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This paper aims at the global regularity of classical solutions to
the 2D Boussinesq equations with vertical dissipation and vertical
thermal diffusion. We prove that the Lr -norm of the vertical
velocity v for any 1 < r < ∞ is globally bounded and that the
L∞-norm of v controls any possible breakdown of classical
solutions. In addition, we show that an extra thermal diffusion
given by the fractional Laplace (−�)δ for δ > 0 would guarantee
the global regularity of classical solutions.
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1. Introduction

We consider the initial value problem for the 2D Boussinesq equations with vertical viscosity and
vertical diffusivity

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut + uux + vu y = −px + νu yy,

vt + uvx + v v y = −p y + νv yy + θ,

ux + v y = 0,

θt + uθx + vθy = κθyy,

u(x, y,0) = u0(x, y), v(x, y,0) = v0(x, y), θ(x, y,0) = θ0(x, y),

(1.1)
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where u, v, p and θ are scalar functions of (x, y) ∈ R2 and t � 0. Physically, (u, v) denotes the 2D
velocity field, p the pressure, θ the temperature in the content of thermal convection and the density
in the modeling of geophysical fluids, ν the viscosity and κ the thermal diffusivity. (1.1) may be useful
in modeling dynamics of geophysical flows for which the vertical dissipation dominates such as in the
large-time dynamics of certain strongly stratified flows (see [13] and the references therein).

This paper aims at the issue of whether (1.1) possesses a global solution for every reasonably
smooth initial data (u0, v0, θ0). We first provide some background and review closely related results.
(1.1) is a very important special case of the general 2D Boussinesq equations

⎧⎪⎪⎨
⎪⎪⎩

ut + uux + vu y = −px + ν1uxx + ν2u yy,

vt + uvx + v v y = −p y + ν1 vxx + ν2 v yy + θ,

ux + v y = 0,

θt + uθx + vθy = κ1θxx + κ2θyy,

(1.2)

which also include the horizontal dissipation ν1uxx and ν1 vxx , and the horizontal diffusivity κ1θxx . The
Boussinesq equations model buoyancy-driven flows such as atmospheric fronts and oceanic circulation
(see e.g. [14,16]). One fundamental issue concerning the Boussinesq equations is whether or not their
classical solutions are always global in time. When all parameters ν1, ν2, κ1 and κ2 are positive, this
issue has long been resolved (see e.g. [2]). When all four parameters are zero, the global regularity
problem is currently open.

Important progress has recently been made on the cases when some of the parameters are zero.
In [4], Chae established the global regularity for the cases when κ1 = κ2 = 0 or when ν1 = ν2 = 0.
In [12] Hou and Li obtained the global regularity for the case when κ1 = κ2 = 0. Very recently Danchin
and Paicu [7] successfully settled the global regularity issue for the cases when ν1 > 0 and ν2 = κ1 =
κ2 = 0 or when κ1 > 0 and ν1 = ν2 = κ2 = 0. When ν1 > 0 and ν2 = κ1 = κ2 = 0, the full Boussinesq
equations reduce to

⎧⎪⎪⎨
⎪⎪⎩

ut + uux + vu y = −px + ν1uxx,

vt + uvx + v v y = −p y + ν1 vxx + θ,

ux + v y = 0,

θt + uθx + vθy = 0

(1.3)

and the vorticity ω = vx − u y satisfies

ωt + uωx + vωy = ν1ωxx + θx.

Since the partial derivative ωxx matches that of θx , the derivative in θx can be shifted to ω through
integration by parts in the process of energy estimates. Therefore, one can avoid bounding θx and still
get a global bound for ω. This convenience plays a crucial role in establishing the global regularity for
the case ν1 > 0 and ν2 = κ1 = κ2 = 0.

However, the vorticity equation associated with (1.1) is given by

ωt + uωx + vωy = ν1ωyy + θx

and the mismatch of the derivatives in ωyy and θx makes it much harder to derive a global bound
for the vorticity. Therefore, it appears to be necessary to estimate ω (or (∇u,∇v)) and ∇θ simulta-
neously. We then have to bound the term

∫

R2

ux(θx)
2 dx dy,
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which is hard to handle due to the lack of dissipation and diffusivity in the horizontal direction. If we
make the assumption that the vertical velocity v satisfies

T∫

0

∥∥v(·, t)
∥∥2

∞ dt < ∞, (1.4)

then an H1-bound can be established for (u, v, θ) on the time interval [0, T ]. In addition, we can
further show that (u, v, θ) is actually a classical solution on [0, T ] if the initial data (u0, v0, θ0) is
sufficiently smooth, say in H2. We remark that the condition in (1.4) is a regularity criterion (or
blowup criterion). We leave the details to Section 3.

Invoking the logarithmic Sobolev inequality (see [3,7])

‖ f ‖L∞(R2) � C sup
r�2

‖ f ‖r√
r

(
ln

(
e + ‖ f ‖H2(R2)

)) 1
2 , (1.5)

we can replace the assumption in (1.4) by

T∫

0

sup
r�2

‖v(·, t)‖2
r

r
dt < ∞. (1.6)

We do not know if (1.6) holds at this moment. What we are able to show is that, for any r � 1 and
t � T ,

∥∥v(·, t)
∥∥

2r < C(r, T ) < ∞

where C(r, T ) is an exponential function of r and T . This bound is proven in Section 2.
If we add to the equation for θ an extra dissipative term ε(−�)δθ with ε > 0 and δ > 0, then the

resulting equations can be shown to have a global classical solution for any sufficiently smooth initial
data. That is, the following system of equations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut + uux + vu y = −px + νu yy,

vt + uvx + v v y = −p y + νv yy + θ,

ux + v y = 0,

θt + uθx + vθy = κθyy + ε(−�)δθ,

u(x, y,0) = u0(x, y), v(x, y,0) = v0(x, y), θ(x, y,0) = θ0(x, y),

(1.7)

is globally well-posed for smooth (u0, v0, θ0). This is established in Section 4. We take this op-
portunity to mention a few recent papers on the 2D Boussinesq equations with fractional dissipa-
tion. In [10] and [11] Hmidi, Keraani and Rousset showed the global well-posedness of the Euler–
Boussinesq system with critical dissipation, namely (1.7) with ν = κ = 0, ε = 1 and δ = 1/2 and of
the Boussinesq–Navier–Stokes system with critical dissipation. In [15] Miao and Xue established the
global regularity of the 2D Boussinesq equations with fractional dissipation and thermal diffusion
whose total fractional power is greater than or equal to 1. Some other interesting recent results on
the 2D Boussinesq equations can be found in [1,5,6,8,9].
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2. A bound for the vertical velocity in Lebesgue spaces

This section establishes a global bound for the vertical velocity v of (1.1) in Lebesgue spaces. For
notational convenience, we omit dx dy in the integrals over (x, y) ∈ R2.

Theorem 2.1. Let r � 1. Then, for any smooth solution (u, v, θ) of (1.1),

∥∥v(·, t)
∥∥

2r � eC1r3(‖(u0,v0)‖2+‖θ0‖2t)2(‖v0‖2r + C2
(
r3‖θ0‖2

2r
r+1

+ ‖θ0‖2
2r

)
t
)
, (2.1)

where C1 and C2 are constants independent of r and t.

To prove this theorem, we first state the following basic a priori bounds.

Proposition 2.2. Let (u, v, θ) be a smooth solution of (1.1). Then

∥∥(
u(t), v(t)

)∥∥2
2 + 2ν

t∫

0

∥∥(
u y(τ ), v y(τ )

)∥∥2
2 dτ = (∥∥(u0, v0)

∥∥
2 + t‖θ0‖2

)2
(2.2)

and, for any q � 2,

∥∥θ(t)
∥∥q

q + κq(q − 1)

t∫

0

∥∥θy|θ | q−2
2 (τ )

∥∥2
2 dτ = ‖θ0‖q

q. (2.3)

In particular, for 2 � q � ∞,

∥∥θ(t)
∥∥

q � ‖θ0‖q. (2.4)

Proof of Theorem 2.1. Taking the inner product of the second equation in (1.1) with v|v|2r−2 and
integrating by parts, we obtain

1

2r

d

dt

∫
|v|2r + ν(2r − 1)

∫
v2

y|v|2r−2 = (2r − 1)

∫
pv y|v|2r−2 +

∫
θ v|v|2r−2. (2.5)

By Hölder’s inequality,

∫
θ v|v|2r−2 � ‖θ‖2r‖v‖2r−1

2r , (2.6)

∫
pv y|v|2r−2 � ‖p‖2r

∥∥v y|v|r−1
∥∥

2

∥∥|v|r−1
∥∥ 2r

r−1
. (2.7)

Obviously,

∥∥|v|r−1
∥∥ 2r

r−1
= ‖v‖r−1

2r . (2.8)

By Sobolev’s inequality, for a constant C independent of r,

‖p‖2r � Cr‖∇p‖ 2r
r+1

. (2.9)
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To further the estimate for p, we take the divergence of the first two equations in (1.1) to get

�p = −(uux + vu y)x − (uvx + v v y)y + θy

= −2(vu y)x − 2(v v y)y + θy .

Since Riesz transforms are bounded on L
2r

r+1 , we have

‖∇p‖ 2r
r+1

� 2
(‖vu y‖ 2r

r+1
+ ‖v v y‖ 2r

r+1

) + ‖θ‖ 2r
r+1

� 2
(‖u y‖2 + ‖v y‖2

)‖v‖2r + ‖θ‖ 2r
r+1

. (2.10)

Combining (2.7)–(2.9) and (2.10) and by Young’s inequality, we have

(2r − 1)

∫
pv y|v|2r−2 � ν(2r − 1)

2

∥∥v y|v|r−1
∥∥2

2 + C(ν)r3(‖u y‖2
2 + ‖v y‖2

2

)‖v‖2r
2r

+ C(ν)r3‖v‖2r−2
2r ‖θ‖2

2r
r+1

, (2.11)

where C(ν) is constant depending on ν only. Now, (2.5), (2.6) and (2.11) yield

d

dt
‖v‖2r

2r + 2r(2r − 1)ν

∫
v2

y|v|2r−2

� C(ν)r4(‖u y‖2
2 + ‖v y‖2

2

)‖v‖2r
2r + C(ν)r4‖v‖2r−2

2r ‖θ‖2
2r

r+1
+ 2r‖θ‖2r‖v‖2r−1

2r . (2.12)

(2.1) then follows from Gronwall’s inequality and Proposition 2.2. In fact, by ignoring the second term
on the left and then dividing each side by ‖v‖2r−2

2r , we have

d

dt
‖v‖2

2r � C(ν)r3(‖u y‖2
2 + ‖v y‖2

2

)‖v‖2
2r + C(ν)r3‖θ0‖2

2r
r+1

+ ‖θ0‖2r‖v‖2r

�
(
C(ν)r3(‖u y‖2

2 + ‖v y‖2
2

) + 1
)‖v‖2

2r + C(ν)r3‖θ0‖2
2r

r+1
+ ‖θ0‖2

2r .

Applying Gronwall’s inequality and recalling the L2-bound in (2.2), we obtain the desired inequality
in (2.1). �
3. Conditional global regularity for (1.1)

This section establishes the following global regularity result.

Theorem 3.1. Assume (u0, v0, θ0) ∈ H2(R2) and let (u, v, θ) be the corresponding solution of (1.1). Suppose
v satisfies

T∫

0

∥∥v(t)
∥∥2

∞ dt < ∞, (3.1)

then (u, v, θ) remains regular on [0, T ], namely (u, v, θ) ∈ C([0, T ]; H2).
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The proof of this theorem is divided into two major parts. The first part establishes the H1-bound
and the second part provides higher-order estimates. We will need the following lemma from [3].

Lemma 3.2. Assume that f , g, g y , h and hx are all in L2(R2). Then,

∫

R2

| f gh|dx dy � C‖ f ‖2‖g‖1/2
2 ‖g y‖1/2

2 ‖h‖1/2
2 ‖hx‖1/2

2 . (3.2)

3.1. H1-bound

Proposition 3.3. Assume (u0, v0, θ0) ∈ H1 . Let (u, v, θ) be the corresponding solution of (1.1). If v satis-
fies (3.1), then (u, v, θ) obeys

(u, v, θ) ∈ C
([0, T ]; H1).

Proof. Adding the inner products of the first equation in (1.1) with �u and of the second equation
with �v and integrating by parts, we obtain

1

2

d

dt

∥∥(∇u,∇v)
∥∥2

2 + ν
∥∥(∇u y,∇v y)

∥∥2
2 = I1 + I2 + I3, (3.3)

where

I1 = −
∫

u3
x , I2 = −

∫
v3

y, I3 =
∫

(θx vx + θy v y).

To estimate I1, we apply Lemma 3.2 and Young’s inequality to obtain

I1 = −
∫

ux v2
y

� C‖ux‖2‖v y‖
1
2
2 ‖vxy‖

1
2
2 ‖v y‖

1
2
2 ‖v yy‖

1
2
2

� ν

4
‖vxy‖2

2 + ν

4
‖v yy‖2

2 + C‖v y‖2
2‖ux‖2

2. (3.4)

The estimate for I2 is similar and

I2 � ν

4
‖vxy‖2

2 + ν

4
‖v yy‖2

2 + C‖v y‖4
2. (3.5)

By Hölder’s and Young’s inequality

I3 � ‖∇θ‖2‖∇v‖2 � 1

2
‖∇θ‖2

2 + 1

2
‖∇v‖2

2. (3.6)

Taking the inner product of the third equations in (1.1) with �θ and integrating by parts, we have

1

2

d

dt
‖∇θ‖2

2 + κ‖∇θy‖2
2 = J1 + J2 + J3 + J4, (3.7)

where
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J1 = −
∫

uxθ
2
x , J2 = −

∫
vxθxθy, J3 = −

∫
u yθxθy, J4 = −

∫
v yθ

2
y .

By ux + v y = 0, integration by parts and basic inequalities,

J1 =
∫

v yθ
2
x = −2

∫
vθxθxy

� 2‖v‖∞‖θx‖2‖θxy‖2

� κ

4
‖θxy‖2

2 + C‖v‖2∞‖θx‖2
2. (3.8)

By integration by parts,

J2 =
∫

(θ vxyθx + θ vxθxy)

� ‖θ‖∞‖vxy‖2‖θx‖2 + ‖θ‖∞‖θxy‖2‖vx‖2

� ν

4
‖vxy‖2

2 + κ

4
‖θxy‖2

2 + ‖θ‖2∞
(‖vx‖2

2 + ‖θx‖2
2

)
. (3.9)

By Lemma 3.2,

J3 � C‖u y‖2‖θx‖
1
2
2 ‖θxy‖

1
2
2 ‖θy‖

1
2
2 ‖θxy‖

1
2
2

� κ

4
‖θxy‖2

2 + C‖u y‖2
2‖∇θ‖2

2. (3.10)

Similarly,

J4 � κ

4
‖θxy‖2

2 + C‖v y‖2
2‖∇θ‖2

2. (3.11)

Combining (3.3)–(3.10) and (3.11), we find

d

dt

∥∥(∇u,∇v,∇θ)
∥∥2

2 + ν
∥∥(∇u y,∇v y)

∥∥2
2 + κ‖∇θy‖2

2

� C
(∥∥(u y, v y)

∥∥2
2 + ‖θ‖2∞ + 1

)∥∥(∇u,∇v,∇θ)
∥∥2

2 + C‖v‖2∞‖θx‖2
2

Gronwall’s inequality then yields the desired result. �
3.2. Higher-order bounds

Proposition 3.4. Assume (u0, v0, θ0) ∈ H2(R2) and let (u, v, θ) be the corresponding solution of (1.1). Sup-
pose v satisfies (3.1), then (u, v, θ) ∈ C([0, T ]; H2).

Proof. Adding the inner products of the first three equations in (1.1) with �2u, �2 v and �2θ , re-
spectively, and integrating by parts, we have

1

2

d

dt

(‖�u‖2
2 + ‖�v‖2

2 + ‖�θ‖2
2

) + ν‖�u y‖2
2 + ν‖�v y‖2

2 + κ‖�θy‖2
2

= −
∫

�(uux + vu y)�u + �(uvx + v v y)�v + �(uθx + vθy)�θ − �θ�v.
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We split the right-hand side into several terms and estimate each of them separately.

I1 ≡
∫

�(uux + vu y)�u

=
∫ (

ux(�u)2 + u y�v�u + 2∇u · ∇ux�u + 2∇v · ∇u y�u
)

= I11 + I12 + I13 + I14.

By Lemma 3.2, Young’s inequality and ux + v y = 0,

I11 � C‖�u‖2‖�u‖
1
2
2 ‖�u y‖

1
2
2 ‖ux‖

1
2
2 ‖uxx‖

1
2
2

� ν

16
‖�u y‖2

2 + C‖ux‖
2
3
2 ‖uxx‖

2
3
2 ‖�u‖2

2

� ν

16
‖�u y‖2

2 + C‖∇u‖
2
3
2 ‖vxy‖

2
3
2 ‖�u‖2

2.

Similarly,

I12 � C‖�u‖2‖�v‖
1
2
2 ‖�v y‖

1
2
2 ‖u y‖

1
2
2 ‖uxy‖

1
2
2

� ν

16
‖�v y‖2

2 + C‖u y‖
2
3
2 ‖uxy‖

2
3
2

(‖�u‖2
2 + ‖�v‖2

2

)

� ν

16
‖�v y‖2

2 + C‖∇u‖
2
3
2 ‖uxy‖

2
3
2

(‖�u‖2
2 + ‖�v‖2

2

)
.

I13 � C‖∇u‖2‖∇ux‖
1
2
2 ‖∇uxx‖

1
2
2 ‖�u‖

1
2
2 ‖�u y‖

1
2
2

= C‖∇u‖2‖∇ux‖
1
2
2 ‖∇vxy‖

1
2
2 ‖�u‖

1
2
2 ‖�u y‖

1
2
2

� ν

16
‖�u y‖2

2 + ν

16
‖�v y‖2

2 + C‖∇u‖2
2‖�u‖2

2.

I14 � C‖∇v‖2‖∇u y‖
1
2
2 ‖∇uxy‖

1
2
2 ‖�u‖

1
2
2 ‖�u y‖

1
2
2

� C‖∇v‖2‖�u‖2‖�u y‖2

� ν

16
‖�u y‖2

2 + C‖∇v‖2
2‖�u‖2

2.

Collecting the estimates for I1, we have

I1 � 3ν

16
‖�u y‖2

2 + 3ν

16
‖�v y‖2

2

+ C
(∥∥(∇u,∇v)

∥∥2
2 + ‖∇u‖

2
3
2

∥∥(∇u y,∇v y)
∥∥ 2

3
2

)(‖�u‖2
2 + ‖�v‖2

2

)
.

In a similar fashion, we can also show that
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I2 ≡
∫

�(uvx + v v y)�v

� ν

8
‖�u y‖2

2 + ν

8
‖�v y‖2

2

+ C
(‖∇v‖2

2 + ∥∥(∇u,∇v)
∥∥ 2

3
2 ‖∇v y‖

2
3
2

)(‖�u‖2
2 + ‖�v‖2

2

)
.

In fact,

I2 ≡
∫

�(uvx + v v y)�v

=
∫ (

vx�u�v + v y(�v)2 + 2∇u · ∇vx�v + 2∇v · ∇v y�v
)

= I21 + I22 + I23 + I24.

These terms can be bounded as follows.

I21 � C‖�v‖2‖�u‖
1
2
2 ‖�ux‖

1
2
2 ‖vx‖

1
2
2 ‖vxy‖

1
2
2

� ν

16
‖�v y‖2

2 + C‖vx‖
2
3
2 ‖vxy‖

2
3
2

(‖�u‖2
2 + ‖�v‖2

2

)

� ν

16
‖�u y‖2

2 + C‖∇v‖
2
3
2 ‖∇v y‖

2
3
2

(‖�u‖2
2 + ‖�v‖2

2

)
.

I22 � C‖�v‖2‖�v‖
1
2
2 ‖�v y‖

1
2
2 ‖v y‖

1
2
2 ‖vxy‖

1
2
2

� ν

16
‖�v y‖2

2 + C‖v y‖
2
3
2 ‖vxy‖

2
3
2 ‖�v‖2

2

� ν

16
‖�u y‖2

2 + C‖∇v‖
2
3
2 ‖∇v y‖

2
3
2 ‖�v‖2

2.

I23 � C‖∇vx‖2‖∇u‖
1
2
2 ‖∇ux‖

1
2
2 ‖�v‖

1
2
2 ‖�v y‖

1
2
2

� ν

16
‖�v y‖2

2 + C‖∇u‖
2
3
2 ‖∇v y‖

2
3
2 ‖�v‖2

2.

I24 � C‖∇v‖2‖∇v y‖
1
2
2 ‖∇vxy‖

1
2
2 ‖�v‖

1
2
2 ‖�v y‖

1
2
2

� ν

16
‖�v y‖2

2 + C‖∇v‖2
2‖�v‖2

2.

We now deal with the third term.

I3 ≡
∫

�(uθx + vθy)�θ

=
∫

(�uθx�θ + 2∇u · ∇θx�θ + �vθy�θ + 2∇v · ∇θy�θ)

= I31 + I32 + I33 + I34.

By ux + u y = 0 and Lemma 3.2, we have the following estimates.
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I31 � C‖θx‖2‖�u‖
1
2
2 ‖�ux‖

1
2
2 ‖�θ‖

1
2
2 ‖�θy‖

1
2
2

� C‖θx‖2‖�u‖
1
2
2 ‖�v y‖

1
2
2 ‖�θ‖

1
2
2 ‖�θy‖

1
2
2

� ν

16
‖�v y‖2

2 + κ

16
‖�θy‖2

2 + C‖θx‖2
2

(‖�u‖2
2 + ‖�θ‖2

2

)
.

I32 � C‖�θ‖2‖∇u‖
1
2
2 ‖∇ux‖

1
2
2 ‖∇θx‖

1
2
2 ‖∇θxy‖

1
2
2

� κ

16
‖�θy‖2

2 + C‖∇u‖
2
3
2 ‖∇v y‖

2
3
2 ‖�θ‖2

2.

I33 � C‖�v‖2‖θy‖
1
2
2 ‖θxy‖

1
2
2 ‖�θ‖

1
2
2 ‖�θy‖

1
2
2

� κ

16
‖�θy‖2

2 + C‖θy‖
2
3
2 ‖θxy‖

2
3
2 ‖�v‖

4
3
2 ‖�θ‖

2
3
2

� κ

16
‖�θy‖2

2 + C‖θy‖
2
3
2 ‖θxy‖

2
3
2

(‖�v‖2
2 + ‖�θ‖2

2

)
.

I34 � C‖∇v‖2‖∇θy‖
1
2
2 ‖∇θxy‖

1
2
2 ‖�θ‖

1
2
2 ‖�θy‖

1
2
2

� κ

16
‖�θy‖2

2 + C‖∇v‖2
2‖�θ‖2

2.

Collecting these estimates yields

1

2

d

dt

∥∥�(u, v, θ)
∥∥2

2 + ν‖�u y‖2
2 + ν‖�v y‖2

2 + κ‖�θy‖2
2

� C
(∥∥∇(u, v, θ)

∥∥2
2 + ∥∥∇(u, v, θ)

∥∥ 2
3
2

∥∥∇(u y, v y, θy)
∥∥ 2

3
2

)∥∥�(u, v, θ)
∥∥2

2

Gronwall’s inequality, together with Proposition 3.3, then leads to the desired bound. �
4. Global regularity for (1.7)

This section establishes the global regularity of (1.7). We first state it as a rigorous theorem.

Theorem 4.1. Let (u0, v0, θ0) ∈ H2(R2). Then (1.7) with ν > 0, κ > 0, ε > 0 and δ > 0 has a unique global
classical solution (u, v, θ).

Proof. To prove this theorem, it suffices to establish the global H1 bound for (u, v, θ) since the
H2 bounds can be similarly obtained as in the proof of Theorem 3.1.

As in the proof of Theorem 3.1, we bound the L2-norm of (∇u,∇v,∇θ) and only one term,
namely J1, is estimated differently here. By integration by parts,

J1 = −
∫

ux(θx)
2 =

∫
v y(θx)

2 = −2
∫

vθxθxy .

Choose q such that qδ > 2. By Hölder’s inequality,

| J1| � 2‖v‖q‖θx‖ 2q
q−2

‖θxy‖2. (4.1)
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By Sobolev’s inequality and setting Λ = (−�)
1
2 , we have

‖θx‖ 2q
q−2

� C‖θx‖1− 2
qδ

2

∥∥Λδθx
∥∥ 2

qδ

2 . (4.2)

Inserting (4.2) in (4.1) and applying Young’s inequality, we obtain

| J1| � κ

4
‖θxy‖2

2 + ε

4

∥∥Λδ∇θ
∥∥2

2 + C‖v‖
2qδ

qδ−2
q ‖θx‖2

2.

Other terms can be estimated as in the proof of Theorem 3.1. Putting together these estimates yields
the following closed inequality

d

dt

∥∥(∇u,∇v,∇θ)
∥∥2

2 + ν
∥∥(∇u y,∇v y)

∥∥2
2 + κ‖∇θy‖2

2 + ε
∥∥Λδ∇θ

∥∥2
2

� C
(∥∥(u y, v y)

∥∥2
2 + ‖θ‖2∞ + 1

)∥∥(∇u,∇v,∇θ)
∥∥2

2 + C‖v‖
2qδ

qδ−2
q ‖θx‖2

2.

The boundedness of ‖(∇u,∇v,∇θ)‖2 on any finite time interval then follows from applying
Gronwall’s inequality. �
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