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Abstract. This paper studies the well posedness of the initial value problem for the quasi-
geostrophic type equations

% +uVo + (=A)0 =0 onR" x (0, 00)

0(x,0) = Op(x) x eR"
wherey (0 < y < 1) is a fixed parameter and= (u;) is divergence free and determined from
6 through the Riesz transformy, = £R; ;6 (7 (/) being a permutation of, j =1,2,---,n).
The initial datadp is taken in certain Morrey spacesl,, , (R") (see text for the definition). The
local well posedness is proved for

%<y<1 l<p<oo A=n—Q2y—-Dp=>0
and the solution is global for sufficiently small data. Furthermore, the solution is shown to be
smooth.

AMS classification scheme numbers: 35Q35, 35A07

1. Introduction

We study the initial value problem (IVP) of the dissipative quasi-geostrophic-type (QGS)
equations

00

m +uVO + (A6 =0 onR" x (0, 00) 1.1)

0(x, 0) = Gp(x) x eR” (1.2)
wherey (0 < y < 1) is a fixed parameter and the velocity= (11, uy, ..., u,) is divergence

free (i.e.V - u = 0) and determined frord by
uj = £Ryj0 m(j) is a permutation ofj, j =1,2,...,n (1.3)

where u; may take either a plus or a minus sign aRd = 8,(—A)*% are the Riesz
transforms. Here the Riesz potential operdton)” is defined through the Fourier transform
[18]:

fE) = f e f(x) dx

(ZA)f)E) = |E* F(E).

If n = 2, equation (1.1) withu given in (1.3) becomes the two-dimensional QGS
equation describing actual geophysical fluid flow on the two-dimensional boundary of a
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fast rotating three-dimensional half space with small Rossby and Ekman numbers [3, 14].
The scalam represents the potential temperature and the fluid velocity, which can be
expressed by the stream functign
ad d
= = (32 30) b=, (L.4)

axZ’ 3X1

As developed by Constantiet al [3], the two-dimensional QGS equation is strikingly
analogous to the three-dimensional Navier—Stokes equations both mathematically and
physically. The Navier—Stokes equations with singular initial data have been extensively
studied in coping with real physical phenomena. In this paper we study the existence,
uniqueness and regularity of solutions to the QGS equation when the initial data is taken
in Morrey spacesgy € M, ;. We treat the general—D equation for the completeness
of mathematical theory. The usual Lebesgue spdcdeand the space of finite measures
M are special examples of Morrey spaces. Very singular data such as certain measures
concentrated on smooth surfaces are also contained in Morrey spaces and these types of
initial profiles are of real physical interest.

Although there is a large literature on quasi-geostrophic equations [14, 2, 7, 3], not many
rigorous mathematical results concerning the solutions have been obtained. Comgtahtin
[3] proved finite-time existence results for smooth data and develop mathematical criteria
characterizing blow-up for the two-dimensional non-dissipative QGS equation. Resnick [16]
obtained solutions of two-dimensional QGS equations Withdata on the periodic domain
by using the Galerkin approximation. In a previous paper [19] the vanishing dissipation
limits and Gevrey class regularity [4] for the two-dimensional dissipative QGS equations
are obtained.

In this paper we prove that |§ <y < 1andfy € M, with
l<p<oo A=n—Q2y—-Lp=0. (1.5)

Then the IVP (1.1), (1.3), (1.2) is locally well posed and the solution is global for sufficiently
small initial data. Furthermore, we prove that the solution is actually smooth. The precise
statements are given in theorem 3.2 of section 3 and theorem 4.1 of section 4. The proof
of the well posedness is achieved by using a key observation of Resnick [16] and the
contraction-mapping principle. These results reduce to thog¢ itheory by takingh = 0.

The contraction-mapping theorem is probably the most often used result in showing the
existence of solutions and we give a brief introduction for the convenience of those who
are not familiar with it. IfX is a Banach space with norfin ||x and? maps fromX to X

and is a contraction, i.e. for sonbec (0, 1)

Px —Pylx < bllx — ylix foranyx,y e X.

Then there exists a uniqug € X such thatPxg = xo.

As we shall find out in section 3, that the requirement b < oo in (1.5) comes from
estimating the singular integrals of the Calderon—-Zygmund type when we boumtgkrms
of 6 in Morrey spaces.p = 1 or p = oo is excluded since the Calderon—-Zygmund-type
singular operator is not bounded eitherZih (but of weak type(1, 1)) or in L> (but taking
to BM 0) [18]. For the Navier—Stokes equations, the singularity of the Biot—Savart kernel
is milder and the borderline cage= 1 or p = oo is often included in the well posedness
results [6, 9].

The indexy = % seems special as we can see from this well posedness and other related

results concerning the QGS equation [16, 19, 20]. for % the existence, unigqueness
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and regularity are obtained, but the same questions remain open f@r%. Now the
important question is if the index = % is actually sharp and how this index is related
to the singularity of the integral operator determining the velocity field. The answer to
this question may provide a clue to the solution of the outstanding problem concerning the
existence of smooth solutions for the Navier—Stokes equations.

This paper is organized as follows. In section 2 the definition and some properties
of Morrey spaces are given as well as the solution operator of the linear equation and
its properties. The well posedness results are stated and proved in section 3 while the

smoothness of the solution is established in section 4.

2. Morrey spaces and the linear equation

In this section we shall list some basic properties of Morrey spaces and then study the the
solution operator for the linear equation over Morrey spaces. First we recall the definition.

Definition 2.1. For 1< p < 0o, 0 < A < n, the Morrey spaceM,, ; is defined as

My = MpaRY) ={f € Lipe R") 2 || fllpn < 00}

loc

where the norm is given by

1
_ A 4
I fllpp= sup R » (/ LF1P () dy)
{xeR", R>0} [y—x|<R

M, . is defined to be a subspace M, ;:
My =1{f € Mpi 2 Ilf ¢ =) = fOllpx — 0,85y — O},

M, , is a Banach space aa‘é}lm is a closed subspace #fl,, ,. Forp > 1, M, o= L”
and Mj 0 = M, where M is the space of finite measures. When not specified, the indices
in the notationM,, ; will be restricted in 1< p < oo, 0 < A < n. Occasionally we
considerp = co and thenM, ; simply meansL®. The following properties of Morrey
spaces (cf [1, 15, 9]) will be used.

Lemma 2.2.For 1 < p,q,r < oo, we have
(i) Inclusion relations:

My CTMgu if = q <p.
(ii) The Hélder inequality:

1
I f&llps < I llg.pllgllry if—=-4- —=—+-.
P q. 1k » q
(iif) Continuous embedding in weighted Lebesgue space:
MP,AL)L_%,I, forp>1 w > A

whereL; , is the weighted Lebesgue space consisting of funcifasisch that(1+[x|?)? f €
L? with the norm

£z, = 1L+ X2 fllLe.
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We now consider the solution operator for the linear equation
3,0+ A% =0 A = (—A)? y €(0,1]

on the whole spac&®”. For a given initial datafy, the solution of this equation is
given by6 = K(t)6y = e 2719, where K(¢) is a convolution operator with the kernel
k:(x) = k7 (x) being defined through its Fourier transform

K@) = ek 2.1)

In particular,k; is the heat kernel foy = 1 and the Poisson kernel for = %
As observed by Resnick [164,”’) can be expressed as an average of the heat kernel,

oo
kK (x) = / kP dP,(s) kY =1 w kY <i) (2.2)
0 to

where P, is some probability distribution. Furthermore,

Lemma 2.3.For 0 < y <1,
(@) £ > 0, and is a non-increasing radial function d&" with

x|’k (|x]) —> O as|x| — oo

for any real power.
(b) Fort > 0, k"], = 1 and thus forf, = k7 x f,

P <K s | fIP 1< p < oo

Proof. The proof of (a) is an easy consequence of equation (2.2) and the corresponding
properties of the heat kernel. We now show (1%"’||;: = 1 is obvious. For any fixed,

p

()P = ‘/R & 71(6) d
p

e KM 7(e) ds

Rn

p
Rn Rn

By Holder’s inequality, with Ip +1/q = 1,

|fr (017 < ‘f If(y)l”/ e Erglme dédy‘”
R R

where/1 is given by

/ / eI D€ e gy

il <[ e e [Fo () de = k) % | £17 (x).
RVI

rla
=1

rlq
Il =

= / k" (x = y)dy

Therefore,

An easier proof can be given by a direct use d@fdier's inequality.
We now establish estimates for the operakar) between Morrey spaces.
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Proposition 2.4.Let1 < g1 < g2 < cocand0 < A1 = A2 < n. Foranyr > 0, the
operatorsK (1), W(t) = VK(t) and 9, K (¢) are bounded operators fromv1,, ;, to ng,xz

and depend on continuously, wher& denotes the space derivative. Furthermore, we have
for f e My s,

(01—
(5D K@) Fllgprs < CF lgus 23)
A4 Ll(—a
(FE @D W) L < ClLf g (2:4)
A (—a
EE D K () Fllgpis < Ol f g 29

whereq; = ”;—_*f(i =1, 2) and constant&” depend ory, g1, g2, A1, A2.

The proposition is a modification of lemma 2.1 in [9] and its proof will be given in the
appendix.

3. Well posedness in Morrey spaces

In this section we deal with the IVP (1.1), (1.3), (1.2) for the QGS equations with initial
data in Morrey spaces. The solutions are found to be in the spaces of weighted continuous
functions in time, which we now introduce. Kato and collaborators first define such spaces
in solving the IVP for the Navier—Stokes equations [9, 10, 13, 12].
Definition 3.1. Let 0 < T < oo. For a given Banach spacé and a real numbex > 0,
we denote byC, ((0, T); X) the space o —valued continuous functiong on (0, T') with
the norm
I flla,x = sup t*[I f(-,)llx < oo.
O<t<T

In particular,Co((0, T); X) = BC((0, T); X) is the space of bounded continuous functions
(note here thato((0, T); X) # C((0, T); X), the space of continuous functions).

Cy = Co((0, T); X) denotes a subspace 6f((0, T); X) consisting of all functionsf
with

limsupt*|| f (-, )||x = 0.
t—0
In the following Morrey spaces will play the role af and the norm irC, ((0, T'); M, ;)

will be abbreviated a$||a,p 5.
Now we state the main theorem of this section and then prove it.

Theorem 3.2.Let < y < landfp € M,,; with
l<p<o and A=n—2y—-1p=0.

Then there is & > 0 such that if|| 6y, < 8, the IVP (1.1), (1.3), (1.2) has a solutiénon
(0, T) for someT > 0 satisfying

0 € BC((O, T)» Mp,)») n (ml<q<p mk>nf(2yfl)q BC([O, T)7 Lfk/q,q))' (31)
Furthermore, for anyp < g < oo

0eY=Cu((0,T); M,,) m = (1 — i) (1 - 3) (3.2)
2y q

andé is the unique solution in the class of functions satisfying (3.2) with small fjatp,.
for p < g < co. Moreover, the mapping

Q:6— 0 Vi—Y
is Lipschitz for some neighbourhodd of 6.
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Remark 3.3. It is easy to see from the proof of this theorem that the solution is actually
global (i.e.T = oo) if the norm|6g|l,, . is sufficiently small.
Remark 3.4. Note that (3.1), in particular, implies that ford g < p
0 — 6y in L_:,ast— 0.
L

In general we do not anticipate— 6y in M, , for any6y € M, sinceK(z) is not aCop
semigroup onM,, ,. Furthermore, we have

Proposition 3.5. Let f € M, ,. Thenf e M“ if and only if
Kt)yf—f—0 ast — 0in Mg,;.

This proposition shows tha/s?lp,k is the maximal closed subspace #,;, on which
K (t) is aCq semigroup. As a consequence of this proposition, (3.1) can be improved to

0 € BC([0,T); M,.)

if the initial datady € M, ;.

Remark 3.6. For [|6o]l,.» < 8, (3.2) also gives us the decay ratedofor larger, especially,
1611z~ = Oz Y.

We prove this theorem by the method of integral equations and contraction mapping
arguments. Following standard practice [5, 6,9, 8,11, 13], we write the QGS equation (1.1)
into the integral form:

0(t) = K(t)00—Gu,0)() = K(t)bp — / K —t)mVe)(r)dr 3.3)
0

where K (¢) is the solution operator of the linear equation
3,6 + A%6 =0.

We observe that - VO = Zj u;j0;6 =V - (uf) provided thatv - u = 0. This provides an
alternative expression fag:

t

G(u, 0)(t) = Gub)(t) =f V. K(t — 1)(ub)(r) dr.
0

We shall solve (3.3) in the spaces of weighted continuous functions in time introduced
at the beginning of this section. To this end we need estimates for the opératoting
between these spaces.

Proposition 3.7. Let f € C,,((0, T); My, »,) andg € Ci((0, T); My, ,,) with

1 1
1<g1 <0 1<g <0 —+—<1 h+1 <1
q1 42
Assume tha and A satisfy: 1 < g < oo
1 1 1 —A —A —A
S<S 4D 0ge=tfr TR M7 o g
q q1 42 q1 q2 q
Then
G(f, g € Cu((0,T); My1)
and
IG(f, ©)lle,«o1im, < Cllfllc,o,1; M, 18 lcic 1M, 1) (3.4)

wherem = h +1+ 5-(1+¢€) — 1andC is a constant.
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Proof. To prove this proposition, we use proposition 2.4 and tli#der inequality in
lemma 2.2

' —-L@1+e)
IG(f, g < cf (t = 3O fell gy s, sz (1) T
0

q1+q2° 91+92  91+a2
t
- £+
<cC f t =) 7 FC O lhnallg G g, dT.
0

Therefore form = h +1 + %(1—1— €)—1,

1
_1 _
IG(f, ) Dllgs < ClUFllngrial€lligoit ™ / (1—0) 7H9e=0D gg.
0

The integral in the last inequality can be written as the Beta function

1
B(l——[1+e],1—h—l>.
2y
Using the fact that the Beta functiaB(a, b) is finite if « > 0 andb > 0, we obtain that

IG(f, ) lmgo < Clflnguiallglligs.r

under the assumptions of this proposition. The estimate (3.4) is thus proved. The continuity
of G(f, g) in t comes from applying dominated convergence theorem to the quantity

"G(f. 9)@) = t’”/o W —1)(fg)(r)dr.

We will need a result concerning the Calderon—Zygmund-type singular integral operators
on Morrey spaces. The Riesz transform is a particular example of these types of singular
integral operators.

Lemma 3.8.Let Z be a Calderon—-Zygmund-type singular integral operator, iZ.:
R" \ {0} — R is a homogeneous continuous function of degreeand the integral on
the unit sphere vanishes. L&t , with1 < ¢ < 00,0 < p < n be a Morrey space. Then
Z is bounded oM, ,, to itself.

This result can be found in [17] but see [9] for an elementary proof.
Proof of theorem 3.2. Let X denote the Banach space
X = C(%_%)((Ov T); MZp,A) (3-5)

and Xy denote the complete metric space of the closed ba¥ itentred at 0 and of radius
R, whereT and R are yet to be determined. Consider the nonlinear tdapn X given

by
A@)(@) = K ()0 — Gub)(1) te (0, 7).
We now start proving thatl mapsXy to itself and is a contraction. Applying proposition 2.4
with
g1=7p g2=2p M=A=rA=n—Q2y-Dp
we obtain
IKGollx = I1K6oll— 2 2, < Collfollp.»

where constan€y may depend om, p, y.



1416 Jiahong Wu
The application of proposition 3.7 with
q1=qg2=q=2p M=l=A=n—-Qy—-Dp m=h=I1=>-——

shows that

1G@O3- 1 2ps < Cllulls— 3 2 105 2 2

Using lemma 3.8, we obtain f@r € Xz
1Gd)x = IIG(MO)II; Loy S C1R?.

4y
whereC andC; are constants..
Furthermore, for any andéd € Xy,

IA©) — A@)llx = IGub) — G(@d)|x

wherei = (it;) with ii; = iRﬂ(j)é(j =1,2,...,n). Using proposition 3.7 to estimat&
again,

<G —wdh)lx + 1Gw® — 6)x
< C(la —ullx10llx + 160 — Ol x llullx).
Since (@i —u); = :I:Rn(j)(é —0), lemma 3.8 implies that for some constar),

IA©) — A©)llx

lullx < Cpall@llx i —ullx < Cpalld —Olx.

Therefore for constant,; = 2CC,, ;,

~ CZ ~ ~ ~
LA, 6o) — A0, Oo)llx < 7(|I9llx + 10110 —0llx < C2R||0 — O|x.
It then follows that the conditions that map X into itself and be a contraction are
CollOoll p,5 + C1R*< R CoR < 1.

These conditions are met if
. { 1 1 }
R <min{ — .

4CoCy 2C;° G,

Hence for the above chosehand R, A has a unique fixed poimd € Xy satisfying
0(t) =A@)(t) fort € (0,T) (T > 0andT = oo if ||6oll,,» is small enough).
To show that satisfies (3.1), we first note that

0 = AB) = Kby — G(ub).
Forép € M, , with A =n — 2y — 1)p,
Ko € BC((0,T); M,,)

as implied by proposition 2.4. Furthermore, because of the continuous embedding for
l<g<pandk>n— 2y —1ygq

6ollpx <8 =

MM - Mq,n—(ZV—l)q - L—g,q

and the fact thatk (r) forms a Co semigroup onL_, , for 1 < g, we haveK6y e
BC([0,T); L_gq.4) for g > L andk > n — 2y — 1)q.
For the termG (u6), we first apply proposition 3.7 with

1 1
M=hky=1 q1=4q2=2p q=7r h=l=3—--— m=0
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to show that

Gub) € BC((0,T); M, ). (3.6)
Now we use (3.6) and apply proposition 3.7 with
p
1 2 q1=42=p q 1+1
1
h=1=0 m:—n(l——) n > 0 is small
2y

to obtain that

) -_r
Gub) e C—n(l—%) (0, T); My,») for g = 141 =P

which implies that
Gwb) - 0 ast — 01in Mg,
because of the embeddingl, , C L_y/,, fork >n— 2y — g > 1,
Gud) — 0 iNL_gq4, ast — 0.
ThereforeG(u6) € BC([0, T); L_g. )forl<g < pandk >n— (2y — 1)gq. Summing
up, we have shown th& = K6y, — G(u6) is exactly in the class defined by (3.1).

We now prove that satisfies (3.2). K6, satisfying (3.2) is an easy consequence of
proposition 2.4. We apply proposition 3.7 @(u6) with

1 1 ,
h=l=|=-—-—— m=m
2 4y

9=q qu=q2=2p A=Xdi=2

and use the fact that € X (3.5) to show thatG (u9) is in the class defined by (3.2). This
argument, combined with the uniquenesstoin (3.5), indicates the uniqueness ®fin
(3.2).

The proof of the Lipschitz property is routine (see i.e. [20]) and is therefore omitted.

4. Further regularity
In this section we prove that the solutienobtained in theorem 3.2 is actually smooth.
More precisely, we have

Theorem 4.1.Let 6 be the solution obtained in theorem 3.2, Then for any ¢ < co and
k,j=0,1,2,---

3Vie e C((0,T); M, ) (4.1)

wherer = n — (2y — 1)p, V denotes the space derivative a@d(0, T); X) is the space of
X-valued continuous functions af, 7).

Proof. The smoothness df is proved by standard schemes. First we consider the case
whenk = 0. Forj =0, (4.1) can be seen from (3.1), (3.2) in theorem 3.2. We now prove
that (4.1) is true forj = 1. We take any; > 0 and prove the results for> #;.

We takeV of G and apply the Leibnitz rule to obtain

VG, 0) = G1(Vu,0) + Go(u, VO)
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whereG1 and G, are integral operators of, 7) with the same properties &s. First let
g > p and X be the space consisting of functiofissuch that

0 e C(t1, T); My.,) VO € Cy (. T); M, 2) (4.2)

and X be the closed ball of radiug in X. The idea is to apply contraction mapping
arguments tod on X with T and R to be determined. First we choo&eappropriately
such thatkK (1)0; € Xz, where6, = (1) is the value of9 at r;. As in the proof of
theorem 3.2, we apply proposition 3.7 @& G, and G, to show that ford € Xg

G(u,9) e C(f(lfi)(lfg))((o, T); My 1) (4.3)

VG.6) € Cy_y (1) (O T M) (4.9

1-2
q

and lemma 3.8 is used in estimatingand Vu as usual. Equations (4.3) and (4.4) imply

not only G € Xy, but also that the norm ofi (u, ) in Xz has a small facto(T — 1)@ if

T — t1 is small, where

c-rof(t-2)(-2)-(- )z

If T —1 is chosen small an& taken as above, thed mapsX; to itself. Furthermore , it
can be shown in the same spirit as in the proof of theorem 3.24hata contraction map
on Xr. ThereforeA has a fixed poin® in Xz, which solves (3.3). The uniqueness result
in theorem 3.2 indicates that thisis just the originab obtained in theorem 3.2. Thus we
have shown that € C((t1, T); Mqﬁ,\), which implies that € C((0, T); MM) because of
the arbitrariness of;.

For the casey = p, the resultVe € C((t1, T); M,M) can be established by applying
proposition 3.7 toVvG again and using the relation in (4.2).

Repeating the same argument for higher spatial derivatives ofe obtain the result
Vig € C((0, T); M, ;). This finishes the proof for the cage= 0.

We now prove (4.1) fok = 1. It is easy to see from the regularity result we have just
obtained that

vig Viu (=A)'VI9 € C((0, T); M) j=012,...
for any p < g < oo. Using equation (1.1)
8,0 = —uve — (—A)’0

and the Hblder inequality for the Morrey spaces (i.e. (i) of lemma 2.2), we obtain for
j=012...

V70 € C((0,T); M,.,).

The result for generak can be established by induction. This concludes the proof of
theorem 4.1.
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Appendix

We prove proposition 2.4 in this appendix. For simplicity of notation, we will drophen
writing the kernelk,(y) and usef; for k; * f.

We first prove estimate (2.3). Fgi = g» = oo, (2.3) is obvious. Foy; = g2 < oo,
we use (b) of lemma 2.3, i.e.

lkellr =1 |fil? < ke x| f1P (A.1)
to obtain forq2 =q1, A2 =X\
”ﬁ”qz,}»z g ||f||f11a}\1‘ (AZ)

To prove (2.3) in the general case, we first estimfd|,~. By (A.1),
FAOISES f ke (lxD1f ()| dx = f ki (p) dr(p)
R 0

<A|wmmmm

o0
< IIfIZi,Mf Ik, ()| p™* dp
0

wherer(p) = f\y|<p |f(»)|“:dy and we have used the fact thaip) < |||, o*. The
decay properties of, (see lemma 2.3) are also used here. Sinee 0 is not special, we

obtain

n

nt+l R 1 rlp—n
—_tTre —_ )\. P N
IFT < el fIg e % / [k (pt™2)|p™ do < el fligr, 0> (A.3)
0

which also proves (2.3) fag; < g2 = 0.
We can now estimaté f;[l,,1, in terms of || f1l,,., for g1 < g2 < co. For any real
numberR > 0 andx € R”,

R_“fl ‘ ler(y)lq2 dy < R‘“(IlfzIILoo)(‘”_‘“)/| | fr ()" dy.

x—y|<R
Using estimate (A.3) and noting that = A,
1 (G1m)
R*sz/ | f;()|%2 dy < C(”f”ql.)\l)(qz*m)[ 2;/( a )(512 111)”fl| Zi,kl'
lx—yl<R

Because of| f;llg.1, < | fllgn, @sin (A.2),

_ o
R '\2/ |fnI2dy <cll fI%, 17 (@2—a1)
[x—y|<R

whereq; = ”;*f (i = 1,2). By definition,

i

1 _
I fillgons < 227D £l

where constants depend on the indiceg, q1, g2, A1, A2.
Estimates (2.3), (2.4) can be proved similarly by using the identities

(Bck) (x) = Ct 7 g, (x) (Brke) (x) = ot 1g, (x)

whereg, is another radial function enjoying the same propertiels @ does (the properties
of k, are listed in lemma 2.3).

fi € qu,xz follows directly from (2.3). and the continuity & (¢) in ¢ is a consequence
of (2.4). The continuity ofW follows from a similar estimate fo, W as in (2.4) and that
of 3,K (¢) from the identityd, K = —A% K.
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