whole sequence. �

Finally, we present the convergence rate.
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Theorem 5.3. Let (v0,H0) ∈ W ∩ H 3(Q). Let T0 be as in Proposition 5.1. Then

∥∥v(ν,μ) − v0
∥∥2

2 + ∥∥H(ν,μ) − H 0
∥∥2

2 � C(T0)(ν + μ)

on the interval [0, T0].

Proof. Denote by ṽ = v(ν,μ) − v0, H̃ = H(ν,μ) − H 0. We find that ψṽ = −�ṽ, ψ
H̃

=
−�H̃ ∈ H 1(Q) solve

∂tψṽ − �
(
B1(v,H) − B1

(
v0,H 0)) = −ν�2ṽ in Q, (5.6)

∂tψH̃
− �

(
B2(v,H) − B2

(
v0,H 0)) = −μ�2H̃ in Q, (5.7)

∇ · ṽ = 0, ∇ · H̃ = 0 in Q, (5.8)

ṽ · n = 0, H̃ · n = 0 on ∂Q (5.9)

and (∇ × v)×n = 0, (∇ × v0)×n = 0, (∇ × H)×n = 0, (∇ ×H 0)×n = 0, (∇×)3v ×n = 0,
(∇×)3H × n = 0 which follows from (4.14). Taking the L2 inner product of (5.6) with ψṽ and
(5.6) with ψ

H̃
, integrating by parts, one can get

d

dt

(‖ψṽ‖2 + ‖ψ
H̃

‖2) − 2
(
�

(
B1(v,H) − B1

(
v0,H 0)),ψṽ

)

− 2
(
�

(
B2(v,H) − B2

(
v0,H 0)),ψ

H̃

)
= ν

(
(∇×)3ṽ,∇ × ψṽ

) + μ
(
(∇×)3H̃ ,∇ × ψ

H̃

)
.

As in the proof of Proposition 5.1, we have

−�
(
B1(v,H) − B1

(
v0,H 0)) = (v · ∇)ψṽ − (H · ∇)ψ

H̃
+ Σj=1,2Fi,j

(
Div0,Dj ṽ

)
− Σj=1,2Fi,j

(
DiH 0,Dj H̃

)
,

−�
(
B2(v,H) − B2

(
v0,H 0)) = (v · ∇)ψ

H̃
− (H · ∇)ψṽ + Σj=1,2Fi,j

(
Div0,Dj H̃

)
− Σj=1,2Fi,j

(
DiH 0,Dj ṽ

)
,

where the summation is also over index i = 1,2,3. Therefore,

∣∣(�(
B1(v,H) − B1

(
v0,H 0)),ψṽ

) + (
�

(
B2(v,H) − B2

(
v0,H 0)),ψ

H̃

)∣∣
� C

(∥∥v0
∥∥

3 + ∥∥H 0
∥∥

3

)(‖ψṽ‖2 + ‖ψ
H̃

‖2).
Also, we have

∣∣((∇×)3v,∇ × ψṽ

)∣∣ � C
∥∥(∇×)3v)

∥∥(∥∥(∇×)3v
∥∥ + ∥∥(∇×)3v0

∥∥)

and

∣∣((∇×)3H,∇ × ψ
H̃

)∣∣ � C
∥∥(∇×)3H)

∥∥(∥∥(∇×)3H
∥∥ + ∥∥(∇×)3H 0

∥∥)
.
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These estimates are uniform respect to ν,μ and thus

d

dt

(‖ψṽ‖2 + ‖ψ
H̃

‖2) � C(T0)
(‖ψṽ‖2 + ‖ψ

H̃
‖2 + ν + μ

)
.

Since ṽ(0) = 0, H̃ (0) = 0, Gronwall’s inequality implies

‖ψṽ‖2 + ‖ψ
H̃

‖2 � C(T0)(ν + μ). (5.10)

This completes the proof of Theorem 5.3. �
6. Further remarks

The convergence result of the last section is also valid for each parameter tending to zero
individually. In fact, we have the following theorem.

Theorem 6.1. Let v0,H0 ∈ W ∩ H 3(Q).

1) Let ν be fixed and let T0(ν) > 0 be the existence time as in Proposition 5.1. Let
(v(ν,μ),H(ν,μ)) be the strong solution of the MHD system (1.1)–(1.6) corresponding
to (v0,H0). Then (v(ν,μ),H(ν,μ)) converges to the unique solution (vν,Hν) of the limit
system

∂tv
ν − ν�vν + (∇ × vν

) × vν + Hν × (∇ × Hν
) + ∇p = 0 in Q,

∇ · vν = 0 in Q,

∂tH
ν + vν · ∇Hν − Hν · ∇vν = 0 in Q,

∇ · Hν = 0 in Ω

with the following boundary conditions

vν · n = 0,
(∇ × vν

) · τ = 0 on ∂Q,

Hν · n = 0,
(∇ × Hν

) · τ = 0 on ∂Q

and the same initial data. The convergence is in the following sense

v(ν,μ) → vν, H(ν,μ) → Hν in Lq
(
0, T ;H 3(Q)

)
,

v(ν,μ) → vν, H(ν,μ) → Hν in C
([0, T ];H 2(Q)

)

for 1 � q < ∞, as μ → 0.
2) Let μ > 0 be fixed and let T0(μ) > 0 be the existence time as in Proposition 5.1. Let

(v(ν,μ),H(ν,μ)) be the strong solution of the MHD system (1.1)–(1.6) corresponding to
(v0,H0). Then (v(ν,μ),H(ν,μ)) converges to the unique solution (vμ,Hμ) of the limit
system
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∂tv
μ + (∇ × vμ

) × vμ + Hμ × (∇ × Hμ
) + ∇p = 0 in Q,

∇ · vμ = 0 in Ω,

∂tH
μ − μ�Hμ + vμ · ∇Hμ − Hμ · ∇vμ = 0 in Q,

∇ · Hμ = 0 in Q

with the following boundary conditions

vμ · n = 0, ∇ × vμ · τ = 0 on ∂Q,

Hμ · n = 0, ∇ × Hμ · τ = 0 on ∂Q

in the sense

v(ν,μ) → vμ, H(ν,μ) → Hμ in Lq
(
0, T ;H 3(Q)

)
,

v(ν,μ) → vμ, H(ν,μ) → Hμ in C
([0, T ];H 2(Q)

)

for 1 � q < ∞, as ν → 0.

Theorem 6.2. Let (v0,H0) ∈ W ∩ H 3(Q). Let ν or μ be fixed and let T0(ν) or T0(μ) be as in
the previous theorem. Then we have

∥∥v(ν,μ) − vν
∥∥2

2 + ∥∥H(ν,μ) − Hν
∥∥2

2 � C(T0)μ

for t ∈ [0, T0(ν)], or

∥∥v(ν,μ) − vμ
∥∥2

2 + ∥∥H(ν,μ) − Hμ
∥∥2

2 � C(T0)ν

for t ∈ [0, T0(ν)].

One can further consider the secondary vanishing viscosity limit of (vν,Hν) as ν → 0 or the
limit of (vμ,Hμ) as μ → 0. In a similar fashion, it can be shown that they both converge to the
solution (v0,H 0) of the ideal MHD system (1.7)–(1.11).

We remark that it may be possible to consider the partial vanishing viscosity limits for a more
general bounded domain. For instance, in the case when ν is fixed and μ → 0, one can integrate
by parts to pass the high derivatives to v due to the presence of the dissipative term in v and
obtain the following bound

d

dt

(‖ωv‖2 + ‖ωH ‖2) + 2
(
ν‖�v‖2 + μ‖�H‖2) � C

(‖ωv‖ + ‖ωH ‖)6

where C is independent of μ. Therefore, the partial vanishing viscosity limit as μ → 0 may be
considered in L∞(0, T ;H 1) ∩ L2(0, T ;H 2) without resorting to the special geometry of the
domain. We omit further details.

We also remark that the vanishing viscosity limit results are valid for the 2D MHD system
with the following slip boundary conditions
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v · n = 0, ∇ × v = 0 on ∂Ω,

H · n = 0, ∇ × H = 0 on ∂Ω

for the domains Ω with flat boundaries. In the case of the 2D Navier–Stokes equations, the
vanishing viscosity limit results can be established for general domains (see [5,31]). However,
it is not clear if they hold for the 2D MHD equations in a general domain. One reason is that it
appears difficult to verify ∇ × B2 = 0 on the boundary.
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[9] T. Clopeau, A. Mikelić, R. Robert, On the vanishing viscosity limit for the 2D incompressible Navier–Stokes equa-

tions with the friction type boundary conditions, Nonlinearity 11 (1998) 1625–1636.
[10] P. Constantin, C. Foias, Navier–Stokes Equations, Chicago Lectures in Math., University of Chicago Press, Chicago,

IL, 1988.
[11] P. Constantin, J. Wu, Inviscid limit for vortex patches, Nonlinearity 8 (1995) 735–742.
[12] G. Duvaut, J.L. Lions, Inéquation en thermoélasticite et magnétohydrodynamique, Arch. Ration. Mech. Anal. 46

(1972) 241–279.
[13] C. He, Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations, J. Differential Equa-

tions 213 (2005) 235–254.
[14] C. He, Z. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations,

J. Funct. Anal. 227 (2005) 113–152.
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