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Summary. In this paper we establish several properties concerning solutions of the 3D
magnetohydrodynamic (MHD) equations including global regularity conditions, a priori
bounds, and real analyticity. We also explore two new approaches to the viscous and
resistive MHD equations.
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1. Introduction

Magnetohydrodynamics (MHD), the science of the motion of an electrically conducting
fluid in the presence of a magnetic field, consists essentially of the interaction between
the fluid velocity and the magnetic field. Electric currents induced in the fluid as a
result of its motion modify the field; at the same time their flow in the magnetic field
leads to mechanical forces which modify the motion. The equations of MHD are the
usual hydrodynamic and electromagnetic equations, modified to take this interaction into
account. If u is the fluid velocity, b the magnetic field, and j the current density, then

∂t u + u · ∇u = −∇ p + ν1�u + j × b + f, (1.1)

∂t b = ∇ × (u × b) + ν2�b + g, (1.2)
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where p is the pressure, ν1 the kinematic viscosity, ν2 the magnetic diffusivity, f repre-
sents volume force applied to the fluid, and g is usually zero when Maxwell’s displace-
ment currents are ignored. In the equation of motion (1.1) j and b are related through
Ampére’s law ∇ × b = µj , where the permeability µ is always a constant and will be
set equal to 1 for the sake of clarity. Eliminating j from (1.1) gives

∂t u + u · ∇u = −∇ P + ν1�u + b · ∇b + f, (1.3)

with P = p + b2/2. For an incompressible fluid,

∇ · u = 0, (1.4)

and we will also assume that b is divergence-free,

∇ · b = 0, (1.5)

which is almost a consequence of Faraday’s law [14, p. 11]. The equations (1.2), (1.3),
(1.4), and (1.5) constitute a complete set of incompressible MHD equations.

One of the fundamental issues arising naturally in the study of the MHD equations
is how this fully nonlinear dynamic system evolves given a particular initial state. In
contrast to linear equations, this nonlinear system obeys much more complicated laws
that remain to be unearthed. In this paper we focus on two aspects of nonlinear magne-
tohydrodynamics. First, we consider long time evolution of an initially smooth profile
of the velocity u and magnetic field b. Mathematically, this is an issue of global (in time)
existence for smooth solutions. Second, we construct two new formulations that are ac-
tually equivalent to the MHD equations (1.2) and (1.3). These formulations describe the
nonlinear MHD from different perspectives and have potential applications in the study
of magnetic reconnection [10]. It is likely that the investigation of these two aspects
of magnetohydrodynamics will increase our understanding of the nonlinear interaction
between the fluid velocity and the magnetic field.

We now outline some of our major results that will be presented in this paper along with
their impact and relevant background information. We start with the long time evolution
of a given smooth initial state under the nonlinear MHD. In the two-dimensional case,
any smooth solution of the MHD equations with ν1 > 0 and ν2 > 0 is global in time
([8],[11]). But no such result for three-dimensional (3D) MHD equations is available.
In fact, whether smooth solutions of the 3D MHD equations break down in a finite time
remains an outstanding open issue. Let us briefly mention some of recent efforts devoted
to this open problem. In [3] Caflisch, Klapper, and Steele extended the well-known result
of Beale, Kato, and Majda [2] for fluids to MHD to conclude that the maximum norms
of the vorticity ω and the current density j control the breakdown of smooth solutions
of the 3D MHD. In [16] we related any possible singularity of u and b to the geometric
directions of ω and j and derived a condition with the geometric interpretation that no
finite-time singularity is possible without first developing very small scales. In the two
sections that follow, we focus on two very special functionals of u and b,

∫ T

0
(‖∇u(·, t)‖p1

L2 + ‖∇b(·, t)‖p1

L2) dt (1.6)
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and ∫ T

0
(‖u(·, t)‖p2

L∞ + ‖b(·, t)‖p2
L∞) dt, (1.7)

where T > 0, p1 and p2 are real indices. We show in Section 2 that if (1.6) with p1 = 4
or (1.7) with p2 = 2 is finite, i.e., if∫ T

0
(‖∇u(·, t)‖4

L2 + ‖∇b(·, t)‖4
L2) dt < ∞ (1.8)

or ∫ T

0
(‖u(·, t)‖2

L∞ + ‖b(·, t)‖2
L∞) dt < ∞, (1.9)

then u and b remain smooth over [0, T ] and no breakdown can happen in this time
interval. Intuitively this result states that derivatives of u and b at any order can be
majorized by either (1.6) with p1 = 4 or (1.7) with p2 = 2. The condition in (1.9) falls
into the category of Serrin type for fluids ([6],[12],[13]); it is significant because it does
not impose any restriction on derivatives of u and b.

It is currently not known if (1.8) or (1.9) holds for all T > 0. Efforts devoted to
verifying (1.8) or (1.9) by direct manipulation of the MHD equations have so far been
futile; the difficulty comes from the nonlinear coupling between the equation of motion
(1.3) and that of electromagnetics (1.2). However, (1.6) with p1 = 2 and (1.7) with
p2 = 1 are indeed bounded a priori, namely, for any T > 0,∫ T

0
(‖∇u(·, t)‖2

L2 + ‖∇b(·, t)‖2
L2) dt < ∞

and ∫ T

0
(‖u(·, t)‖L∞ + ‖b(·, t)‖L∞) dt < ∞.

Details concerning these a priori bounds will be given in Section 3. Now the important
issue of optimal indices naturally arises: What are the largest indices p1 and p2 such that
(1.6) and (1.7) are bounded a priori for any T > 0? If the maximal index for (1.6) to
hold was 4 or for (1.7) to hold was 2, then we could deduce that smooth solutions of the
3D MHD equations were global in time.

Smooth solutions of the MHD equations with ν1 > 0 and ν2 > 0 are actually real
analytic, as we shall conclude in Section 4. This mathematically rigorous result reflects
the physical fact that the kinematic viscosity and the magnetic diffusivity smooth out
spatial variations of velocity u and magnetic field b. In the case of periodic boundary
conditions, one consequence of the analyticity is that the Fourier modes û(k, t) and
b̂(k, t) are shown to decay exponentially as k increases. The work here was partially
inspired by the result of Foias and Temam on the Navier-Stokes equations [9].

There are two distinct kinds of specifications for the flow field: the Eulerian specifica-
tion and the Lagrangian specification [1]. The Eulerian specification provides a picture
of the spatial distribution of fluid velocity and of other fluid quantities at each instant
during the motion. In (1.2) and (1.3) u and b are described in the Eulerian specifica-
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tion. The Lagrangian specification makes use of the fact that physical quantities refer
not only to a certain position in space but also to identifiable pieces of matter. The
flow quantities in the Lagrangian specification are defined as functions of time and the
choice of a material element of fluid, and describe the dynamical history of the se-
lected fluid element. The Lagrangian specification is useful in certain special contexts,
and the ideal fluid equations in the Lagrangian specification have been studied by sev-
eral authors ([7],[13]). Recently Constantin invented the Eulerian-Lagrangian approach
to reformulate the incompressible fluid equations ([4],[5],[6]). This approach, in Con-
stantin’s own words, “phrases the fluid equations in unbiased Eulerian coordinates, yet
describes objects that have Lagrangian significance.” One goal here is to extend Con-
stantin’s approach to the 3D MHD equations. We remark that such an extension is not
straightforward. We will make use of Elsasser’s symmetric variables and introduce a
new pair of active scales to overcome some of the obstacles. The Eulerian-Lagrangian
description of the MHD equations plays a key role in constructing representations for
vortex and magnetic field lines and has potential applications in the study of magnetic
reconnection [10].

We will also generalize the formulation of Zakharov and Kuznetsov for the ideal
MHD equations to the MHD equations with viscosity and resistance. This is accom-
plished in Section 6. In [17] Zakharov and Kuznetsov reexpressed the ideal MHD
equations in terms of a pair of canonical variables. The advantage of this represen-
tation of the ideal MHD equations is that it contains all vector Lagrangian invariants,
which cannot be expressed in terms of the velocity and magnetic field in the Eule-
rian specification. In order to generalize the result of Zakharov and Kuznetsov to the
MHD equations with viscosity and resistance, we define two new vector fields with
physical significance and then derive a system of equations equivalent to the MHD
equations.

2. Global Regularity Conditions

Although finite time singularities for smooth solutions of the 3D MHD equations have not
been ruled out, several physically interesting quantities controlling possible singularity
development have been obtained ([3],[15],[16]). In this section we present two new
global regularity conditions.

Theorem 2.1. Assume that the initial velocity u0 and magnetic field b0 are both in H s

with s ≥ 3, and f and g are in L2([0, T ]; L2). If

∫ T

0
(‖∇u(·, t)‖4

L2 + ‖∇b(·, t)‖4
L2) dt < ∞, (2.1)

then all spatial derivatives of the solution u and b to the MHD equations (1.3) and (1.2)
are square integrable for any t ∈ [0, T ].
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Proof. Our first step is to show that the first-order derivatives of u and b are bounded
as long as (2.1) holds. In fact, we establish that

‖∇u(·, t)‖2
L2 + ‖∇b(·, t)‖2

L2

+
∫ t

0
eG(t−τ)(ν1‖�u(·, τ )‖2

L2 + ν2‖�b(·, τ )‖2
L2) dτ

≤ (‖∇u0‖2
L2 + ‖∇b0‖2

L2) eG(t)

+ C
∫ t

0
eG(t−τ)

(
1

ν1
‖ f (·, τ )‖2

L2 + 1

ν2
‖g(·, τ )‖2

L2

)
dτ, (2.2)

where C is a pure constant and

G(t) = C max{ν−3
1 , ν−3

2 }
∫ t

0
(‖∇u(·, τ )‖4

L2 + ‖∇b(·, τ )‖4
L2) dτ.

To this end, we consider the evolution equations for ‖∇u‖2
L2 and ‖∇b‖2

L2 ,

1

2

d

dt
‖∇u‖2

L2 + ν1‖�u‖2
L2 =

∫
∇u · ∇ f dx −

∫
∂i uk · ∂ku j · ∂i u j dx

+
∫

∂i u j · ∂i bk · ∂kbj dx

+
∫

bk · ∂k∂i bj · ∂i u j dx (2.3)

1

2

d

dt
‖∇b‖2

L2 + ν2‖�b‖2
L2 =

∫
∇b · ∇g dx −

∫
∂i uk · ∂kbj · ∂i bj dx

+
∫

∂i bk · ∂ku j · ∂i bj dx

+
∫

bk · ∂k∂i u j · ∂i bj dx, (2.4)

where the repeated indices are summed. Adding (2.3) and (2.4) and using the fact that
the last term of (2.3) and that of (2.4) add up to zero, we have

1

2

d

dt
(‖∇u‖2

L2 + ‖∇b‖2
L2) + ν1‖�u‖2

L2 + ν2‖�b‖2
L2

=
∫

∇u · ∇ f dx +
∫

∇b · ∇g dx −
∫

∂i uk · ∂ku j · ∂i u j dx

−
∫

∂i uk · ∂kbj · ∂i bj dx +
∫

∂i u j · ∂i bk · ∂kbj dx +
∫

∂i bk · ∂ku j · ∂i bj dx.

The first two terms on the right can be bounded as follows:∫
∇u · ∇ f dx = −

∫
f · �u dx ≤ ν1

10
‖�u‖2

L2 + C

ν1
‖ f ‖2

L2 ,∫
∇b · ∇g dx = −

∫
g · �b dx ≤ ν2

8
‖�b‖2

L2 + C

ν2
‖g‖2

L2 ,
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where C’s are pure constants. Using Hölder’s inequality, the Gagliardo-Nirenberg in-
equality (d being the spatial dimension)

‖F‖L3 ≤ C ‖F‖1− d
6

L2 ‖∇F‖
d
6

L2

and the following generalized version of Young’s inequality

m∏
k=1

ak ≤
m∑

k=1

a pk

k

pk
for m ≥ 2 and

m∑
k=1

1

pk
= 1,

we have

−
∫

∂i uk · ∂ku j · ∂i u j dx ≤ ‖∇u‖3
L3 ≤ C‖∇u‖

3
2

L2 ‖�u‖
3
2

L2

≤ ν1

10
‖�u‖2

L2 + C(ν1)‖∇u‖6
L2 ,

−
∫

∂i uk · ∂kbj · ∂i bj dx ≤ C‖∇u‖L3‖∇b‖2
L3

≤ C‖∇u‖
1
2

L2 ‖�u‖
1
2

L2 ‖∇b‖L2 ‖�b‖L2

≤ ν1

10
‖�u‖2

L2 + ν2

8
‖�b‖2

L2 + C(ν1)‖∇u‖6
L2

+ C(ν2)‖∇b‖6
L2 ,∫

∂i u j · ∂i bk · ∂kbj dx ≤ ‖∇u‖L3 ‖∇b‖2
L3

≤ ν1

10
‖�u‖2

L2 + ν2

8
‖�b‖2

L2 + C(ν1)‖∇u‖6
L2

+ C(ν2)‖∇b‖6
L2 ,

and ∫
∂i bk · ∂kuj · ∂i bj dx ≤ ν1

10
‖�u‖2

L2 + ν2

8
‖�b‖2

L2 + C(ν1)‖∇u‖6
L2

+ C(ν2)‖∇b‖6
L2 ,

where C(ν1) = C
ν3

1
and C(ν2) = C

ν3
2

for some pure constant C .

Consequently,

d

dt
(‖∇u‖2

L2 + ‖∇b‖2
L2) + ν1‖�u‖2

L2 + ν2‖�b‖2
L2

≤ C

ν1
‖ f ‖2

L2 + C

ν2
‖g‖2

L2 + C

(
1

ν3
1

‖∇u‖6
L2 + 1

ν3
2

‖∇b‖6
L2

)
, (2.5)

where C’s are pure constants. The use of Gronwall’s inequality finishes the proof of (2.2).
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Higher order derivatives of u and b can be handled in a similar fashion, but their
bounds may now involve lower order derivatives. Thus, one has to go through an in-
ductive procedure. The details are routine and thus omitted. This completes the proof of
Theorem 2.1.

Theorem 2.2. Assume that the initial velocity u0 and magnetic field b0 are both in H s

with s ≥ 3, and f , g ∈ L2([0, T ]; L2). If∫ T

0
(‖u(·, t)‖2

L∞ + ‖b(·, t)‖2
L∞) dt < ∞, (2.6)

then any spatial derivative of the solution u and b to the MHD equations (1.3) and (1.2)
is square integrable for any t ∈ [0, T ].

Proof. It suffices to verify that ∇u(x, t) and ∇b(x, t) are in L2 for any t ≤ T . Using
(1.3), one easily checks that ‖∇u‖2

2 satisfies the evolution equation

1

2

d

dt
‖∇u‖2

L2 + ν1‖�u‖2
L2 =

∫
u · ∇u · �u −

∫
b · ∇b · �u −

∫
�u · f.

By Hölder’s inequality,

d

dt
‖∇u‖2

L2 + ν1‖�u‖2
L2 ≤ 1

ν1
‖u(·, t)‖2

L∞ ‖∇u‖2
L2 + 1

ν1
‖ f ‖2

L2

+ 2

ν1
‖b(·, t)‖2

L∞‖∇b‖2
L2 + ν1

8
‖�u‖2

L2 . (2.7)

Similarly, ∇b obeys

1

2

d

dt
‖∇b‖2

L2 + 5

8
ν2‖�b‖2

L2 ≤ 2

ν2
‖g‖2

L2 + 2

ν2
‖u(·, t)‖2

L∞ ‖∇b‖2
L2

+ 2

ν2
‖b(·, t)‖2

L∞ ‖∇u‖2
L2 . (2.8)

Now let

Y (t) = ‖∇u(·, t)‖2
L2 + ‖∇b(·, t)‖2

L2 .

Combining (2.7) and (2.8), we obtain

d

dt
Y (t) + ν1‖�u‖2

L2 + ν2‖�b‖2
L2

≤ C(ν1, ν2) (‖u(·, t))‖2
L∞ + ‖b(·, t)‖2

L∞) Y (t) + 1

ν1
‖ f ‖2

L2 + 2

ν2
‖g‖2

L2 ,

where C(ν1, ν2) = max{ν−1
1 , 2ν−2

2 }. It then follows from applying Gronwall’s inequality
that (2.6) implies for any t ∈ [0, T ]

Y (t) < ∞, i.e., ‖∇u(·, t)‖2
L2 + ‖∇b(·, t)‖2

L2 < ∞.
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3. A Priori Bounds

The goal of this section is to prove that the quantity∫ T

0
(‖u(·, t)‖L∞ + ‖b(·, t)‖L∞) dt

is bounded a priori for any T > 0. The simple bound∫ T

0
(‖∇u(·, t)‖2

L2 + ‖∇b(·, t)‖2
L2) dt < ∞

will be provided first.

Theorem 3.1. Consider the MHD equations (1.3) and (1.2) either with periodic bound-
ary conditions or defined in the whole space with sufficient decay at infinity. If the
initial velocity u0 and magnetic field b0 are in L2, and the forces f and g are in
L2([0, T ]; L2) ∩ L2([0, T ]; H−1), then any solution (u, b) satisfies

‖u(·, t)‖2
L2 + ‖b(·, t)‖2

L2 +
∫ t

0
(ν1 ‖∇u(·, τ )‖2

L2 + ν2 ‖∇b(·, τ )‖2
L2) dτ ≤ E, (3.1)

where E = min{E1, E2} with

E1 = ‖u0‖2
L2 + ‖b0‖2

L2 + 1

ν1

∫ t

0
‖�− 1

2 f (·, τ )‖2
L2 dτ + 1

ν2

∫ t

0
‖�− 1

2 g(·, τ )‖2
L2 dτ

and

E2 = ‖u0‖2
L2 + ‖b0‖2

L2 + 4t
∫ t

0
‖ f (·, τ )‖2

L2 dτ + 4t
∫ t

0
‖g(·, τ )‖2

L2 dτ.

Proof. We will make use of the evolution equation for ‖u‖2
L2 and ‖b‖2

L2 ,

1

2

d

dt
(‖u‖2

L2 + ‖b‖2
L2) + ν1‖∇u‖2

L2 + ν2‖∇b‖2
L2 =

∫
u · f dx +

∫
b · g dx.

Integrating the above over [0, t] and estimating the terms on the right-hand side in the
following two different ways:∫

u · f dx ≤ ν1

2
‖∇u‖2

L2 + 1

2ν1
‖�− 1

2 f ‖2
L2 ,∫

b · g dx ≤ ν2

2
‖∇b‖2

L2 + 1

2ν2
‖�− 1

2 g‖2
L2 ,

and ∫ t

0

∫
u · f dx dτ ≤ sup

τ∈[0,t]
‖u(·, τ )‖L2 ·

(
t

∫ t

0

∫
f 2 dx dτ

)
,

∫ t

0

∫
b · g dx dτ ≤ sup

τ∈[0,t]
‖b(·, τ )‖L2 ·

(
t

∫ t

0

∫
g2 dx dτ

)
,

we then prove (3.1).
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Theorem 3.2. If the initial velocity u0 and magnetic field b0 are in L2, and the forces f
and g are in L2([0, T ]; L2), then any solution (u, b) of (1.3) and (1.2) satisfies for any
T > 0 ∫ T

0
(‖u(·, t)‖L∞ + ‖b(·, t)‖L∞) dt < ∞.

Proof. We start with the inequality (2.5) obtained in Section 2. Letting

K (t) = 1 + ‖∇u(·, t)‖2
L2 + ‖∇b(·, t)‖2

L2 ,

and dividing both sides of (2.5) by K 2 and integrating over [0, t], we obtain

1

1 + ‖∇u0‖2
L2 + ‖∇b0‖2

L2

− 1

1 + ‖∇u(·, t)‖2
L2 + ‖∇b(·, t)‖2

L2

+
∫ t

0
(ν1‖�u(·, τ )‖2

L2 + ν2‖�b(·, τ )‖2
L2) · K −2(τ ) dτ

≤ C

ν1

∫ t

0
‖ f (·, τ )‖2

L2 dτ + C

ν2

∫ t

0
‖g(·, τ )‖2

L2 dτ

+ C
∫ t

0

(
1

ν3
1

‖∇u(·, τ )‖2
L2 + 1

ν3
2

‖∇b(·, τ )‖2
L2

)
dτ,

where C’s are pure constants. Thus,∫ t

0

(
ν1‖�u(·, τ )‖2

L2 + ν2‖�b(·, τ )‖2
L2

) · K −2(τ ) dτ

≤ 1 + E

ν4
1

+ E

ν4
2

+ C

ν1

∫ t

0
‖ f (·, τ )‖2

L2 dτ + C

ν2

∫ t

0
‖g(·, τ )‖2

L2 dτ.

By the Gagliardo-Nirenberg inequality and then the Hölder inequality, we obtain∫ t

0
‖u(·, τ )‖L∞ dτ ≤ C

∫ t

0
‖∇u(·, τ )‖

1
2

L2 ‖�u(·, τ )‖
1
2

L2 dτ

≤ C

(∫ t

0
‖∇u(·, τ )‖2

L2 dτ

) 1
4
(∫ t

0
‖�u(·, τ )‖

2
3

L2 dτ

) 3
4

≤ C

(∫ t

0
‖∇u(·, τ )‖2

L2 dτ

) 1
4

×
(∫ t

0
‖�u(·, τ )‖2

L2 · K −2(τ ) dτ

) 1
4
(∫ t

0
K ds

) 1
2

,

where C is a pure constant. Combining this estimate with a similar one for∫ t
0 ‖b(·, τ )‖L∞ dτ , we have

∫ t

0
(‖u(·, τ )‖L∞ + ‖b(·, τ )‖L∞) dτ ≤ C(ν

− 1
2

1 + ν
− 1

2
2 ) K

1
4

1 K
1
4

2

(∫ t

0
K ds

) 1
2

,
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where C(ν1, ν2) is a constant depending on ν1 and ν2 only,

K1 =
∫ t

0
(ν1‖∇u(·, τ )‖2

L2 + ν2‖∇b(·, τ )‖2
L2) dτ

and

K2 =
∫ t

0
(ν1‖�u(·, τ )‖2

L2 + ν2‖�b(·, τ )‖2
L2) · K −2(τ ) dτ.

Using (3.1), we conclude that

∫ t

0
(‖u(·, τ )‖L∞ + ‖b(·, τ )‖L∞) dτ ≤ G(ν1, ν2, E, f, g, t),

where the bound G is explicit,

G = C E
1
4 (ν

− 1
2

1 + ν
− 1

2
2 )

(
t + E

ν1
+ E

ν2

) 1
2

×
(

1 + E

ν4
1

+ E

ν4
2

+
∫ t

0

[
1

ν1
‖ f (·, τ )‖2

L2 + 1

ν2
‖g(·, τ )‖2

L2

]
dτ

) 1
4

for some pure constant C .

4. Real Analyticity

In this section we restrict ourselves to periodic boundary conditions and show that solu-
tions of the viscous MHD equations exhibit real analyticity. To simplify the presentation,
we will assume that f and g are both zero.

Theorem 4.1. Assume that u0 and b0 are in H 1 and divergence free. If a solution (u, b)

of the MHD equations (1.3) and (1.2) satisfies either

M1 ≡
∫ T

0
(‖u(·, τ )‖2

L∞ + ‖b(·, τ )‖2
L∞) dτ < ∞ (4.1)

or

M2 ≡
∫ T

0
(‖∇u(·, τ )‖4

L2 + ‖∇b(·, τ )‖4
L2) dτ < ∞, (4.2)

then (u, b) is analytic on [0,T]. In fact, for any t ∈ [0, T ],

∑
k

e2|k|t |k|2
(
|û(k, t)|2 + |b̂(k, t)|2

)
< C (4.3)

for some constant C depending only on u0, b0, and M1 or M2.
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Proof. To eliminate P from (1.3) and (1.2), we project (1.3) and (1.2) onto the space
of divergence-free vector fields. In terms of Fourier modes, the projected equations can
then be rewritten as

d

dt
û(k, t) + ν1|k|2û(k, t) = i P(k)

∑
k ′+k ′′=k

û(k ′, t) · k ′′û(k ′′, t)

− i P(k)
∑

k ′+k ′′=k

b̂(k ′, t) · k ′′b̂(k ′′, t)

and

d

dt
b̂(k, t) + ν2|k|2b̂(k, t) = i P(k)

∑
k ′+k ′′=k

û(k ′, t) · k ′′b̂(k ′′, t)

− i P(k)
∑

k ′+k ′′=k

b̂(k ′, t) · k ′′û(k ′′, t),

where P(k) = I − k⊗k
|k|2 and k ⊗ k is the dyadic product. It then follows that

d

dt

∑
k

e2|k|t |k|2|û(k, t)|2 + ν1

∑
k

e2|k|t |k|4|û(k, t)|2

=
∑

k

e2|k|t |k|3|û(k, t)|2

+ Re

{
i P(k)

∑
k

et |k||k|2û∗(k, t) ·
∑

k ′+k ′′=k

et |k|û(k ′, t) · k ′′û(k ′′, t)

}

− Re

{
i P(k)

∑
k

et |k||k|2û∗(k, t) ·
∑

k ′+k ′′=k

et |k|b̂(k ′, t) · k ′′b̂(k ′′, t)

}

and

d

dt

∑
k

e2|k|t |k|2|b̂(k, t)|2 + ν2

∑
k

e2|k|t |k|4|b̂(k, t)|2

=
∑

k

e2|k|t |k|3|b̂(k, t)|2

+ Re

{
i P(k)

∑
k

et |k||k|2b̂∗(k, t) ·
∑

k ′+k ′′=k

et |k|û(k ′, t) · k ′′b̂(k ′′, t)

}

− Re

{
i P(k)

∑
k

et |k||k|2b̂∗(k, t) ·
∑

k ′+k ′′=k

et |k|b̂(k ′, t) · k ′′û(k ′′, t)

}
.

To simplify the notation, we define two functions via their Fourier transforms:

U (x, t) =
∑

k

et |k|û(k, t)eikx , B(x, t) =
∑

k

et |k|b̂(k, t)eikx .
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Using the fact that et |k| ≤ et |k ′|et |k ′′| for k ′ + k ′′ = k, we then deduce from the equations
above that

d

dt
‖� 1

2 U‖2
L2 + ν1‖�U‖2

L2 ≤ ‖� 3
4 U‖2

L2 +
∣∣∣∣
∫

(�U ) · U · (�
1
2 U )

∣∣∣∣
+

∣∣∣∣
∫

(�U ) · B · (�
1
2 B)

∣∣∣∣ (4.4)

and

d

dt
‖� 1

2 B‖2
L2 + ν2‖�B‖2

L2 ≤ ‖� 3
4 B‖2

L2 +
∣∣∣∣
∫

(�B) · U · (�
1
2 B)

∣∣∣∣
+

∣∣∣∣
∫

(�B) · B · (�
1
2 U )

∣∣∣∣ . (4.5)

We now estimate the terms on the right of (4.4):

‖� 3
4 U‖2

L2 ≤ ν1

2
‖�U‖2

L2 + 1

2ν1
‖� 1

2 U‖2
L2 ,∣∣∣∣

∫
(�U ) · U · (�

1
2 U )

∣∣∣∣ ≤ C‖U‖L∞‖�U‖L2‖� 1
2 U‖L2 ≤ C‖�U‖

3
2

L2 ‖� 1
2 U‖

3
2

L2 ,∣∣∣∣
∫

(�U ) · B · (�
1
2 B)

∣∣∣∣ ≤ C‖�U‖L2‖� 1
2 B‖

3
2

L2‖�B‖
1
2

L2 .

Inserting these estimates in (4.4), we then have

d

dt
‖� 1

2 U‖2
L2 + ν1

2
‖�U‖2

L2 ≤ 1

2ν1
‖� 1

2 U‖2
L2 + C‖�U‖

3
2

L2 ‖� 1
2 U‖

3
2

L2

+ C‖�U‖L2‖� 1
2 B‖

3
2

L2‖�B‖
1
2

L2 . (4.6)

In a similar fashion, we have from (4.5)

d

dtt
‖� 1

2 B‖2
L2 + ν2

2
‖�B‖2

L2 ≤ 1

2ν2
‖� 1

2 B‖2
L2

+ C‖� 1
2 U‖

1
2

L2‖�U‖
1
2

L2‖� 1
2 B‖L2‖�B‖L2

+ C‖� 1
2 U‖L2‖� 1

2 B‖
1
2

L2‖�B‖
3
2

L2 . (4.7)

Applying the following generalized version of Young’s inequality

m∏
k=1

ak ≤
m∑

k=1

a pk

k

pk
for m ≥ 2 and

m∑
k=1

1

pk
= 1

to the terms on the right of (4.6), we get

‖�U‖
3
2

L2 ‖� 1
2 U‖

3
2

L2 ≤ ν1

8
‖�U‖2

L2 + C(ν1)‖� 1
2 U‖6

L2 ,

‖�U‖L2‖� 1
2 B‖

3
2

L2‖�B‖
1
2

L2 ≤ ν1

8
‖�U‖2

L2 + ν2

8
‖�B‖2

L2 + C(ν1, ν2)‖� 1
2 B‖6

L2 .
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Consequently, (4.6) becomes

d

dt
‖� 1

2 U‖2
L2 + ν1

4
‖�U‖2

L2 ≤ 1

2ν1
‖� 1

2 U‖2
L2 + ν2

8
‖�B‖2

L2

+ C(ν1)‖� 1
2 U‖6

L2 + C(ν1, ν2)‖� 1
2 B‖6

L2 . (4.8)

Similarly, from (4.7),

d

dt
‖� 1

2 B‖2
L2 + ν2

4
‖�B‖2

L2 ≤ 1

2ν2
‖� 1

2 B‖2
L2 + ν1

8
‖�U‖2

L2

+ C(ν1)‖� 1
2 U‖6

L2 + C(ν2)‖� 1
2 B‖6

L2 . (4.9)

Adding (4.8) and (4.9) yields the differential inequality

dy

dt
≤ max

{
1

2ν1
,

1

2ν2

}
y + C(ν1, ν2)y3, y(t) = ‖� 1

2 U‖2
L2 + ‖� 1

2 B‖2
L2 .

Such a differential inequality implies that

y(t) ≤ ec1t y(0)√
1 − c2c−1

1 y(0)2
(
e2c1t − 1

)
for t ∈ [0, T ∗(y(0))), where

c1 = max

{
1

2ν1
,

1

2ν2

}
, c2 = C(ν1, ν2),

y(0) = ‖∇u0‖2
L2 + ‖∇b0‖2

L2 < ∞,

and

T ∗(y(0)) = 1

2c1
log

(
1 + c1

c2 y(0)2

)
. (4.10)

If either (4.1) or (4.2) holds, Theorem 2.2 and Theorem 2.1 indicate that

M ≡ sup
t∈[0,T ]

(‖∇u(·, t)‖2
L2 + ‖∇b(·, t)‖2

L2) < ∞.

This will enable us to show that (4.3) holds for any t ∈ [0, T ). In fact, if t < T ∗(y(0)),
then the mission has already been fulfilled. Otherwise, we can repeat the argument above
at t0 = t − T ∗(M)/2 and conclude that y(t) = y(t0 + T ∗(M)/2) is finite. Thus (4.3) is
proved for any t ∈ [0, T ].

5. Constantin’s Eulerian-Lagrangian Approach

In this section, Constantin’s Eulerian-Lagrangian approach to the Navier-Stokes equa-
tions is employed to derive an equivalent system of equations to the viscous MHD
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equations. Using Elsasser’s variables z± = u ± b, we write the MHD equations in the
symmetric from

∂t z
− + z+ · ∇z− = −∇ P + ν+�z− + ν−�z+, (5.1)

∂t z
+ + z− · ∇z+ = −∇ P + ν+�z+ + ν−�z−, (5.2)

where ν± = ν1 ± ν2, and P = p + b2/2 is the total pressure. The MHD equations
(1.3) and (1.2) have similar mathematical structures and u and b have the same scaling
dimension. This fact is made clearer by representing (1.3) and (1.2) in terms of Elsasser’s
variables.

To simplify our analysis, we will assume that ν1 = ν2, i.e., ν− = 0. That means the
terms ν−�z+ and ν−�z− become zero in the equations above. In astrophysical magnetic
phenomena, both the Reynolds number and the magnetic Reynolds number are huge and
the difference between ν1 and ν2 is not critical. In this aspect our simplification is justified.

To proceed, we split z− and z+ as the following sums:

z− = (∇ A−)∗v− − ∇n− + f −; z+ = (∇ A+)∗v+ − ∇n+ + f +. (5.3)

We now introduce the new quantities that have appeared in (5.3). Analytically, A− and
A+ are functions of x and t and satisfy the active vector equations

(∂t + z+ · ∇ − ν+�)A− = 0, (5.4)

(∂t + z− · ∇ − ν+�)A+ = 0. (5.5)

Both A− and A+ have a Lagrangian interpretation. In the inviscid case, i.e., ν1 = ν2 = 0,
A− and A+ are inverse maps of the particle trajectories a → x = X∓(a, t) with

d X∓

dt
= z∓(X∓, t), X∓(a, 0) = a.

Since A− and A+ have the dimension of length, ∇ A− and ∇ A+ are both nondimensional.
When ∇ A∓ are invertible, we use Q∓ to denote their inverses. That is, (∇ A∓)Q∓ = I
and (∇ A∓)∗(Q∓)∗ = I , or

Q∓
jk

∂ A∓
m

∂xj
= δkm, Q∓

k j

∂ A∓
j

∂xm
= δkm,

where ∗ refers to the transpose of a matrix, I denotes the unit matrix, and δkm stands for
the Kronecker delta.

The second ingredient in (5.3) is made up of the virtual velocities v− and v+. They
are both vector functions of x and t and obey the evolution equations

(∂t + z+ · ∇ − ν+�)v− = 2ν+ Q− · ∇(∇ A−)(∇v−); (5.6)

(∂t + z− · ∇ − ν+�)v+ = 2ν+ Q+ · ∇(∇ A+)(∇v+), (5.7)

where the two terms on the right can be made precise by inspecting their m-th compo-
nents,

(Q∓ · ∇(∇ A∓)(∇v∓))m = Q∓
km

∂2 A∓
l

∂xk∂xi

∂v∓
l

∂xi
.
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The two scalar functions n−(x, t) and n−(x, t) in (5.3) are the so-called Eulerian-
Lagrangian potentials, which play a role similar to that of the pressure. n− and n+

are related through the following relation:

∂t n
− + z+ · ∇n− − ν+�n− = ∂t n

+ + z− · ∇n+ − ν+�n+. (5.8)

We now approach the final component of z∓ given by the expression in (5.3). As
functions of x and t , f − and f + satisfy the active vector equations

∂t f − + z+ · ∇ f − − ν+� f − = −(∇z+)∗ f − + (∇z+)∗z− (5.9)

and

∂t f + + z− · ∇ f + − ν+� f + = −(∇z−)∗ f + + (∇z−)∗z+. (5.10)

Having become familiarized with these quantities, we now show that z− and z+, when
combined as in (5.3), solve the MHD equations of the symmetric form (5.1) and (5.2).

Theorem 5.1. Assume that A−, A+, v−, v+, f −, and f + satisfy (5.4), (5.5), (5.6), (5.7),
(5.9), and (5.10), respectively. Then z− and z+ given by the formula in (5.3) solve (5.1)
and (5.2) with P determined by

P = ∂t n
− + z+ · ∇n− − ν+�n− or P = ∂t n

+ + z− · ∇n+ − ν+�n+, (5.11)

because of the relation (5.8).

Proof. We start by examining the j-th component of ∂t z− + z+ · ∇z−.

∂t z
−
j + z+

k

∂z−
j

∂xk
= ∂t

(
∂ A−

m

∂xj
v−

m − ∂n−

∂xj
+ f −

j

)
+ z+

k

∂

∂xk

(
∂ A−

m

∂xj
v−

m − ∂n−

∂xj
+ f −

j

)

= − ∂

∂xj
(D+

t n−) + ∂z+
k

∂xj

∂n−

∂xk
+ D+

t f −
j

+ ∂ A−
m

∂xj
(D+

t v−
m ) + v−

m D+
t

(
∂ A−

m

∂xj

)
,

where D+
t = ∂t + z+

k ∂k denotes a generalized material derivative. Taking ∂
∂xj

of (5.4)
yields

D+
t

(
∂ A−

m

∂xj

)
= ν+�

(
∂ A−

m

∂xj

)
− ∂z+

k

∂xj

∂ A−
m

∂xk
. (5.12)

Using (5.12) and (5.6), we obtain

∂t z
−
j + z+

k

∂z−
j

∂xk
= − ∂

∂xj
(D+

t n−) + ∂z+
k

∂xj

∂n−

∂xk
+ D+

t f −
j

+ v−
m

(
ν+�

(
∂ A−

m

∂xj

)
− ∂z+

k

∂xj

∂ A−
m

∂xk

)
+ ν+ ∂ A−

m

∂xj
�v−

m

+ 2ν+ ∂ A−
m

∂xj

(
Q−

km

∂2 A−
l

∂xk∂xi

∂v−
l

∂xi

)
,
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where Q− is the inverse of ∇ A. It then follows from regrouping the terms that

∂t z
−
j + z+

k

∂z−
j

∂xk
= − ∂

∂xj
(D+

t n) + ∂z+
k

∂xj

(
∂n

∂xk
− ∂ A−

m

∂xk
v−

m

)
+ D+

t f −

+ ν+
(

∂ A−
m

∂xj
�v−

m + v−
m �

(
∂ A−

m

∂xj

))
+ 2ν+δjk

∂2 A−
l

∂xk∂xi

∂v−
l

∂xi
.

Combining the terms and using (5.3) for z−, we have

∂t z
−
j + z+

k

∂z−
j

∂xk
= − ∂

∂xj
(D+

t n − ν+�n)

+
(

D+
t f − − (z−

k + f −
k )

∂z+
k

∂xj
− ν+� f −

)

+ ν+�z− − 2ν+ ∂2 A−
l

∂xk∂xi

∂v−
l

∂xi
+ 2ν+ ∂2 A−

l

∂xk∂xi

∂v−
l

∂xi
.

Then by (5.11) and (5.9),

∂t z
− + z+ · ∇z− = −∇ P + ν+�z−.

The same line of argument may be applied to establish

∂t z
+ + z− · ∇z+ = −∇ P + ν+�z+.

6. Conjugate Vector Fields

We return to the original MHD equations (1.3) and (1.2) either supplemented with
periodic boundary conditions or defined in the whole space with sufficient decay at
infinity. In this section we introduce a new pair of vector fields, v and A, and then
show that the 3D viscous MHD equations are equivalent to a new system of equations
represented in terms of v and A.

For a divergence-free velocity field u, we express it as the difference

u = v − ∇�, (6.1)

where � is a scalar and v is a vector satisfying

∂tv + u · ∇v − ν1�v + (∇u)∗v = b · ∇b. (6.2)

Such a decomposition of u is validated by the fact that any vector can be written as a
sum of a curl and a gradient. One can see from (6.1) that u and v have the same curl and
u can also be recovered from v by projecting (6.1) onto the divergence-free functions.

We now introduce the vector field A, which obeys

∂t A + u · ∇ A − ν2�A + (∇u)∗ A = 0. (6.3)

It will be clear that ∇ × A recovers the dynamics of the magnetic field b.
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Theorem 6.1. Assume that u is given by (6.1) andv satisfies (6.2). Then u and b = ∇×A
satisfies the viscous MHD equations

∂t u + u · ∇u − ν1�u = −∇
(

p + b2

2

)
+ b · ∇b, (6.4)

∂t b + u · ∇b − ν2�b = b · ∇u, (6.5)

where p is determined by

p = ∂t� + u · ∇� − ν1�� − b2 + u2

2
+ C (6.6)

for a free constant C.

Proof. First we verify that u given by the expression in (6.1) satisfies (6.4). In fact,

∂t u + u · ∇u − ν1�u + ∇
(

p + b2

2

)
− b · ∇b

= ∂tv + u · ∇v − u · ∇(∇�) − ν1�v − b · ∇b

+ ∇
(

p + b2

2
− ∂t� + ν1��

)
.

Since u · ∇(∇�) = ∇(u · ∇�) − (∇u)∗∇� = ∇(u · ∇�) + (∇u)∗u − (∇u)∗v,

∂t u + u · ∇u − ν1�u + ∇
(

p + b2

2

)
− b · ∇b

= (∂tv + u · ∇v − ν1�v + (∇u)∗v − b · ∇b)

+ ∇
(

p + b2

2
− ∂t� − u · ∇� + ν1�� + u2

2

)
.

Using (6.2) and (6.6), we conclude that the right-hand side is zero.
Now we prove that b = ∇ × A satisfies (6.5). For this purpose, we take the curl of

each term of equation (6.3)

∂t b + u · ∇b − ν2�b = −∇ × (u · ∇ A) + u · ∇b − ∇ × ((∇u)∗ A).

It then suffices to check that the right-hand side of the equation above is the same as that
of (6.5), i.e.,

−∇ × (u · ∇ A) + u · ∇(∇ × A) − ∇ × ((∇u)∗ A) = (∇ × A) · ∇u.

Using ∇ · u = 0 and the basic vector formulae ∇ × (∇ f ) = 0 and ∇ × ( f G) =
f ∇ × G − G × ∇ f for a scalar f and a vector G, we have

−∇ × (u · ∇ A) + u · ∇(∇ × A) − ∇ × ((∇u)∗ A)

= −∂j (∇ × (uj A)) + ∂j (uj∇ × A) − ∇ × (∇uj Aj )

= ∂j (A × ∇uj ) − (Aj∇ × (∇uj )) + ∇uj × ∇ Aj

= −∇uj × ∂j A + ∇uj × ∇ Aj = ∇uj × (∇ Aj − ∂j A),
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where j is a dummy index implying a sum from j = 1 to 3. Finally we check that

∇uj × (∇ Aj − ∂j A) = (∇ × A) · ∇u, (6.7)

and we compare the l-th component of both sides. The l-th component of the term on
the left of (6.7) is given by

(∇uj × (∇ Aj − ∂j A))l = εikl∂i u j (∂k Aj − ∂j Ak), (6.8)

where εikl is the standard permutation symbol. Since i, k, and l have to be different for
εikl not equal to zero, εikl ∂i u j (∂k Aj − ∂j Ak) can be written as a sum of two terms,

εikl∂i u j (∂k Aj − ∂j Ak) + εikl∂kuj (∂i Aj − ∂j Ai ),

where we sum over j , but not over i or k. The sum over j can be written more explicitly
as

εikl{∂i ui (∂k Ai − ∂i Ak) + ∂i uk(∂k Ak − ∂k Ak) + ∂i ul(∂k Al − ∂l Ak)}
+ εkil{∂kui (∂i Ai − ∂i Ai ) + ∂kuk(∂i Ak − ∂k Ai ) + ∂kul(∂i Al − ∂l Ai )}.

Now regroup the terms and use ∂i ui + ∂kuk = −∂lul (i.e., ∇ · u = 0) to get

εikl(∂k Al − ∂l Ak) ∂i ul + εkil (∂i Al − ∂l Ai ) ∂kul + εikl (∂i Ak − ∂k Ai )∂lul

= (∇ × A)i · ∂i ul + (∇ × A)k · ∂kul + (∇ × A)l · ∂lul

= (∇ × A) · ∇ul ,

which is exactly the l-th component of the term on the right of (6.7). Therefore (6.7)
holds and b = ∇ × A satisfies (6.5).
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