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1. Introduction

We consider the initial value problem for the 2D Boussinesq equations with vertical viscosity and
vertical diffusivity

U +Uly + VUuy = —Dx + Viyy,

Ve +UVy+VVy =—Dpy +VVyy +0,

uy+vy =0, (1.1)
O + uby + voy = Kk0yy,

ux,y,0)=uox,y), v(xy,00=vox y), 0(xy,0)0=06o(x,Y),
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where u, v, p and @ are scalar functions of (x,y) € R®> and t > 0. Physically, (u, v) denotes the 2D
velocity field, p the pressure, 8 the temperature in the content of thermal convection and the density
in the modeling of geophysical fluids, v the viscosity and « the thermal diffusivity. (1.1) may be useful
in modeling dynamics of geophysical flows for which the vertical dissipation dominates such as in the
large-time dynamics of certain strongly stratified flows (see [13] and the references therein).

This paper aims at the issue of whether (1.1) possesses a global solution for every reasonably
smooth initial data (ug, vo, 6g). We first provide some background and review closely related results.
(1.1) is a very important special case of the general 2D Boussinesq equations

Ut + Ulyx + VUy = —Px + Vilxx + V2lUyy,
Ve +UVx +VVy = =Dy + V1 Vxx + V2Vyy + 6, 12
v, =0 (12)

Or + ubx + vOy = K16k + K20yy,

which also include the horizontal dissipation viuyx and vivy, and the horizontal diffusivity x10x. The
Boussinesq equations model buoyancy-driven flows such as atmospheric fronts and oceanic circulation
(see e.g. [14,16]). One fundamental issue concerning the Boussinesq equations is whether or not their
classical solutions are always global in time. When all parameters vi, V2, k1 and k» are positive, this
issue has long been resolved (see e.g. [2]). When all four parameters are zero, the global regularity
problem is currently open.

Important progress has recently been made on the cases when some of the parameters are zero.
In [4], Chae established the global regularity for the cases when k1 = k3 =0 or when vi =v; =0.
In [12] Hou and Li obtained the global regularity for the case when k1 = k3 = 0. Very recently Danchin
and Paicu [7] successfully settled the global regularity issue for the cases when v; >0 and vy, =«1 =
k2 =0 or when k1 >0 and v; = vy = k3 =0. When v; > 0 and v, = k1 = k =0, the full Boussinesq
equations reduce to

Ut + Uly + VUy = —Px + V1lxx,
Ve+Uuvx +vvy =—py +ViVex +0,
uy+vy =0,

Or +ubx +voy =0

and the vorticity w = vy — uy satisfies

Wt + Uy + Vwy = V1 Wxx + Ox.

Since the partial derivative wyy matches that of 6y, the derivative in 6y can be shifted to w through
integration by parts in the process of energy estimates. Therefore, one can avoid bounding 6y and still
get a global bound for w. This convenience plays a crucial role in establishing the global regularity for
the case v{ >0 and vy =x1 =k =0.

However, the vorticity equation associated with (1.1) is given by

Wt + Uy + Vwy = V1wyy + Ox

and the mismatch of the derivatives in wy, and 6y makes it much harder to derive a global bound
for the vorticity. Therefore, it appears to be necessary to estimate w (or (Vu, Vv)) and V6 simulta-
neously. We then have to bound the term

/ Un(6)2 dxdy,

R2
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which is hard to handle due to the lack of dissipation and diffusivity in the horizontal direction. If we
make the assumption that the vertical velocity v satisfies

T
[Iveol de <o, (14
0

then an H!-bound can be established for (u,v,6) on the time interval [0, T]. In addition, we can
further show that (u, v,0) is actually a classical solution on [0, T] if the initial data (ug, vo, 6p) is
sufficiently smooth, say in H2. We remark that the condition in (1.4) is a regularity criterion (or
blowup criterion). We leave the details to Section 3.

Invoking the logarithmic Sobolev inequality (see [3,7])

1 £l |
| fllLoc g2y < Csup In(e + || flly2r2y)) * » (1.5)
L>(R?) rgzﬁ( ( H(R>))
we can replace the assumption in (1.4) by
T
v(-, t)||?
/sup VG ONF 4 _ . (16)
r>2 r

We do not know if (1.6) holds at this moment. What we are able to show is that, for any r > 1 and
t<T,

HV(-, t)HZr <Cr,T) <o

where C(r, T) is an exponential function of r and T. This bound is proven in Section 2.

If we add to the equation for  an extra dissipative term €(—A)?6 with € > 0 and § > 0, then the
resulting equations can be shown to have a global classical solution for any sufficiently smooth initial
data. That is, the following system of equations

Ut + Uly + VUy = —DPx + VUyy,

Ve+uvx+vvy =—py+vvyy +0,

Uy +vy =0, (1.7)
O + uby + vOy = kOyy + €(—A)°0,

ux,y,0)=uox,y), v,y 0 =voky), 0xy,0 =0, y),

is globally well-posed for smooth (ug, vg,6p). This is established in Section 4. We take this op-
portunity to mention a few recent papers on the 2D Boussinesq equations with fractional dissipa-
tion. In [10] and [11] Hmidi, Keraani and Rousset showed the global well-posedness of the Euler-
Boussinesq system with critical dissipation, namely (1.7) with v=k =0, e =1 and § =1/2 and of
the Boussinesq-Navier-Stokes system with critical dissipation. In [15] Miao and Xue established the
global regularity of the 2D Boussinesq equations with fractional dissipation and thermal diffusion
whose total fractional power is greater than or equal to 1. Some other interesting recent results on
the 2D Boussinesq equations can be found in [1,5,6,8,9].
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2. A bound for the vertical velocity in Lebesgue spaces

This section establishes a global bound for the vertical velocity v of (1.1) in Lebesgue spaces. For
notational convenience, we omit dxdy in the integrals over (x, y) € R2.

Theorem 2.1. Let r > 1. Then, for any smooth solution (u, v, 0) of (1.1),
3 2
Hv(.’ t) ||2r g eC]f (IIuo,vo)ll2+I16oll2t) (”VO”Zr + CZ (r3||00||227r1 4 ”00”%r)t)’ (21)
r+

where C1 and Cy are constants independent of r and t.
To prove this theorem, we first state the following basic a priori bounds.

Proposition 2.2. Let (u, v, 8) be a smooth solution of (1.1). Then

t

| (@®, vo) |5 +2v f [ (uy (), vy (@) [3d7 = (|| o, vo) |, + El160l12)” (2.2)
0

and, for any q > 2,

t
lo@]g +xata- 1)/||ey|0|¥<r>||§dr = 160]1§. (23)
0

In particular, for 2 < q < 00,
[EIG) Hq < l10ollq- (2.4)

Proof of Theorem 2.1. Taking the inner product of the second equation in (1.1) with v|v|**~2 and
integrating by parts, we obtain

1d

peai [ WP ever=n [ B =er-n [pv vt fonvert @s)

By Hoélder’s inequality,

[ovv2 <ponaviz. (2.6)
f1:>vy|v|2f—2 <Uplar vyl v 2 - (2.7)

Obviously,
[Vt e = vl (2.8)

By Sobolev’s inequality, for a constant C independent of r,

IPllzr < CrIVPI 2 - (2.9)
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To further the estimate for p, we take the divergence of the first two equations in (1.1) to get

Ap =—(Uly + Vuy)y — (UVx +VVy)y + 0y

2r
Since Riesz transforms are bounded on L7+T, we have
IVDPIl 2 <2(llvuyll 2 + vyl 2 )+ 1160]] 2r
41 r+1 r+1 r+1
<2(luyll2 + llvyli2)Iviiar + 161 2 . (2.10)
r+1

Combining (2.7)-(2.9) and (2.10) and by Young’s inequality, we have

v(2r—1
% [vy v =5 + e (luy 13 + vy 13) v I3

+ C<v>r3||v||§:—2||e||22_r] : (211)
r+

Qr — 1>/pvy|v|2f—2 <

where C(v) is constant depending on v only. Now, (2.5), (2.6) and (2.11) yield

d 2r 2 2r—2
a||v||2r + 2r2r — 1)vay|v|

<C<v>r4(||uy||§+||vy||§)||v||%:+C<v>r4||v||§£‘2||e||22_r1 F2r0l2r v (212)
r+

(2.1) then follows from Gronwall’s inequality and Proposition 2.2. In fact, by ignoring the second term

on the left and then dividing each side by ||v||§£_2, we have

d
Envu%r <crP(luyl3 + vy l3)Ivig, + C<v)r3||eo||22_r1 + 160ll2r IV Il2r
r+

< (€ (luyl3 + lvyl3) + 1) v, + C<v>r3||eo||'f% + 116013,

Applying Gronwall’s inequality and recalling the L?-bound in (2.2), we obtain the desired inequality
in (21). O

3. Conditional global regularity for (1.1)

This section establishes the following global regularity result.

Theorem 3.1. Assume (ug, Vo, 6g) € H2(R?) and let (u, v, 0) be the corresponding solution of (1.1). Suppose
v satisfies

T
[1vol <o 1)
0

then (u, v, 0) remains regular on [0, T], namely (u, v,0) € C([0, T]; HZ).
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The proof of this theorem is divided into two major parts. The first part establishes the H'-bound
and the second part provides higher-order estimates. We will need the following lemma from [3].

Lemma 3.2. Assume that f, g, gy, h and hy are all in L?(R?). Then,

1/2 1/2 1/2 1/2
f|fgh|dxdy<cnf||zngn2/ gy 132 1l 2 lhglls2. (3.2)
RZ

3.1. H'-bound

Proposition 3.3. Assume (ug, vo, o) € H'. Let (u, v, 0) be the corresponding solution of (1.1). If v satis-
fies (3.1), then (u, v, ) obeys

(u,v,0) e C([0, T]; H').

Proof. Adding the inner products of the first equation in (1.1) with Au and of the second equation
with Av and integrating by parts, we obtain

1d , ,
Sl Ve VD +v[(Vuy, Vv [ =l + 1o+ 15, (3.3)

where

To estimate I, we apply Lemma 3.2 and Young’s inequality to obtain

_ 2
I = fuxvy
1 1 1 1

< Clluxll2 vy I3 Tvay 13 1Tvy I3 Tvyy Il

< S 1y I3+ vy 3+ Cllvy I3 uxl3. (34)
The estimate for I, is similar and
I < %nvxyu% - zuvyyu% +Cllvyll3 (3.5)
By Hoélder’s and Young's inequality
1 2 1 2
I3 <IVOI2l VY2 < SIVOIS + S IV VIS, (3.6)

Taking the inner product of the third equations in (1.1) with A6 and integrating by parts, we have

| =

IVOII5 +KklIVOy I3 = J1+ J2+ J3+ Ja (3.7)

N[ —
Qu

t

where
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_’1:—/Ux93’ ]2:_/VX0XQY» ]3:_fuy0x6y’ ]4:—/\/;,93.

By uyx + vy =0, integration by parts and basic inequalities,

< 2[Vilool1Ox 12116y II2

K
< Znexyn% + ClIvIIA l16xll3 (3.8)

By integration by parts,

J2= /(evxygx + 0vxOxy)

S NElloollVay l12116xl12 4 101lco [|Oxy 121 Vill2

< guvxyn% + %nexyn% + 10112, (I1vall5 + 116x113).- (3.9)
By Lemma 3.2,
1 1 1 1
J3 < Clluy 12110113 16xy 13 16y 113 16xy 112
< %nexyu% + Clluy I51VOll5. (3.10)
Similarly,
Ja< %nexyu% + Cllvy I31Vel5. (3.11)

Combining (3.3)-(3.10) and (3.11), we find

d 2 2 2
2 (VU Vv, VO[3 + v ][ (Vuy, Vvy) [ + 11 Voy I3
< C(|[y, vy |5 + 1612 + 1) (Vu, Vv, VO) |5 + ClIvIZ 16413
Gronwall’s inequality then yields the desired result. O

3.2. Higher-order bounds

Proposition 3.4. Assume (ug, Vo, 6p) € H2(R?) and let (u, v, ) be the corresponding solution of (1.1). Sup-
pose v satisfies (3.1), then (u, v,0) € C([0, T]; HZ).

Proof. Adding the inner products of the first three equations in (1.1) with A%u, A%v and A26, re-
spectively, and integrating by parts, we have

d
E(nAun% +IAVIZ 4+ 11A013) + viAuyll3 + vIIAvy |5 + Kkl A6y |13

N[ =

= —/ A(uuy + vuy) Au + A(uvy + vvy)Av + A(uby + voy) A0 — AOAv.
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We split the right-hand side into several terms and estimate each of them separately.

I E/A(uux—i-vuy)Au

= f(ux(Au)Z + Uy AvAU+2Vu - VuyAu +2Vv - VuyAu)
=I11 + I+ 13 + ha.
By Lemma 3.2, Young's inequality and uy 4+ vy =0,

1 11 1
i1 < CllAullzllAully [ Auy I3 luxlly luxwll;

v 2 % % 2
< EllAUyllz + Clluxlly luxxlly 1Aull;

v 2 % % 2
< EllAUyllz + ClIVull5 vy ll5 l1Aull5.

Similarly,

1 1 1 1
Iz < CllAull2l[AVI TAVylly luylly luxyll;

V 2 2
< E||Avy||§ + Clluy I3 luxy I3 (lAul3 + [1AV]3)

V 2 2
< E||Avy||% + ClIVul3 luxy I3 (I1AUl3 + 11AV]3).

1 1 1 1

I3 < CIVull2 [ Vully I Vuxdly 1Aully | Auylly
STENEN SUNRE SO

= ClIVull2[[Vuxliz IVvxylly [Aully [Auyll

< ZAu 2 + 2 1AV I2 + ClVull2 | Aul?
\16” Uy||2+16|| vyll5 + ClIVull5][Aull;.

1 1 1 1
Ia <CIVVI NI Vuy ll5 [ Vuxylly |1 Aully | Auyly

S CIVvizllAulizlAuyl2
Vv

16||Auy||% +CIVv[3lAul3.

<

Collecting the estimates for I, we have
3y 5 3V 2
IT < E”Auynz + E”Avy”z

2 2
+C(|(Vu, I3+ 1Vul3 [(Vuy, Vvy) |3 (laul3 + [Av]3).

In a similar fashion, we can also show that
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IzE/A(UVX+VVy)AV
v 2, Y 2
< §||Auy||2+ §||Avy||2

2 2
+C(IVVIB + |(Vu, V) [ 1IVvy 13 (I Aull3 + lAv]3).

In fact,

IzE/A(UVX—I—VVy)AV
= /(vauAv + vy (AV)? +2Vu - VV AV +2VV - Vv, Av)

=1Iz1 + Iz + 123 + I24.

These terms can be bounded as follows.

1 1 1 1
Iy < CllAVI2[[Aully |Auxlly Tvxll; vyl

V 2 2
< EnAvyn% + Cllvl Ivayll3 (IAUl3 + A VI3)

v 2 % % 2 2
< AUy I3+ CIVVI IV vyl (IAulls + 1Av3).

1 1 1 1
Lo <CIAVIZIAVIZ TAVylIZ Tvyll3 vyl

v 2 % z 2
< EllAVyllz + Cllvyll; vy ll; TAV]IS

V 2 2 2 2
< EllAuyllz + VI IVVyll; [AV]5.

1 1 1 1

Iz <CIIVvxl2Vull5 IVuxll5 [AVIS 1AVl
v 2 2 % 2
< EIIAVyllz + ClIVull; IVvyll; 1AV]5.

1 1 1 1
La <CIVVI2NIVVyll3 IVVey 3 AV T AVyl;

v 2 2 2
< g lavy B+ CIvviBiavis.
We now deal with the third term.
I3 = f A(uby + vOy)AH

— /(Au@XAQ 42V - VOAD + AV, AD + 2V v - VO, AO)
= I31 + I32 + I33 + I34.

By ux +uy, =0 and Lemma 3.2, we have the following estimates.
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1 1 1 1
I3y < Cllbxll2l Aully [[Auxliy 1AO1 1AGy I
1 1 1 1

< Clioxll2llAully [Avyll3 A0S A0y

VY K
< EnAvyn% + EuAeyu% + Cl6l3(IAul3 + 1A0]13).

1 1 1 1
I32 < CIAO N2 Vully Vuxlly VOIS 1VOxy Il

K 2 % % 2
< ﬁllAlelz + ClIVull; IVvyll; 1A8]]5.

1 1 1 1
I33 < CILAVII21I0y 15 16xy I3 1AO1 A0y 11

2 4 2
3

K 2 2 4 2
< EIIAQyH% + CliOyll5 16xy 5 1AV 1AO 5

K 2 5 5 2 2
< EHA@yllz + CllOy 5 1Oxyl5 (llAVHz + ||A9||2)-

1 1 1 1

I34 < CIVVI2IVOy 115 I VOxy ll5 1AB]S | ABy IS

< X A0 12 + CIVV 2| AG|2

< 16|| ylI5 + CIIVVI5][AO]5.

Collecting these estimates yields

| =

2
| A, v,0)|5 + vilAuyll5 + vIIAvy |5 + K[ A6y |13

N =
Q

t
2 2
<C(IVav. o) + [V v.o) 3 [Vay. vy 6)]3) [ A v.0)];
Gronwall’s inequality, together with Proposition 3.3, then leads to the desired bound. O
4. Global regularity for (1.7)

This section establishes the global regularity of (1.7). We first state it as a rigorous theorem.

Theorem 4.1. Let (ug, Vo, 0p) € H*(R?). Then (1.7) with v > 0, k > 0, € > 0 and § > 0 has a unique global
classical solution (u, v, ).

Proof. To prove this theorem, it suffices to establish the global H! bound for (u,v,6) since the
H? bounds can be similarly obtained as in the proof of Theorem 3.1.

As in the proof of Theorem 3.1, we bound the L%*-norm of (Vu, Vv, V6) and only one term,
namely Ji, is estimated differently here. By integration by parts,

Ji=- / ux(6y)* = / vy (6x)* = —2 / VOxOyy.

Choose q such that gé > 2. By Holder’s inequality,

1l < 2||V||q||9x||quqzll9xyllz- (4.1)
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By Sobolev’s inequality and setting A = (—A)%, we have

=351 460 | @
<Clexlly * [[A%6]5" (4.2)

q
-2

[10x]l 2
q

Inserting (4.2) in (4.1) and applying Young’s inequality, we obtain

2q8

K € 2 =
1< 21013+ 2 A°V6 |3 + Clvi™ 6xi3.

Other terms can be estimated as in the proof of Theorem 3.1. Putting together these estimates yields
the following closed inequality

d
VU Vv Vo) |5+ v (Vuy. vy |5 + VO, 15 + e 2°Vo

2q6

< C(|wy, vy 5+ 1612 + 1) (Y, Vv, Vo) | + ClIvI 2 [16113.

The boundedness of |[(Vu,Vv,V0)|> on any finite time interval then follows from applying
Gronwall’s inequality. O

Acknowledgments

Cao is partially supported by NSF grant DMS 0709228 and an FIU foundation. Wu is partially
supported by NSF grant DMS 0907913 and a Foundation at OSU.

References

[1] H. Abidi, T. Hmidi, On the global well-posedness for Boussinesq system, J. Differential Equations 233 (2007) 199-220.
[2] J.R. Cannon, E. DiBenedetto, The initial value problem for the Boussinesq equations with data in LP, in: Lecture Notes in
Math., vol. 771, Springer, Berlin, 1980, pp. 129-144.
[3] C. Cao, J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion,
arXiv:0901.2908v1 [math.AP], 19 January 2009.
[4] D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math. 203 (2006) 497-513.
[5] R. Danchin, M. Paicu, Existence and uniqueness results for the Boussinesq system with data in Lorentz spaces, Phys. D 237
(2008) 1444-1460.
[6] R. Danchin, M. Paicu, Global well-posedness issues for the inviscid Boussinesq system with Yudovich’s type data, Comm.
Math. Phys. 290 (2009) 1-14.
[7] R. Danchin, M. Paicu, Global existence results for the anisotropic Boussinesq system in dimension two, arXiv:0809.4984v1
[math.AP], 19 September 2008.
[8] T. Hmidi, S. Keraani, On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity, Adv.
Differential Equations 12 (2007) 461-480.
[9] T. Hmidi, S. Keraani, On the global well-posedness of the Boussinesq system with zero viscosity, Indiana Univ. Math. J. 58
(2009) 1591-1618.
[10] T. Hmidi, S. Keraani, F. Rousset, Global well-posedness for Euler-Boussinesq system with critical dissipation,
arXiv:0903.3747v1 [math.AP], 22 March 2009.
[11] T. Hmidi, S. Keraani, F. Rousset, Global well-posedness for a Boussinesq-Navier-Stokes system with critical dissipation,
arXiv:0904.1536v1 [math.AP], 9 April 2009.
[12] T. Hou, C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst. 12 (2005) 1-12.
[13] AJ. Majda, M.J. Grote, Model dynamics and vertical collapse in decaying strongly stratified flows, Phys. Fluids 9 (1997)
2932-2940.
[14] AJ. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lect. Notes Math., vol. 9, AMS/CIMS,
2003.
[15] C. Miao, L. Xue, On the global well-posedness of a class of Boussinesq—Navier-Stokes systems, arXiv:0910.0311 [math.AP],
2 October 2009.
[16] J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1987.



