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Abstract. This paper studies the well posedness of the initial value problem for the quasi-
geostrophic type equations

∂θ

∂t
+ u∇θ + (−1)γ θ = 0 onRn × (0,∞)

θ(x, 0) = θ0(x) x ∈ Rn
whereγ (0< γ 6 1) is a fixed parameter andu = (uj ) is divergence free and determined from
θ through the Riesz transformuj = ±Rπ(j)θ (π(j) being a permutation ofj , j = 1, 2, · · · , n).
The initial dataθ0 is taken in certain Morrey spacesMp,λ(Rn) (see text for the definition). The
local well posedness is proved for

1
2 < γ 6 1 1< p <∞ λ = n− (2γ − 1)p > 0

and the solution is global for sufficiently small data. Furthermore, the solution is shown to be
smooth.

AMS classification scheme numbers: 35Q35, 35A07

1. Introduction

We study the initial value problem (IVP) of the dissipative quasi-geostrophic-type (QGS)
equations

∂θ

∂t
+ u∇θ + (−1)γ θ = 0 onRn × (0,∞) (1.1)

θ(x, 0) = θ0(x) x ∈ Rn (1.2)

whereγ (0< γ 6 1) is a fixed parameter and the velocityu = (u1, u2, . . . , un) is divergence
free (i.e.∇ · u = 0) and determined fromθ by

uj = ±Rπ(j)θ π(j) is a permutation ofj, j = 1, 2, . . . , n (1.3)

where uj may take either a plus or a minus sign andRj = ∂j (−1)− 1
2 are the Riesz

transforms. Here the Riesz potential operator(−1)α is defined through the Fourier transform
[18]:

f̂ (ξ) =
∫

e−ixξf (x) dx

̂((−1)αf )(ξ) = |ξ |2αf̂ (ξ).
If n = 2, equation (1.1) withu given in (1.3) becomes the two-dimensional QGS

equation describing actual geophysical fluid flow on the two-dimensional boundary of a
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fast rotating three-dimensional half space with small Rossby and Ekman numbers [3, 14].
The scalarθ represents the potential temperature andu is the fluid velocity, which can be
expressed by the stream functionψ :

u = (u1, u2) =
(
− ∂ψ
∂x2

,
∂ψ

∂x1

)
(−1) 1

2ψ = −θ. (1.4)

As developed by Constantinet al [3], the two-dimensional QGS equation is strikingly
analogous to the three-dimensional Navier–Stokes equations both mathematically and
physically. The Navier–Stokes equations with singular initial data have been extensively
studied in coping with real physical phenomena. In this paper we study the existence,
uniqueness and regularity of solutions to the QGS equation when the initial data is taken
in Morrey spaces,θ0 ∈ Mp,λ. We treat the generaln−D equation for the completeness
of mathematical theory. The usual Lebesgue spacesLp and the space of finite measures
M are special examples of Morrey spaces. Very singular data such as certain measures
concentrated on smooth surfaces are also contained in Morrey spaces and these types of
initial profiles are of real physical interest.

Although there is a large literature on quasi-geostrophic equations [14, 2, 7, 3], not many
rigorous mathematical results concerning the solutions have been obtained. Constantinet al
[3] proved finite-time existence results for smooth data and develop mathematical criteria
characterizing blow-up for the two-dimensional non-dissipative QGS equation. Resnick [16]
obtained solutions of two-dimensional QGS equations withL2 data on the periodic domain
by using the Galerkin approximation. In a previous paper [19] the vanishing dissipation
limits and Gevrey class regularity [4] for the two-dimensional dissipative QGS equations
are obtained.

In this paper we prove that if12 < γ 6 1 andθ0 ∈Mp,λ with

1< p <∞ λ = n− (2γ − 1)p > 0. (1.5)

Then the IVP (1.1), (1.3), (1.2) is locally well posed and the solution is global for sufficiently
small initial data. Furthermore, we prove that the solution is actually smooth. The precise
statements are given in theorem 3.2 of section 3 and theorem 4.1 of section 4. The proof
of the well posedness is achieved by using a key observation of Resnick [16] and the
contraction-mapping principle. These results reduce to those inLp theory by takingλ = 0.
The contraction-mapping theorem is probably the most often used result in showing the
existence of solutions and we give a brief introduction for the convenience of those who
are not familiar with it. IfX is a Banach space with norm‖ · ‖X andP maps fromX to X
and is a contraction, i.e. for someb ∈ (0, 1)

‖Px − Py‖X 6 b‖x − y‖X for any x, y ∈ X.
Then there exists a uniquex0 ∈ X such thatPx0 = x0.

As we shall find out in section 3, that the requirement 1< p <∞ in (1.5) comes from
estimating the singular integrals of the Calderon–Zygmund type when we boundu in terms
of θ in Morrey spaces.p = 1 or p = ∞ is excluded since the Calderon–Zygmund-type
singular operator is not bounded either inL1 (but of weak type(1, 1)) or in L∞ (but taking
to BMO) [18]. For the Navier–Stokes equations, the singularity of the Biot–Savart kernel
is milder and the borderline casep = 1 or p = ∞ is often included in the well posedness
results [6, 9].

The indexγ = 1
2 seems special as we can see from this well posedness and other related

results concerning the QGS equation [16, 19, 20]. Forγ > 1
2, the existence, uniqueness
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and regularity are obtained, but the same questions remain open forγ 6 1
2. Now the

important question is if the indexγ = 1
2 is actually sharp and how this index is related

to the singularity of the integral operator determining the velocity field. The answer to
this question may provide a clue to the solution of the outstanding problem concerning the
existence of smooth solutions for the Navier–Stokes equations.

This paper is organized as follows. In section 2 the definition and some properties
of Morrey spaces are given as well as the solution operator of the linear equation and
its properties. The well posedness results are stated and proved in section 3 while the
smoothness of the solution is established in section 4.

2. Morrey spaces and the linear equation

In this section we shall list some basic properties of Morrey spaces and then study the the
solution operator for the linear equation over Morrey spaces. First we recall the definition.

Definition 2.1. For 16 p <∞, 06 λ < n, the Morrey spaceMp,λ is defined as

Mp,λ =Mp,λ(Rn) ≡ {f ∈ Lploc(Rn) : ‖f ‖p,λ <∞}
where the norm is given by

‖f ‖p,λ = sup
{x∈Rn,R>0}

R
− λ
p

(∫
|y−x|6R

|f |p(y) dy

) 1
p

M̈p,λ is defined to be a subspace ofMp,λ:

M̈p,λ = {f ∈Mp,λ : ‖f (· − y)− f (·)‖p,λ→ 0, asy → 0}.
Mp,λ is a Banach space and̈Mp,λ is a closed subspace ofMp,λ. Forp > 1,Mp,0 = Lp

andM1,0 =M, whereM is the space of finite measures. When not specified, the indices
in the notationMp,λ will be restricted in 16 p < ∞, 0 6 λ < n. Occasionally we
considerp = ∞ and thenM∞,λ simply meansL∞. The following properties of Morrey
spaces (cf [1, 15, 9]) will be used.

Lemma 2.2. For 16 p, q, r 6∞, we have
(i) Inclusion relations:

Mp,λ ⊂Mq,µ if
n− λ
p
= n− µ

q
q 6 p.

(ii) The Hölder inequality:

‖fg‖p,λ 6 ‖f ‖q,µ‖g‖r,ν if
1

p
= 1

q
+ 1

r

λ

p
= µ

q
+ ν
r
.

(iii) Continuous embedding in weighted Lebesgue space:

Mp,λ ↪→ L− µ

p
,p for p > 1 µ > λ

whereLs,p is the weighted Lebesgue space consisting of functionsf such that(1+|x|2) s2f ∈
Lp with the norm

‖f ‖Ls,p = ‖(1+ |x|2)
s
2f ‖Lp .
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We now consider the solution operator for the linear equation

∂tθ +32γ θ = 0 3 = (−1) 1
2 γ ∈ (0, 1]

on the whole spaceRn. For a given initial dataθ0, the solution of this equation is
given by θ = K(t)θ0 = e−3

2γ t θ0, whereK(t) is a convolution operator with the kernel
kt (x) = k(γ )t (x) being defined through its Fourier transform

k̂
(γ )
t (ξ) = e−|ξ |

2γ t . (2.1)

In particular,kt is the heat kernel forγ = 1 and the Poisson kernel forγ = 1
2.

As observed by Resnick [16],k(γ )t can be expressed as an average of the heat kernel,

k
(γ )

1 (x) =
∫ ∞

0
k(1)s (x) dPγ (s) k

(γ )
t = t−

n
2γ k

(γ )

1

(
x

t
1

2γ

)
(2.2)

wherePγ is some probability distribution. Furthermore,

Lemma 2.3. For 0< γ 6 1,
(a) k(γ )t > 0, and is a non-increasing radial function onRn with

|x|lk(γ )t (|x|) 7−→ 0 as |x| → ∞
for any real powerl.

(b) For t > 0, ‖k(γ )t ‖L1 = 1 and thus forft = k(γ )t ∗ f ,

|ft |p 6 k(γ )t ∗ |f |p 16 p <∞.
Proof. The proof of (a) is an easy consequence of equation (2.2) and the corresponding
properties of the heat kernel. We now show (b).‖k(γ )t ‖L1 = 1 is obvious. For any fixedx,

|ft (x)|p =
∣∣∣∣ ∫
Rn

eixξ f̂t (ξ) dξ

∣∣∣∣p
=
∣∣∣∣ ∫
Rn

eixξe−|ξ |
2γ t f̂ (ξ) dξ

∣∣∣∣p
=
∣∣∣∣ ∫
Rn
f (y)

∫
Rn

e−|ξ |
2γ tei(x−y)ξ dξ dy

∣∣∣∣p.
By Hölder’s inequality, with 1/p + 1/q = 1,

|ft (x)|p 6
∣∣∣∣ ∫
Rn
|f (y)|p

∫
Rn

e−|ξ |
2γ tei(x−y)ξ dξ dy

∣∣∣∣II
whereII is given by

II =
∣∣∣∣ ∫
Rn

∫
Rn

e−|ξ |
2γ tei(x−y)ξ dξ dy

∣∣∣∣p/q = ∣∣∣∣ ∫
Rn
k
(γ )
t (x − y) dy

∣∣∣∣p/q = 1.

Therefore,

|ft (x)|p 6
∫
Rn

eixξe−|ξ |
2γ t |̂f |p(ξ) dξ = k(γ )t ∗ |f |p(x).

An easier proof can be given by a direct use of Hölder’s inequality.
We now establish estimates for the operatorK(t) between Morrey spaces.
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Proposition 2.4. Let 1 6 q1 6 q2 6 ∞ and 0 6 λ1 = λ2 < n. For any t > 0, the
operatorsK(t), W(t) = ∇K(t) and ∂tK(t) are bounded operators fromMq1,λ1 to M̈q2,λ2

and depend ont continuously, where∇ denotes the space derivative. Furthermore, we have
for f ∈Mq1,λ1,

t
1

2γ (α1−α2)‖K(t)f ‖q2,λ2 6 C‖f ‖q1,λ1 (2.3)

t
1

2γ + 1
2γ (α1−α2)‖W(t)f ‖q2,λ2 6 C‖f ‖q1,λ1 (2.4)

t
1+ 1

2γ (α1−α2)‖∂tK(t)f ‖q2,λ2 6 C‖f ‖q1,λ1 (2.5)

whereαi = n−λi
qi
(i = 1, 2) and constantsC depend onγ, q1, q2, λ1, λ2.

The proposition is a modification of lemma 2.1 in [9] and its proof will be given in the
appendix.

3. Well posedness in Morrey spaces

In this section we deal with the IVP (1.1), (1.3), (1.2) for the QGS equations with initial
data in Morrey spaces. The solutions are found to be in the spaces of weighted continuous
functions in time, which we now introduce. Kato and collaborators first define such spaces
in solving the IVP for the Navier–Stokes equations [9, 10, 13, 12].

Definition 3.1. Let 0< T < ∞. For a given Banach spaceX and a real numberα > 0,
we denote byCα((0, T );X) the space ofX−valued continuous functionsf on (0, T ) with
the norm

‖f ‖α,X = sup
0<t<T

tα‖f (·, t)‖X <∞.

In particular,C0((0, T );X) = BC((0, T );X) is the space of bounded continuous functions
(note here thatC0((0, T );X) 6= C((0, T );X), the space of continuous functions).

Ċα = Ċα((0, T );X) denotes a subspace ofCα((0, T );X) consisting of all functionsf
with

lim sup
t→0

tα‖f (·, t)‖X = 0.

In the following Morrey spaces will play the role ofX and the norm inCα((0, T );Mp,λ)

will be abbreviated as‖‖α,p,λ.
Now we state the main theorem of this section and then prove it.

Theorem 3.2.Let 1
2 < γ 6 1 andθ0 ∈Mp,λ with

1< p <∞ and λ = n− (2γ − 1)p > 0.

Then there is aδ > 0 such that if‖θ0‖p,λ < δ, the IVP (1.1), (1.3), (1.2) has a solutionθ on
(0, T ) for someT > 0 satisfying

θ ∈ BC((0, T );M̈p,λ) ∩ (∩1<q6p ∩k>n−(2γ−1)q BC([0, T );L−k/q,q)). (3.1)

Furthermore, for anyp < q 6∞
θ ∈ Y ≡ Cm′((0, T );M̈q,λ) m′ =

(
1− 1

2γ

)(
1− p

q

)
(3.2)

andθ is the unique solution in the class of functions satisfying (3.2) with small norm‖u‖q,λ
for p < q 6∞. Moreover, the mapping

Q : θ0 7−→ θ V 7−→ Y
is Lipschitz for some neighbourhoodV of θ0.
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Remark 3.3. It is easy to see from the proof of this theorem that the solution is actually
global (i.e.T = ∞) if the norm‖θ0‖p,λ is sufficiently small.

Remark 3.4. Note that (3.1), in particular, implies that for 1< q 6 p
θ → θ0 in L− k

q
,q as t → 0.

In general we do not anticipateθ → θ0 in Mp,λ for any θ0 ∈Mp,λ sinceK(t) is not aC0

semigroup onMp,λ. Furthermore, we have

Proposition 3.5. Let f ∈Mq,λ. Thenf ∈ M̈q,λ if and only if

K(t)f − f → 0 as t → 0 inMq,λ.

This proposition shows thatM̈p,λ is the maximal closed subspace ofMp,λ on which
K(t) is aC0 semigroup. As a consequence of this proposition, (3.1) can be improved to

θ ∈ BC([0, T );M̈p,λ)

if the initial dataθ0 ∈ M̈p,λ.

Remark 3.6. For ‖θ0‖p,λ < δ, (3.2) also gives us the decay rate ofθ for larget , especially,

‖θ‖L∞ = O(t
1

2γ −1
).

We prove this theorem by the method of integral equations and contraction mapping
arguments. Following standard practice [5, 6, 9, 8, 11, 13], we write the QGS equation (1.1)
into the integral form:

θ(t) = K(t)θ0−G(u, θ)(t) ≡ K(t)θ0−
∫ t

0
K(t − τ)(u∇θ)(τ ) dτ (3.3)

whereK(t) is the solution operator of the linear equation

∂tθ +32γ θ = 0.

We observe thatu · ∇θ =∑j uj ∂j θ = ∇ · (uθ) provided that∇ · u = 0. This provides an
alternative expression forG:

G(u, θ)(t) = G(uθ)(t) =
∫ t

0
∇ ·K(t − τ)(uθ)(τ ) dτ.

We shall solve (3.3) in the spaces of weighted continuous functions in time introduced
at the beginning of this section. To this end we need estimates for the operatorG acting
between these spaces.

Proposition 3.7. Let f ∈ Ch((0, T );Mq1,λ1) andg ∈ Cl((0, T );Mq2,λ2) with

16 q1 6∞ 16 q2 6∞ 1

q1
+ 1

q2
6 1 h+ l < 1.

Assume thatq andλ satisfy: 16 q 6∞
1

q
6 1

q1
+ 1

q2
06 ε ≡ n− λ1

q1
+ n− λ2

q2
− n− λ

q
< 2γ − 1.

Then

G(f, g) ∈ Cm((0, T );Mq,λ)

and

‖G(f, g)‖Cm((0,T );Mq,λ) 6 C‖f ‖Ch((0,T );Mq1,λ1)
‖g‖Cl((0,T );Mq2,λ2)

(3.4)

wherem = h+ l + 1
2γ (1+ ε)− 1 andC is a constant.
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Proof. To prove this proposition, we use proposition 2.4 and the Hölder inequality in
lemma 2.2

‖G(f, g)(t)‖q,λ 6 C
∫ t

0
(t − τ)− 1

2γ (1+ε)‖fg‖ q1q2
q1+q2

,
λ1q2
q1+q2

+ λ2q1
q1+q2

(τ ) dτ

6 C
∫ t

0
(t − τ)− 1

2γ (1+ε)‖f (·, τ )‖λ1,q1‖g(·, τ )‖λ2,q2 dτ.

Therefore form = h+ l + 1
2γ (1+ ε)− 1,

‖G(f, g)(t)‖q,λ 6 C‖f ‖h,q1,λ1‖g‖l,q2,λ2t
−m
∫ 1

0
(1− σ)− 1

2γ (1+ε)σ−(h+l) dσ.

The integral in the last inequality can be written as the Beta function

B

(
1− 1

2γ
[1+ ε], 1− h− l

)
.

Using the fact that the Beta functionB(a, b) is finite if a > 0 andb > 0, we obtain that

‖G(f, g)‖m,q,λ 6 C‖f ‖h,q1,λ1‖g‖l,q2,λ2

under the assumptions of this proposition. The estimate (3.4) is thus proved. The continuity
of G(f, g) in t comes from applying dominated convergence theorem to the quantity

tmG(f, g)(t) = tm
∫ t

0
W(t − τ)(fg)(τ ) dτ.

We will need a result concerning the Calderon–Zygmund-type singular integral operators
on Morrey spaces. The Riesz transform is a particular example of these types of singular
integral operators.

Lemma 3.8. Let Z be a Calderon–Zygmund-type singular integral operator, i.e.Z :
Rn \ {0} → R is a homogeneous continuous function of degree−n and the integral on
the unit sphere vanishes. LetMq,µ with 1 < q <∞, 0 6 µ < n be a Morrey space. Then
Z is bounded onMq,µ to itself.

This result can be found in [17] but see [9] for an elementary proof.

Proof of theorem 3.2. Let X denote the Banach space

X = C( 1
2− 1

4γ

)((0, T );M2p,λ) (3.5)

andXR denote the complete metric space of the closed ball inX centred at 0 and of radius
R, whereT andR are yet to be determined. Consider the nonlinear mapA on XR given
by

A(θ)(t) = K(t)θ0−G(uθ)(t) t ∈ (0, T ).
We now start proving thatAmapsXR to itself and is a contraction. Applying proposition 2.4
with

q1 = p q2 = 2p λ1 = λ2 = λ = n− (2γ − 1)p

we obtain

‖Kθ0‖X = ‖Kθ0‖ 1
2− 1

4γ ,2p,λ
6 C0‖θ0‖p,λ

where constantC0 may depend onn, p, γ .
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The application of proposition 3.7 with

q1 = q2 = q = 2p λ1 = λ2 = λ = n− (2γ − 1)p m = h = l = 1

2
− 1

4γ

shows that

‖G(uθ)‖ 1
2− 1

4γ ,2p,λ
6 C‖u‖ 1

2− 1
4γ ,2p,λ

‖θ‖ 1
2− 1

4γ ,2p,λ
.

Using lemma 3.8, we obtain forθ ∈ XR
‖G(uθ)‖X = ‖G(uθ)‖ 1

2− 1
4γ ,2p,λ

6 C1R
2.

whereC andC1 are constants.
Furthermore, for anyθ and θ̃ ∈ XR,

‖A(θ)−A(θ̃)‖X = ‖G(uθ)−G(ũθ̃)‖X
whereũ = (ũj ) with ũj = ±Rπ(j)θ̃ (j = 1, 2, . . . , n). Using proposition 3.7 to estimateG
again,

‖A(θ)−A(θ̃)‖X 6 ‖G((ũ− u)θ̃)‖X + ‖G(u(θ − θ̃ ))‖X
6 C(‖ũ− u‖X‖θ̃‖X + ‖θ − θ̃‖X‖u‖X).

Since(ũ− u)j = ±Rπ(j)(θ̃ − θ), lemma 3.8 implies that for some constantCp,λ

‖u‖X 6 Cp,λ‖θ‖X ‖ũ− u‖X 6 Cp,λ‖θ̃ − θ‖X.
Therefore for constantC2 = 2CCp,λ,

‖A(θ, θ0)−A(θ̃ , θ0)‖X 6 C2

2
(‖θ̃‖X + ‖θ‖X)‖θ̃ − θ‖X 6 C2R‖θ̃ − θ‖X.

It then follows that the conditions thatA mapXR into itself and be a contraction are

C0‖θ0‖p,λ + C1R
2 6 R C2R < 1.

These conditions are met if

‖θ0‖p,λ < δ = 1

4C0C1
R < min

{
1

2C1
,

1

C2

}
.

Hence for the above chosenδ and R, A has a unique fixed pointθ ∈ XR satisfying
θ(t) = A(θ)(t) for t ∈ (0, T ) (T > 0 andT = ∞ if ‖θ0‖p,λ is small enough).

To show thatθ satisfies (3.1), we first note that

θ = A(θ) ≡ Kθ0−G(uθ).
For θ0 ∈Mp,λ with λ = n− (2γ − 1)p,

Kθ0 ∈ BC((0, T );M̈p,λ)

as implied by proposition 2.4. Furthermore, because of the continuous embedding for
1< q 6 p andk > n− (2γ − 1)q

Mp,λ ⊂Mq,n−(2γ−1)q ⊂ L− k
q
,q

and the fact thatK(t) forms aC0 semigroup onL−k/q,q for 1 < q, we haveKθ0 ∈
BC([0, T );L−k/q,q) for q > 1 andk > n− (2γ − 1)q.

For the termG(uθ), we first apply proposition 3.7 with

λ1 = λ2 = λ q1 = q2 = 2p q = p h = l = 1

2
− 1

4γ
m = 0
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to show that

G(uθ) ∈ BC((0, T );M̈p,λ). (3.6)

Now we use (3.6) and apply proposition 3.7 with

λ1 = λ2 = λ q1 = q2 = p q = p

1+ η
h = l = 0 m = −η

(
1− 1

2γ

)
η > 0 is small

to obtain that

G(uθ) ∈ C−η(1− 1
2γ

)((0, T );Mq,λ) for q = p

1+ η < p

which implies that

G(uθ)→ 0 ast → 0 inMq,λ

because of the embeddingMq,λ ⊂ L−k/q,q for k > n− (2γ − 1)q > λ,

G(uθ)→ 0 in L−k/q,q , as t → 0.

ThereforeG(uθ) ∈ BC([0, T );L− k
q
,q) for 1 < q 6 p and k > n − (2γ − 1)q. Summing

up, we have shown thatθ = Kθ0−G(uθ) is exactly in the class defined by (3.1).
We now prove thatθ satisfies (3.2).Kθ0 satisfying (3.2) is an easy consequence of

proposition 2.4. We apply proposition 3.7 toG(uθ) with

h = l =
(

1

2
− 1

4γ

)
m = m′

q = q q1 = q2 = 2p λ = λ1 = λ2

and use the fact thatθ ∈ X (3.5) to show thatG(uθ) is in the class defined by (3.2). This
argument, combined with the uniqueness ofθ in (3.5), indicates the uniqueness ofθ in
(3.2).

The proof of the Lipschitz property is routine (see i.e. [20]) and is therefore omitted.

4. Further regularity

In this section we prove that the solutionθ obtained in theorem 3.2 is actually smooth.
More precisely, we have

Theorem 4.1.Let θ be the solution obtained in theorem 3.2, Then for anyp 6 q <∞ and
k, j = 0, 1, 2, · · ·

∂kt ∇j θ ∈ C((0, T );M̈q,λ) (4.1)

whereλ = n− (2γ − 1)p, ∇ denotes the space derivative andC((0, T );X) is the space of
X-valued continuous functions on(0, T ).

Proof. The smoothness ofθ is proved by standard schemes. First we consider the case
whenk = 0. For j = 0, (4.1) can be seen from (3.1), (3.2) in theorem 3.2. We now prove
that (4.1) is true forj = 1. We take anyt1 > 0 and prove the results fort > t1.

We take∇ of G and apply the Leibnitz rule to obtain

∇G(u, θ) = G1(∇u, θ)+G2(u,∇θ)
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whereG1 andG2 are integral operators on(t1, T ) with the same properties asG. First let
q > p andX be the space consisting of functionsθ such that

θ ∈ C([t1, T );M̈q,λ) ∇θ ∈ C1− 1
2γ
((t1, T );M̈q,λ) (4.2)

andXR be the closed ball of radiusR in X. The idea is to apply contraction mapping
arguments toA on XR with T andR to be determined. First we chooseR appropriately
such thatK(t)θ1 ∈ XR, where θ1 = θ(t1) is the value ofθ at t1. As in the proof of
theorem 3.2, we apply proposition 3.7 toG, G1 andG2 to show that forθ ∈ XR

G(u, θ) ∈ C(−(1− 1
2γ

)(
1− p

q

))((0, T );M̈q,λ) (4.3)

∇G(u, θ) ∈ C(
1− 1

2γ

)(
1− p

q

)((0, T );M̈q,λ) (4.4)

and lemma 3.8 is used in estimatingu and∇u as usual. Equations (4.3) and (4.4) imply
not onlyG ∈ XR, but also that the norm ofG(u, θ) in XR has a small factor(T − t1)% if
T − t1 is small, where

% = min

{(
1− 1

2γ

)(
1− p

q

)
,

(
1− 1

2γ

)
p

q

}
.

If T − t1 is chosen small andR taken as above, thenA mapsXR to itself. Furthermore , it
can be shown in the same spirit as in the proof of theorem 3.2 thatA is a contraction map
on XR. ThereforeA has a fixed pointθ in XR, which solves (3.3). The uniqueness result
in theorem 3.2 indicates that thisθ is just the originalθ obtained in theorem 3.2. Thus we
have shown thatθ ∈ C((t1, T );M̈q,λ), which implies thatθ ∈ C((0, T );M̈q,λ) because of
the arbitrariness oft1.

For the caseq = p, the result∇θ ∈ C((t1, T );M̈p,λ) can be established by applying
proposition 3.7 to∇G again and using the relation in (4.2).

Repeating the same argument for higher spatial derivatives ofθ , we obtain the result
∇j θ ∈ C((0, T );M̈q,λ). This finishes the proof for the casek = 0.

We now prove (4.1) fork = 1. It is easy to see from the regularity result we have just
obtained that

∇j θ ∇ju (−1)λ∇j θ ∈ C((0, T );M̈q,λ) j = 0, 1, 2, . . .

for anyp 6 q <∞. Using equation (1.1)

∂tθ = −u∇θ − (−1)γ θ
and the Ḧolder inequality for the Morrey spaces (i.e. (ii) of lemma 2.2), we obtain for
j = 0, 1, 2, . . .

∂t∇j θ ∈ C((0, T );M̈q,λ).

The result for generalk can be established by induction. This concludes the proof of
theorem 4.1.

Acknowledgments

It is a great pleasure to thank Professor Peter Constantin for his constant encouragement and
suggestions. This work was supported by the NSF grant No DMS 9304580 at the Institute
for Advanced Study.



Quasi-geostrophic-type equations 1419

Appendix

We prove proposition 2.4 in this appendix. For simplicity of notation, we will dropγ when
writing the kernelk(γ )t and useft for kt ∗ f .

We first prove estimate (2.3). Forq1 = q2 = ∞, (2.3) is obvious. Forq1 = q2 < ∞,
we use (b) of lemma 2.3, i.e.

‖kt‖L1 = 1 |ft |p 6 kt ∗ |f |p (A.1)

to obtain forq2 = q1, λ2 = λ1

‖ft‖q2,λ2 6 ‖f ‖q1,λ1. (A.2)

To prove (2.3) in the general case, we first estimate‖ft‖L∞ . By (A.1),

|ft (0)|q1 6
∫
Rn
kt (|x|)|f (x)|q1 dx =

∫ ∞
0
kt (ρ) dr(ρ)

6
∫ ∞

0
|k′t (ρ)|r(ρ) dρ

6 ‖f ‖q1
q1,λ1

∫ ∞
0
|k′t (ρ)|ρλ1 dρ

wherer(ρ) = ∫
|y|<ρ |f (y)|q1 dy and we have used the fact thatr(ρ) 6 ‖f ‖q1

q1,λ1
ρλ1. The

decay properties ofkt (see lemma 2.3) are also used here. Sincex = 0 is not special, we
obtain

‖ft‖q1
L∞ 6 c‖f ‖q1

q1,λ1
t
− n+1

2γ

∫ ∞
0
|k′1(ρt−

1
2γ )|ρλ1 dρ 6 c‖f ‖q1

q1,λ1
t
λ1−n

2γ (A.3)

which also proves (2.3) forq1 < q2 = ∞.
We can now estimate‖ft‖q2,λ2 in terms of‖f ‖q1,λ1 for q1 6 q2 < ∞. For any real

numberR > 0 andx ∈ Rn,
R−λ2

∫
|x−y|<R

|ft (y)|q2 dy 6 R−λ2(‖ft‖L∞)(q2−q1)

∫
|x−y|<R

|ft (y)|q1 dy.

Using estimate (A.3) and noting thatλ1 = λ2,

R−λ2

∫
|x−y|<R

|ft (y)|q2 dy 6 c(‖f ‖q1,λ1)
(q2−q1)t

1
2γ

(
(λ1−n)
q1

)
(q2−q1)‖ft‖q1

q1,λ1
.

Because of‖ft‖q1,λ1 6 ‖f ‖q1,λ1 as in (A.2),

R−λ2

∫
|x−y|<R

|ft (y)|q2 dy 6 c‖f ‖q2
q1,λ1

t
q2
2γ (α2−α1)

whereαi = n−λi
qi
(i = 1, 2). By definition,

‖ft‖q2,λ2 6 ct
1

2γ (α2−α1)‖f ‖q1,λ1

where constantsc depend on the indicesγ, q1, q2, λ1, λ2.
Estimates (2.3), (2.4) can be proved similarly by using the identities

(∂xkt )(x) = ct−
1

2γ gt (x) (∂tkt )(x) = ct−1gt (x)

wheregt is another radial function enjoying the same properties askt (x) does (the properties
of kt are listed in lemma 2.3).

ft ∈ M̈q2,λ2 follows directly from (2.3). and the continuity ofK(t) in t is a consequence
of (2.4). The continuity ofW follows from a similar estimate for∂tW as in (2.4) and that
of ∂tK(t) from the identity∂tK = −32γK.
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