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W e l l - P o s e d n e s s  o f  a S e m i l i n e a r  
H e a t  E q u a t i o n  w i t h  W e a k  I n i t i a l  

D a t a  

ABSTRACT. 
of  the semilinear heat equation 

0tu- -Au = [u[k-lu, on R n x(0,  oo), k>__2 

u(x, O) = uo(x), x ~ R n 

with initial data in Lr.p is studied. We prove the well-posedness when 

2 n 2 n 2 
1 < p < o o ,  k(k _ 1-------~ < - < ~ and r =  (<0)  p - k - l '  p k - 1  

and construct non-unique solutions for 

n(k - 1) n 2 
l < p < ~ < k + l ,  and r <  

2 p k - 1  

In the second part the well-posedness of the above IVP for k = 2 with uo ~ HS (Rn) is proved if  

n 
- l < s ,  forn  = l, ~ - 2 < s ,  f o rn  > 2 .  

and this result is then extended for more general nonlinear terms and initial data. By taking special 
values of  r, p, s, and uo, these well-posedness results reduce to some of  those previously obtained by 
other authors [4, 14]. 

J i a h o n g  W u  

This article mainly consists of two parts. In the first part the initial value problem (IVP) 

1. Introduction 

This article can be divided into two main parts. In the first part we  consider  the IVP for the 

semil inear  heat  equat ion:  

O t u - - A u  = [ u l k - l u ,  on R n x ( 0 ,  o o ) ,  (1.1) 

u ( x , O )  = uo (x ) ,  x E R n , (1.2) 
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where k > 2 is a fixed parameter. We are mainly interested in the well-posedness result for initial 
data u0 in the homogeneous Lebesgue spaces, uo E Lr.p(R n) (defined below). By well-posedness 
we mean existence, uniqueness, and persistence (i.e., the solution describes a continuous curve 
belonging to the same space as does the initial data) and continuous dependence on the data. 

Here the homogeneous Lebesgue space Ls.q (R n) consists of all u such that 

(--A)S/2u E L q, s E R,  1 < q < oo 

and the standard norm is given by 

= (-~x)s/2u Icq 
Ilulls,q 

These spaces are also called the spaces of  Riesz potentials. Kato and Ponce [11] consider the 
Navier-Stokes equations with initial data in this type of space. 

The main results of this part include two theorems. The first theorem shows that the IVP of  
(1.1) and (1.2) is locally well-posed in Lr.p if r and p satisfy 

2 n 2 n 2 
1 < p  < o o ,  k(k 1--"---~ < -  < ~ '  and r -  ( < 0 )  

- p - k - 1  p k - 1  

while in the second theorem we construct non-unique solutions to the IVP (1.1) and (1.2) with initial 
data zero for 

n ( k -  1) n 2 
l < p < ~ < k + l ,  and r <  

2 p k - 1  

The non-uniqueness indicates in some sense the sharpness of our well-posedness results. The precise 
statements of the main results are given in Theorem 1 of Section 2 and Theorem 2 of Section 3. 

2 We only Dimensional analysis might be employed to explain "why" the index r = p k - l "  
2 

need to notice that if u(x,  t) is a solution, then ux = Lr:ru(Lx ,  )~2t) (for any X > 0) and 

Ilux(.,/)llLr.p = &r-(~-r~-r)  u(-, ~.2/) L,.p 

But, unfortunately, we do not know if dimensional analysis always works and how to give a generally 
applicable criterion to detect the indices. 

The problem of well-posedness for semilinear heat equation has attracted the attention of many 
mathematicians, but not many results related to very weak initial data have been published. The 
results concerning the IVP (1.1) and (1.2) in L p setting obtained by Weissler and others are as follows: 
for p > - ~ ,  there is well-posedness [14, 15]; for 1 < p < ~ ,  non-unique solutions can be 

constructed [7]. By letting r = 0, i.e., p = n(k 2- l), our results reduce to those in the L P theory. In [ 1 ] 
Baras and Pierre prove that the IVP (1.1) and (1.2) has a solution if and only if the initial measure is 
not too much concentrated. Clearly Sobolev spaces of  negative indices contain distributions. In [13] 
Kozono and Yamazaki consider the IVP (1. I) and (1.2) with initial data in real interpolation space 

r n 2 A/'~,q,oo (r = ~ - ~:-T), which is slightly larger than ]-,r,p (by noting that Af~,p,e~ = Bp,o o "  r :)_ Lr, p, 
' r  where Bp.c~ is a homogeneous Besov space, see, e.g., [2, p. 147]. However, they obtain existence 

under the assumption that k < q < p and n(k - 1) < 2p < nk(k  - I), which is slightly more strict 
n 2 than our assumption. Furthermore, we provide an example of non-uniqueness when r < ~ . -  F:'~" 

We prove the well-posedness result by contraction mapping arguments while non-umque so- 
lutions are constructed by seeking solutions of  self-similar form and using a result in L p setting 
obtained by Haraux and Weissler [7]. 

In the second part we seek solutions to the IVP (1.1) and (1.2) for k ---- 2, i.e., 

OtU - -  A U  = U 2, on R n x (0, Oo) (1.3) 

u(x, O) = uo(x),  x ~ ]R n , (1.4) 
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with initial data in H s. Here H s is the standard inhomogeneous Sobolev space consisting of all v 
such that 

Ilvlla, (1 § 1~12) s/2 ~(~) < ( X 3 .  

L 2 

We find that a family of  specially weighted Banach spaces BCs((O, T], H r) are quite appropriate 
for our situation. Introduced by Dix [6] in solving the IVP for the nonlinear Burgers'  equations, 
BCs((O, T], Hr)(s  < r, s, r e 11~, T > 0) denotes the class of all functions u ~ C([0, T], H s) N 
C((O, T], H r) that also satisfy the condition 

UHBC,((O,T],H r) sup (1 § 1~12) ~ (1 + l~[2t) ~'~ t~(t)(~) L 2 
te [0 .T]  

Here f denotes the Fourier transform of f .  
We prove that if uo E H s with s satisfying 

n 
- l < s ,  f o r n =  I, - - 2 < s ,  f o r n > 2 ,  (1.5) 

2 

then the IVP (1.3) and (1.4)is locally weU posed and for some T > 0 the solution u ~ B Cs ((0, T], H r) 
for any r >_ s. See Theorem 3 of  Section 4 for a precise statement. Actually the arguments employed 
in proving this result can be extended to establish well-posedness of the IVP (1.1) and (1.2) with 
nonlinear term u k in homogeneous Lebesgue space Ls,p. This more general result states that i fk  > 2 
is an integer and uo ~ Ls.p with 

k 2 n 2 
P - - k - l '  s > - ~ ,  s >  - - p  k - 1  

Then we have local well-posedness. Further details are given in Theorem 4. 
As we explained before, the index s = ~ - 2 for n > 2 is exactly the number from dimensional 

analysis. But for n = 1, our method only allows us to prove well-posedness for s > - 1 and fails 
to extend to s > - 3 / 2 .  It would be desirable to show that s = - 1 is actually sharp by providing a 
counter example. 

By taking special values of s and u0, the well-posedness in this part reduces to some of those 
previously obtained by other authors [4, 14]. Letting s = 0, our result (for n < 4) reduces to the 
L p theory of Weissler and others [14, 15]. In [4] Brezis and Friedman prove for uo = 8(x) that the 

2 For n = 1, 8(x) E H s ( R ) f o r  solution exists for 0 < k < 1 + ~ and does not exist for k > 1 § n" 

any s < - � 8 9  our result reduces, by taking u0 = 5, to Brezis and Friedman's result in 1-D. When 

n > 2, 2 > 1 § g the IVP (1.3) and (1.4) with u0 = 8(x) has no solution as indicated by Brezis 
- -  n ~ 

n and Friedman, but our results implies that the IVP is well posed for uo e H s with s > ~ - 2, which 
is slightly more regular than 6(x) sinceS(x) q[HS(R ") for s > ~ - 2 .  The fact that for n = 2 ,  

8(x) ~ H - I ( R 2 ) ,  but 8(x) e H - I - ~ ( R  2) for any E > 0, combined with the non-existence result 
implies that our well-posedness result in 2-D is actually sharp. 

The well-posedness result in this part is again proved by the contraction mapping arguments 
and we only deal with the IVP (1.3) and (1.4) for s < 0. The proof for s > 0 can be given in a 
similar (and actually easier) way. 

2. Well-Posedness in  Lr, p 

First we define the spaces of weighted continuous functions in time, which have been introduced 
by Kato, Ponce and others in solving the Navier-Stokes equations [9, 11, 12]. 
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Definition 1. 
Suppose T > 0 and o~ >_ 0 are real numbers. The spaces Ca,s.q and Ca,s,q are defined as 

Cct,s,q ~-~ { f  ~ C((O, T), Ls.q), 

where the norm is given by 

Ilfll,~,s,q = sup {t~llflls,q, 

C+,s,q is a subspace of Ca,s,q: 

Ca,s,q ~ { f E Cot.s.q, 

When ot = O, Cs,q are used for BC([0, T), Ls.q). 

Ilfll~..,.q < oo} 

t E (0, T ) }  

lira t~llflls,q = 0} t---~0 

[] 

These spaces are important in uniqueness and local existence problems [9, 11, 12]. f ~ Cc~.s.q 
(resp. f ~ Ca,s,q) implies that [If(t)[Is,q = O(t -~) (resp. o(t-a) ). 

The main result of this section is the well-posedness theorem which states the following. 

Theorem 1. 
Assume uo E Lr, p with p and r satisfying 

2 n 2 l < p < c ~ ,  ~ < ~ < -  tc-I (2.1) 

r = ~ - - ~  (<0)  (2.2) 

Then for some T = T(uo) > O, there exists a unique solution u = H(uo) to the IVP (1.1) and (1.2) 
such that 

U E YT ~-- (Op<q<~Cq_~. f .q)  N (Np<q<~N>ns ~ -FL'T2 C(s_q+~.T)/2,s,q) (2.3) 

In particular, (2.3) implies that 

u ~ SC ([0, r ) ,  Lr.p) n (ns.-.rC((0, r ) ,  L,.p) 

Furthermore, the mapping 
U : A I  > Yr': u0 I > u 

is Lipschitz in some neighborhood A of uo. 

We make several remarks concerning this theorem. 

Remark  1. 
It is easy to see from our proof of this theorem that if Iluollt, r+p is sufficiently small, we may 

take T = ~ .  [] 

Remark  2. 
The homogeneous spaces Ls,q can be replaced by inhomogeneous spaces Ls.q (i.e., spaces of 

Bessel potentials): 

to obtain quite similar well-posedness results. [] 

We prove Theorem 1 by the method of integral equation and contraction-mapping arguments. 
This method has been extensively used by Kato, Ponce and others to prove the well-posedness of the 
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Navier-Stokes equations in various type of functional spaces [8, 9, 10, 11, 12]. First we write (1.1) 
in the integral form 

f0' / + a ( l u [k - lu )  (t) ----- e-atuo + e -A(t-r) lulk-lu U Uuo(t) (~)d~ . 

Then we estimate the operators U and G separately. The main estimates are established in the 
propositions that follow. 

Proposi t ion 1. 

(1) I t s  ~ • and q ~ [1, oo), then 

(2) 

P r o o f .  
theorem. See [10] and [11] for the proof of  (2). [ ]  

Now we give the estimates for the operator G: 

fOt Gg(t) = e-~( t -~)g(z)d~ 

Uuo(t) --+ uo, in Ls,q as t ~ O . 

I f  sl < s2, q! < q2, and 

( n ~2)  or2= s2 - sl + / 2 ,  
ql 

then U maps continuously from Lsl,ql into Ca2,s2,q2 (When a2 = O, Ca2.s2,q2 should be 
replaced by Cs2,q2). 

The proof of (1) involves the definitions of  the norms and the dominated convergence 

Proposi t ion 2. 
I fq l ,  q2, ~1, Or2, Sl, ands2 satisfy 

ql <_ 

Ot I < 1, Ot 2 = 

q2 

1 E n s t  - 1 + ~ S2 - -  S l  + ql 

s2 - S l  < 2 - - n  , 0 < 

then G maps continuously from C~t,,q ,ql to {~a2,s2,q2. 

P r o o f .  
to point out that the restrictions 

(1 1) 
Otl < 1, s 2 - s l  < 2 - n  

are imposed to guarantee the finiteness of a Beta function involved in the estimates of  G. 

Now we turn to the proof of  Theorem 1. 

Proof of T h e o r e m  1. We consider two cases: r < 0 and r = 0. For r < 0, we define 

x = Cr.p n C-~,0,p, 

The proof of  this proposition is quite similar to that of Lemma 2.3 in [ 11]. We just want 

with norm for u ~ X given by 

I l u l l x  = I lu  - Uuollo,r.p + Ilull-~.0.t, 

[] 
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and the complete metric space XR to be the closed ball in X of radius R. Consider the operator 
A ( u ,  u o ) : X R x A ~  ~ X 

.A(u, u o ) ( t ) = U u o ( t ) + G ( l u l k - l u ) ( t ) ,  O < t  < T 

where A is some neighborhood of u0 in Lr.p. [] 

Using Proposition 1 with 

r 
sl = r ,  s 2 = 0 ,  ql = q 2 = P ,  ~ 2 = - - -  

2 '  

we find that Uuo ~ XR if T > 0 is small enough and A chosen properly. To estimate G, we use 
Proposition 2 with 

p kr l 21 
q l = ~  - , q 2 = p ,  oq = - - - ~ - ,  t~2 = ~ ,  s l = O ,  S2-~--~q-r ,  

we obtain 
G(lulk-lu) r ~+rp <- c lulk-lu -~.0,~ <- Ilullk-~ '~ -< cRk 

k 2 
for all l e [0, - T r ) .  Here it is important to notice that the restrictions on p and r (2.1) and (2.2) 
are necessary in order to apply Proposition 2. 

Furthermore, 

I[.A (u, u 0 ) -  .A (t~, u0)[Ix < G ( ,ulk-lu)  -- G (It~l~-ltT) x 

+ 

Using Proposition 2 again 

II.A (u, u0) - A ( ~ ,  uo)lls  2 lu--alk-lu _~.0.~g-t-2~ l u - -~ l l~ l  k - l  

<_ cllullxllu -- ~11%-1 + c l l u  -- fillxll~ll~ - l  

So, if we choose T to be small and R properly, then .A(u, uo) maps XR into itself and is a contraction 
map when k > 2. Consequently there exists a unique fixed point u 6 XR: u ---- L4(uo) satisfying 
u = .A(u, uo). It is easy to see from the above estimates that the uniqueness can be extended to XR, 
for all R '  by reducing the time interval and thus to the whole X. 

To show that u is in the class of  YT (defined in Theorem 1), we notice that 

u(t) = .A(u, uo) (t) =-- Uuo(t) -+- G (lulk-lu) (t), t [o, T ) .  
\ / 

We apply Proposition 1 twice to Uuo to show that 

Uuo E C~_.g~,q, Uuo E C(s_q+i:~..f)/2,s,q 

for any p < q < ~ and s > q - k_~21. To show the second part 

G(lu lk - lu )  ~ C ,  2 . p < q  
~-rzT.u' 

we use Proposition 2 with 

p kr n 2 
q 2 = q ,  Otl--  2 '  o r 2 = 0 ,  S l = 0 ,  S 2 = q  q l = ~  -, k - 1  
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and obtain 
G (lulk-lu) 0,q_~21,q <C lulk-lu -~,0,~ < ct[ullk-~ 'O'p" 

We apply Proposition 2 once again with 

P 
ql = ~ ,  q2 = q, si ----- O, s2 = s , 

kr ( n k - ~ )  Oil = - - - - ,  Or2 = s - - + / 2  
2 q 

to show that 
n 

a (lulk-lu) E f(S_q +t~)/2,s,q, S > q 

but s should also satisfy 

k - 1  
(2.4) 

which is required by Proposition 2. For large s, (2.4) can be shown by an induction process (see an 
analogous argument in [9, p. 60]). 

To prove the Lipschitz continuity of/g, let u = /g (uo)  and v = /g (vo)  for uo, vo ~ A. Then 

Ilu - otlx = IIA(u, u o ) - A ( v ,  oo)llx 

IIA (u, u0) - .A(v, uo)llx + IIA(v, uo) - A(o, oo)llx 

_< Y l l u -  vllx + I I U ( u o -  vo)llx 

For small T and properly chosen A, ), < 1 since the mapping is a contraction and we obtain asserted 
result by using Proposition 1 to the second term. 

In the case r = 0, we define 

x = G,p n 4 _ ~ , o ,  

with the norm 

Ilutlx = Ilu - Uuollo.o,p + I lu l l~ .o .~e  

and XR is again the closed ball in X of radius R. By Proposition 2, 

= ,u )  oo + o 

_< c u k rc~_~.o,~ _ c l l u l l ~ , o .  ~ <_ c g  k 

and the rest of  the proof reduces to the previous case. This completes the proof of  Theorem 1. 

3 .  N o n - U n i q u e n e s s  f o r  r < 

In this section we consider the situation when 

n(k - 1) 
l < p <  2 

and prove that if 
n 2 

r <  
p k - l '  

~ < k + l  

n 2 
p k - 1  
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then the solution of the IVP: 

O t u - - A u = [ u [ k - l u ,  x E R  n, t > 0  (3.1) 

u -+ 0, in Lr, p as t --+ 0 (3.2) 

is not unique. This is accomplished by constructing a non-trivial solution of the above I'VE The 
precise statement of  our result is the following. 

Theorem 2. 
Assume that 

n(k - 1) n 2 
l < p < ~ < k + l  and r <  (3.3) 

2 p k - 1  

Then for some T > O, there exists at least one non-trivial solution ~ to the IVP (3.1) and (3.2) such 
that 

(I) E C ([0,  V) ,  Zr, p) (") C ( (0 ,  V) ,  C-r/2,0,p) 
Thus we get at least three different solutions ~, - ~ and O, corresponding to the same initial data O. 

We seek solutions to (3.1) of the self-similar form 

O(x, t) = t-rzro.,  

Then (3.1), which ~ should satisfy, reduces to an O.D.E. of  co, 

x oJ(x) 
AoJ(x) + ~ �9 V~o(x) + ~ + [oJ(x)lk-lo~(x) = 0, x ~ R n 

By assuming o~ is radial, i.e., w(x) = v(lxl) with v : [0, o<z) i > R, the equation is further reduced 
to 

( n - - 1  2 )  v(x) v"(x) + + v'(x) + + Iv(x)lk-lv(x) = 0, x > 0 (3.4) 
x -U2-f 

Haraux and Weissler [7] consider the solutions of  (3.4) and we need to use the following result 
of  theirs. 

Proposition 3. 
Let k > l and n > 1. I f  

n ( k -  1) 
1 < - -  < k + l  

2 

then for some vo, there is a unique solution v ~ C2([0, oo)) to (3.4) with v(O) = vo and v' (O) = 0 
such that 

lim xmv(x) = 0 ,  f o ra l lm  > O. 
x---~ oo 

To prove the theorem, we only need to prove the following assertions about the solution 
-- 1 X 

= t rZrv(-~-) constructed above. 

Proposit ion 4. 
Assume that the indices k, n, p, and r satisfy (3.3). Then 

(1) 
r  --+ O, in S' (R  n) as t --+ O 

where S' (R n) is the space of tempered distributions. 
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(2) 

P r o o f .  

r  in Lr, p as t--+O 

To prove assertion (1), we calculate for any r e S, 

lim f ~(x,t)r = lim(t-~ f v(lxl'~ ) t~o ,~o ,, \47] r 
( , .  ) 1 1  

< lim t-r~r+rillVllL~llr , with - + - = 1 
t~O p q 

Since II vllLr is finite as implied by Proposition 3, we conclude that the above limit is zero. 
To prove (2), we need the following lemma. 

L e m m a  1. 
Let q ~ (1, c~), 0 < T < oo, and vo ~ S'(Rn). l f  v E C((O, T),  Lq) solves the lVP o f  the 

linear heat equation 

O t v - A v = O ,  xE•n,  t >_0, 

v(x,  t) -+ vO, in S' (~n) as t ~ O, 

then v is uniquely given by v = Uvo. Especially vo = 0 implies that v = O. 

Now we prove assertion (2). It is easy to check that r - . A ( r  0) solves the linear heat equation 
with initial data zero and hence, by Lemma 1, must be zero. That is 

* ( t )  = G ( l * l k - ' *  ") (t) 
\ ] 

Using Proposition 2, 

Therefore, 

II~(t)llL,.p 

The above limit is zero for r < ~ 
P 

= G ( [ ~ ] k - l ~ ) ( t )  Lr.p 

<_ c t |  <- 

[ rk k \ [ k In 2 r \ 
lim (llr < lim ~ t - ' r  II*ltLp) = lira [t~t,F - t - : r -  :llvllkp 
t---~0 \ ' t---*0 t---~0 \ 

2 This finishes the proof of  the theorem. 
k - l "  

[] 

4. Wel l -Posednes s  in H s 

In this section we first state and prove the main result. Then we extend it to the general 
situation. 

T h e o r e m  3. 
Assume uo ~ H s with s satisfying 

n 
- 1  < s ,  f o r n = l ,  - - 2 < s ,  f o r n > 2  

2 

Then for  some T = T ( uo ) > O, there is a unique solution u ( t ) of  the IVP (1.3) and (1.4) on the time 
interval [0, T] satisfying 

u E B C s ( ( O , T ] , H r ) ,  for  anyr  >O 
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Furthermore, for  any T t E (0, T), there exists a neighborhood V o f  uo in H s such that the mapping 

* : V ,  , BCs((0, r ' ] , H r ) ,  

is Lipschitz. 

R e m a r k  3. 
The theorem remains unchanged i f  the nonlinear term u 2 in (1.3) is replaced by - u  2. At this 

point the nonlinear heat equation is similar to the nonlinear Schrrdinger equation for  which the 
focusing and defocusing cases are the same for  short time but quite diffemnt for  long time results 
(see, e.g., [3]). []  

The proof of this theorem is again based on the contraction mapping principle. We write (1.3) 
in the integral form 

fo' U (u0)(t) + G (u 2) (t) --- e-ZXtuo + e -A(t-r) u 2 U ( r ) d r  o 

Then we estimate the operators U and G on BCs((O, T], Hr) .  The main estimates are established 
in the propositions that follow. 

Propos i t ion  5. 
LetO < T < cx~,s E R a n d u o  E H s. T h e n f o r a n y r  > s, u = U(uo) E B C s ( ( O , T ] , H  r) 

and 

tlullnc,~0.rl.nr) _< Ca Ilu011m 

where Ca = t1(1 + 1~12) r-~ exp(-I~lZ)llL~ is a constant. 

The proof of this proposition involves merely the definition of Ilu II Bc, c(0.r].t4r~ and can be 
found in [6]. 

Propos i t ion  6. 
Let 0 < T < 1 and s be a real number satisfying 

n 
- - l < s ,  f o r n  = l, - - 2 < s ,  f o r n  > 2 .  

2 

Assume r > O and u E BC~.((0, T], Hr). Then for  any q : 

n 
s < q < r + 2 - -  

2 

the function UG(t) -- G(u 2) E BCs,o((O, T], H q) and 

G ( u 2 )  BC,((O,T],Hq) t"~T(s+2-'~)/211"l12 << ~ , ( . j - -  - I I - I I B C s ( ( O , T ] , H r  ) 

where CG is a constant and B C~. o ((0, T ], H q ) is a subspace consisting o f  those u ~ B Cs ((0, T ], H q ) 
such that u (0) = O. 

The proof of this proposition is lengthy and similar to that of Theorem 3.4 in [6]. For com- 
pleteness, a sketch of the proof will be given at the end of this section. 

We now sketch the proof of Theorem 3. 

P r o o f  of  T h e o r e m  3. Let r > 0 be any real number, Xr  = BCs((O, T], H r) and XT.R be the 
closed ball centered at zero of radius R, where T, R are yet to be determined. Define the nonlinear 
map �9 on XT, R 

~P(u)(t) = U (uo) (t) q- G (u 2] (t) 
\ /  
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Using the results of Proposition 5 and Proposition 6, 

IIO(u)llxr <_ c / , g  + Co llull~ r , 

where K = [lu0llH,. For u, :~ ~ XT, R, 

IIO(u) -- �9 (~)llXr <-- 2 C G T ~  Ilu + ~TIIXr llu - ~llXr 

It is not hard to check that if 
s+2- 

4CACGKT : < 1 (4.1) 

then for some R > 0, �9 maps XT.R into XT.R and is a contraction. Thus there is a unique fixed 
point u = ~ (u )  in XT, R. It is clear that by reducing the time interval (0, T), we can extend the 
uniqueness to XT.R' for any R' and thus to the whole class in XT. 

For T '  6 (0, T), we can see from (4.1) that K can be replaced by a larger K '  such that (4.1) still 
holds for K '  and T'. That is, �9 is still a contraction map for v0 6 V where V is some neighborhood 
of  u0. The Lipschitz continuity of  �9 is easily obtained by using the fact that �9 is a contraction map 
on V. This finishes the proof of  this theorem. [ ]  

Now we state a lemma that will be used in the proof of  Proposition 6. In what follows we will 
denote (1 + 1~12) 1/2 by w(~) where ~ E R n. 

L e m m a  2. 
Let r > O, a be real numbers. If  g, h ~ H r, then 

The proof of this lemma is simple and can be found in [5]. 

Proof of Proposition 6. First we estimate IluollBc~((o.r].nq). We only need to prove for the 
n case r _< q _< r + 2 - ~ since the norm is a nondecreasing function of  q. It is easy to check that for 

O < T < _ l , - 2 < s < O < r  

and it then follows that flu II n c.~((o.r].u,) is bounded by 

supo<t<_Tt 2 iw (~tl/2) r fi(/)(~) / :  _< Ilulloc,((O.rl H~) (4.2) 

SUpo<t<Ttl~ W(~t l /2 )  r fft(t)(~)]L 2 q - s u p 0 < t < T  l~lSto(~tl]2) r a ( t ) (~ ) tL  2 = ' + I I  

So to bound Ilua IIBC,.((O.T].Hq), we only need to estimate I(uG) and I I (u6 ) .  We first bound I(uG): 

I = t [sl/2 i t  w(~.v/~)q e-1~12(t-r) ~2(~)(~ )d~ 
Jo L 2 

Clearly, for any ~ ~ R n and 0 < r < t, 

Therefore, 

I < t,.,.2 fo' w : ) q - r  w : 
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Using the result of  Lemma 2 and (4.2), 

f0 t <- CtlSl/Zllull2c'((~ w(#q/oq-rw(~qc'~)re-1~12~(t -- -r)lsl L2 air 

fo I W(~tT-1/z)q-rw(~)re-1~12 lL2 
< Ct(s+2-~)/ZI[uII2C"((O'TI'H~) (1 -- cr)lslffn/4 dcr 

The integral in the last inequality is finite if q - r < 2 - ~ and this follows from the estimate for 

0___ ~-~Z _< 1 

1/3 (~O.__ l/2)q-r ( ) -r = 1 + l~12cr - t  ~-~ < 1 + I~lq-r~r -~'71" 

and the fact that for a > 0, b > 0 the Beta function 

f0 
1 

B(a, b) = (1 - x)a-lxb-ldx 

is finite. I I  can be estimated in a quite similar way and the final result is the same as that of I apart 
from that the constant C may be different. [ ]  

Now we show that UG : (0, T] ~ H q is continuous. Let tl, t2 E (0, T] and we estimate the 
difference 

IluG (t2) -- UG (q ) l lm  < Ito(~)qflt2e-l~[2(t2-z)~2(-~)(~)d-~ L2 

.4- to(~)q fot' [e-l~12(t2-r) _ e-l~12(t,-r)] ~2(~)(~)d.~ L 2 

= I I I + I V  

In a similar manner I I !  and IV can be estimated and consequently we can show that for s < q < 
r + 2 - -  -~: 

I l l ,  I V ~ O ,  as t 2 - t l  - + 0  

Finally, we show that 

We estimate 

uG(t) ~ O, in H s as t ---,'- 0 .  

Iluallm = w(~)S fo te 1512(t r)u~2(z)(~) dr L 2 

and this can be done similarly as before. We omit details. 
Actually the arguments employed above in proving Theorem 3 can be extended to establish 

well-posedness of  the IVP (1.1) and (1.2) with nonlinear term u k in weighted Lebesgue space Ls, p. 
To state the result, we need to define the general space B Cs ((0, T l, Ls~, p), where Ls, p is the weighted 
Lebesgue space of  all o such that II w(~)s~3(~)II Lp < ~ .  

F o r T > 0 ,  s < s l ,  l < p < ~ ,  

Bc, ((o, TI, u ~ C([0, T], Ls,p) N C ((0, T], Lsl,p) : 

IlulIBc,(fO,TI.L.,t.p ) < c~} 
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where 

Theorem 4. 
Let k > 2 be an integer and p = kk-~_l. Assume that uo ~ Ls.p with 

2 n 2 
s > - ~ ,  s >  P k - 1  

Then for  some T = T (uo) > O, there is a unique solution u(t ) o f  the 1VP (1.1) and (1.2) on the time 
interval [0, T] satisfying 

u E B C s ( ( O , T ] , L y , p ) ,  f o r a n y y  > 0  

Furthermore, for  any T'  E (0, T), there exists a neighborhood V o f  uo in Ls,l, such that the mapping 

. : v ,  ,BCs((O.T'I,  Ly..):  uo, , u  

is Lipschitz. 

This theorem reduces to Theorem 3 when k = 2. We can prove this theorem by generalizing 
the arguments used in the proof of  Theorem 3. For example, Lemma 2 should be extended to the 
following. 

L e m m a  3. 
Let g >_ O, a be real numbers. I f  for  1 < i < k, 1 < Pi < ~ ,  

1 1 1 
- - + - - + . . . + - - = k - l ,  
P l P2 Pk 

and gi E L~,,p i, then 

[Iw( a)• "-'-~'" gk< >llL  -< C II " IIm( a>Y 'k< >ll 

where C is a constant. 

We omit further details because the modifications are straightforward. 
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