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Abstract

The incompressible Boussinesq equations not only have many applications in modeling fluids and geo-
physical fluids but also are mathematically important. The well-posedness and related problem on the 
Boussinesq equations have recently attracted considerable interest. This paper examines the global regu-
larity issue on the 2D Boussinesq equations with fractional Laplacian dissipation and thermal diffusion. 
Attention is focused on the case when the thermal diffusion dominates. We establish the global well-
posedness for the 2D Boussinesq equations with a new range of fractional powers of the Laplacian.
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1. Introduction

This paper studies the following 2D incompressible Boussinesq system with fractional dissi-
pation
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu + u · ∇u + νΛαu = −∇p + θe2, x ∈ R2, t > 0,

∂t θ + u · ∇θ + κΛβθ = 0, x ∈R2, t > 0,

∇ · u = 0, x ∈R2, t > 0,

u(x,0) = u0(x), θ(x,0) = θ0(x), x ∈R2,

(1.1)

where u = u(x, t) denotes the 2D velocity, p = p(x, t) the pressure, θ = θ(x, t) the temperature, 
ν > 0, κ > 0, α ∈ (0, 1) and β ∈ (0, 1) are real parameters, and e2 denotes the unit vector in 
the vertical direction. Λ = (−	)

1
2 is the Zygmund operator and Λα can be defined through the 

Fourier transform,

Λ̂αf (ξ) = |ξ |αf̂ (ξ),

where

f̂ (ξ) = 1

(2π)2

∫
R2

e−ix·ξ f (x) dx.

When α = 2 and β = 2, (1.1) becomes the 2D Boussinesq equations with Laplacian dissipa-
tion. The standard 2D Boussinesq equations and their fractional Laplacian generalizations have 
recently attracted considerable attention due to their physical applications and mathematical sig-
nificance. The Boussinesq equations model geophysical flows such as atmospheric fronts and 
oceanic circulation, and play an important role in the study of Rayleigh–Bénard convection (see, 
e.g., [12,17,30,33]). Mathematically the 2D Boussinesq equations serve as a lower dimensional 
model of the 3D hydrodynamics equations. In fact, the Boussinesq equations retain some key 
features of the 3D Navier–Stokes and the Euler equations such as the vortex stretching mech-
anism. As pointed out in [31], the inviscid Boussinesq equations can be identified with the 3D 
Euler equations for axisymmetric flows.

The goal of this paper is to establish the global well-posedness of (1.1) for the parameters 
α and β in a new range. Our attention is focused on the situation when the dissipation in the θ
equation dominates. More precisely, we assume

0 < α < 1, 0 < β < 1, α < β. (1.2)

The research presented here complements the existing results on the 2D Boussinesq equations 
with only partial dissipation or fractional Laplacian dissipation (see, e.g., [1–3,6–9,11,13–16,
18–21,23–27,29,32,36,37]). The global regularity problem of 2D Boussinesq equations with only 
partial dissipation is not easy when α and β are in the range (1.2). The key obstacle is how to 
obtain global a priori bounds for the Sobolev norms (or equivalent Besov norms) of the solutions. 
For example, to bound the derivative of the velocity u, or the vorticity ω = ∇ × u, one resorts to 
the vorticity equation

∂tω + u · ∇ω + νΛαω = ∂1θ (1.3)

and immediately realizes that α ≥ 2 is needed in order to obtain even a global bound for the 
L2-norm of ω when no prior information on the derivative of θ is known. Indeed, even the 
partial dissipation cases α = 2 and κ = 0 or β = 2 and ν = 0 are not trivial and have been dealt 
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with by Chae [8] and by Hou and Li [20]. When α ≤ 1 and β ≤ 1, the situation becomes more 
difficult and special techniques have to be developed to overcome the difficulty.

As suggested by Jiu, Miao, Wu and Zhang in [21], we classify the parameters α and β into 
three categories:

(i) the subcritical case, α + β > 1;
(ii) the critical case, α + β = 1;

(iii) the supercritical case, α + β < 1.

One rationale behind this division is that (1.1) in the critical case defined here can indeed be 
converted into the critical case for the surface quasi-geostrophic type equation, as demonstrated 
in [21]. Although it appears that the smaller the sum α + β is, the more difficult the global 
regularity problem is, we caution that even the subcritical case may be difficult to handle. In 
fact, the global regularity of (1.1) has been obtained for only two subcritical ranges of α and β . 
In [11], Constantin and Vicol verified the global regularity for the case

ν > 0, κ > 0, α ∈ (0,2), β ∈ (0,2), β >
2

2 + α
.

Miao and Xue in [27] proved the global existence and uniqueness for (1.1) with ν > 0, κ > 0 and

α ∈
(

6 − √
6

4
,1

)
, β ∈

(
1 − α,min

{
7 + 2

√
6

5
α − 2,

α(1 − α)√
6 − 2α

,2 − 2α

})
. (1.4)

For α and β in the critical case, several results are available. The global well-posedness of (1.1)
with either α = 1 and κ = 0 or ν = 0 and β = 1 was obtained in [18,19]. The more general 
critical case α + β = 1 with α < 1 and β < 1, namely when the dissipation is split between the 
velocity and the temperature equations, is extremely difficult and was recently examined by Jiu, 
Miao, Wu and Zhang [21]. They were able to obtain the global well-posedness for this general 
critical case when α ≥ α0, where α0 = 23−√

145
12 ≈ 0.9132. When α and β are in the supercritical 

range, the only result in the literature is a very recent work of Jiu, Wu and Yang [22], which 
established the eventual regularity of weak solutions of (1.1).

To complement the existing results described above, this paper focuses on the ranges of α
and β specified in (1.2). The global well-posedness is not trivial and does not follow from any 
previous work. We first state our main result and then explain the approach.

Theorem 1.1. Assume that α ∈ (0, 1) and β ∈ (0, 1) satisfy

α

2
+ β > 1, β ≥ 2

3
+ α

3
and β >

10 − 5α

10 − 4α
. (1.5)

Consider (1.1) with (u0, θ0) satisfying ∇ · u0 = 0 and

u0 ∈ H 1 ∩ B1∞,1 and θ0 ∈ L2 ∩ B1∞,1. (1.6)

Then (1.1) has a unique global solution (u, θ) with

u ∈ L∞
loc

([0,∞);H 1 ∩ B1∞,1

)
, θ ∈ L∞

loc

([0,∞);L2 ∩ B1∞,1

)
. (1.7)
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Here B1∞,1 denotes a Besov space. More details on Besov spaces can be found in Appendix A. 
The key component in the proof of Theorem 1.1 is to establish the global a priori bounds in the 
class defined in (1.7). This does not appear to be trivial and the energy methods are not sufficient 
for this purpose. Although the global bounds for u ∈ L∞([0, T ]; L2) and θ ∈ L∞([0, T ]; Lp)

with p ∈ [2, ∞] can be easily obtained, the global bounds for the derivatives are not evident. In 
fact, it appears to be difficult to obtain a global bound for the H 1-norm of u, or the L2-norm 
of ω. When we perform a simple energy estimate on the vorticity equation (1.3),

d

dt
‖ω‖2

L2 + 2
∥∥Λ

α
2 ω

∥∥2
L2 = 2

∫
ω∂1θ,

the right-hand side generated by the “vortex stretching” term ∂1θ appears to prevent us from 
“closing” this inequality. The parameters ν and κ do not play any essential role and we set 
ν = κ = 1 throughout the rest of this paper. A natural idea is to hide ∂1θ by combining the 
vorticity equation and the temperature equation. Setting the operator

Rβ = Λ−β∂1,

applying Rβ to the temperature equation and then adding to the vorticity equation, we find that

G = ω +Rβθ

satisfies

∂tG + u · ∇G + ΛαG = Λα−β∂1θ − [Rβ,u · ∇]θ. (1.8)

Here we have used the standard commutator notation

[Rβ,u · ∇]θ =Rβ(u · ∇θ) − u · ∇Rβθ.

Quantities similar to G have been introduced in [19] and [27] to deal with the cases when α = 0
and β = 1 and when (α, β) satisfies (1.4). Although (1.8) appears to be more complicated than 
the vorticity equation, but the terms on the right of (1.8) are less singular than ∂1θ in the vor-
ticity equation. In fact, by obtaining a suitable bound for [Rβ, u · ∇]θ , we are able to obtain a 
global bound for ‖G‖L2 when α and β satisfy (1.5). The global L2-bound allows us to obtain 
a global bound for ‖G‖Lp with 2 < p < p0 ≡ 2(2−α)

3− 3
2 α−β

. To further the estimates, we exploit the 

smoothing effect of the dissipation in the temperature equation. By deriving the inequality from 
the temperature equation, for any q ∈ (1, ∞) and r ∈ [1, ∞),

2rβj

t∫
0

‖	jθ‖r
Lp dτ ≤ C2(r−1)βj‖	jθ0‖r

Lp + C‖θ0‖r
L∞

t∫
0

‖ω‖r
Lp dτ,

we can then bound 2rβj
∫ t

0 ‖	jθ‖r
Lp dτ for 2 ≤ p < p0. Here 	j with j ∈N denotes the Fourier 

localization operators (see Appendix A). This bound, in turn, can be used to globally bound 
‖G‖Lp for p in a bigger range. Through an iterative process, we establish a global bound for 
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‖G‖Lp with 2 ≤ p < ∞. This global bound enables us to gain further regularity for ‖G‖B0
∞,1

and 

consequently a global bound for ‖u‖B1∞,1
, which yields Theorem 1.1.

The rest of this paper is divided into five regular sections and two appendices. Sections 2, 3
and 4 prove global bounds for ‖G‖L2 , ‖G‖Lp with 2 < p < p0 and ‖G‖Lp with any 2 < p < ∞, 
respectively. Section 5 establishes global bounds for ‖G‖L∞ , ‖G‖B0∞,1

and ‖u‖B1∞,1
. Section 6

proves Theorem 1.1. Appendix A provides the definitions of some of the functional spaces and 
related facts and gives the proof of a commutator estimate in Besov space setting. Appendix B
provides a statement of the Osgood inequality used in Section 6.

2. Global L2-bound for G

This section establishes a global a priori bound for ‖G‖L2 . Recall that

G = ω +Rβθ with Rβ = Λ−β∂1,

satisfies

∂tG + u · ∇G + ΛαG = Λα−β∂1θ − [Rβ,u · ∇]θ. (2.1)

This global bound is valid for any α2 + β > 1 and β ≥ 2
3 + α

3 .

Proposition 2.1. Assume (u0, θ0) satisfies the assumptions stated in Theorem 1.1. Let (u, θ) be 
the corresponding solution of (1.1). If α

2 + β > 1 and β ≥ 2
3 + α

3 , then G obeys a global L2

bound, namely for any T > 0 and t ≤ T ,

∥∥G(t)
∥∥2

L2 +
t∫

0

∥∥Λ
α
2 G(τ)

∥∥2
L2 dτ ≤ C(T ,u0, θ0),

where C(T , u0, θ0) is a constant depending on T and the initial data only.

To prove Proposition 2.1, the following elementary global a priori bounds will be used. Notice 
that θ0 satisfying (1.6) especially implies θ0 ∈ Lp for any p ∈ [2, ∞].
Lemma 2.2. Assume (u0, θ0) satisfies the assumptions stated in Theorem 1.1. Then the corre-
sponding solution (u, θ) of (1.1) obeys the following global bounds, for any t > 0,

∥∥θ(t)
∥∥2

L2 +
t∫

0

∥∥Λ
β
2 θ(τ )

∥∥2
L2dτ ≤ ‖θ0‖L2 ,

∥∥θ(t)
∥∥

Lp ≤ ‖θ0‖Lp for any 2 ≤ p ≤ ∞,

and

∥∥u(t)
∥∥2

L2 +
t∫ ∥∥Λ

α
2 u(τ)

∥∥2
L2dτ ≤ (‖u0‖L2 + t‖θ0‖L2

)2
.

0
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We will also need the following commutator estimate. Its proof is presented in Appendix A. 
We use extensively the Besov spaces Bs

p,r and their definitions can also be found in Appendix A.

Proposition 2.3. Let β ∈ (0, 1), (p, r) ∈ [2, ∞) × [1, ∞]. Let s ∈ (0, 1) satisfy s − β < 0. Then 
there exists a constant C = C(p, r) such that∥∥[Rβ, f ]g∥∥

Bs
p,r

≤ C‖∇f ‖Lp‖g‖
B

s−β∞,r
.

We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. Taking the inner product of (2.1) with G, we obtain, after integration 
by parts,

1

2

d

dt
‖G‖2

L2 + ∥∥Λ
α
2 G

∥∥2
L2 = K1 + K2, (2.2)

where

K1 =
∫

GΛα−β∂1θ dx,

K2 = −
∫

G[Rβ,u · ∇]θ dx =
∫

G∇ · [Rβ,u]θ dx.

By Hölder’s inequality and the fact that β ≥ 2
3 + α

3 ,

|K1| ≤
∥∥Λ

α
2 −β∂1θ

∥∥
L2

∥∥Λ
α
2 G

∥∥
L2

≤ ‖θ‖
H

1+ α
2 −β

∥∥Λ
α
2 G

∥∥
L2

≤ ‖θ‖
H

β
2

∥∥Λ
α
2 G

∥∥
L2 .

By Proposition 2.3,

|K2| ≤
∥∥Λ1− α

2 [Rβ,u]θ∥∥
L2

∥∥Λ
α
2 G

∥∥
L2

≤ ∥∥[Rβ,u]θ∥∥
B

1− α
2

2,2

∥∥Λ
α
2 G

∥∥
L2

≤ ‖∇u‖L2‖θ‖
B

1− α
2 −β

∞,2

∥∥Λ
α
2 G

∥∥
L2 .

Since β ≥ 2
3 + α

3 ,

‖∇u‖L2 = ‖ω‖L2 ≤ ‖G‖L2 + ∥∥Λ1−βθ
∥∥

L2 ≤ ‖G‖L2 + ‖θ‖
H

β
2
.

Due to 1 − α
2 − β < 0,

‖θ‖
B

1− α
2 −β

∞,2

=
[ ∞∑

22j (1− α
2 −β)‖	jθ‖2

L∞

]1/2

≤ C‖θ0‖L∞ .
j=−1
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Therefore,

|K2| ≤ C‖G‖L2

∥∥Λ
α
2 G

∥∥
L2 + C‖θ‖

H
β
2

∥∥Λ
α
2 G

∥∥
L2 .

Inserting the bounds for K1 and K2 in (2.2), applying Young’s inequality and invoking the bounds 
for θ in Lemma 2.2 yield the desired bound. This completes the proof of Proposition 2.1. �
3. Global bound for ‖G‖Lp with 2 < p < p0

By making use of the global L2-bound, this section proves a global bound for ‖G‖Lp with 
2 < p < p0, where p0 is specified in (3.1).

Proposition 3.1. Assume that α ∈ (0, 1) and β ∈ (0, 1) satisfy α2 +β > 1 and β ≥ 2
3 + α

3 . Assume 
(u0, θ0) satisfies (1.6) and let (u, θ) be the corresponding solution of (1.1). Assume

2 < p < p0 with p0 = 4(2 − α)

6 − 3α − 2β
. (3.1)

Then, for any T > 0 and t ≤ T , ∥∥G(t)
∥∥

Lp ≤ C(T ,u0, θ0),

where C(T , u0, θ0) is a constant depending on T and the initial data only.

We will use the following lemma (see [19,21]).

Lemma 3.2. Let s ∈ (0, 1), α ∈ (0, 1) and p ∈ [2, ∞). Then,∥∥Λs
(
G|G|p−2)∥∥

L2 ≤ C‖G‖p−2

L
2p

2−α

‖G‖Ḃs
p̃,2

,

where p̃ = 2p
2(2−α)−p(1−α)

and Ḃs
p̃,2 denotes a homogeneous Besov space (see Appendix A). Es-

pecially, ∥∥Λs
(
G|G|p−2)∥∥

L2 ≤ C‖G‖p−2

L
2p

2−α

‖G‖
Ḣ

2+s−α− 2(2−α)
p

.

Proof of Proposition 3.1. Taking the inner product of (2.1) with G|G|p−2, we have

1

p

d

dt
‖G‖p

Lp +
∫

G|G|p−2ΛαGdx = F1 + F2, (3.2)

where

F1 = −
∫

G|G|p−2[Rβ,u · ∇]θ dx,

F2 =
∫

G|G|p−2Λα−β∂1θ dx.
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By a pointwise inequality for fractional Laplacians (see [10]) and a Sobolev embedding inequal-
ity, ∫

G|G|p−2ΛαGdx ≥ C

∫ ∣∣Λα
2 |G| p

2
∣∣2

dx ≥ C0‖G‖p

L
2p

2−α

.

Applying Proposition 2.3 and Lemma 3.2, we have for any s ∈ (0, 1),

|F1| =
∣∣∣∣∫ Λs

(
G|G|p−2)Λ1−s

(
Λ−1∇ · [Rβ,u]θ)

dx

∣∣∣∣
≤ ∥∥Λs

(
G|G|p−2)∥∥

L2

∥∥Λ1−s[Rβ,u]θ∥∥
L2

= ∥∥Λs
(
G|G|p−2)∥∥

L2

∥∥[Rβ,u]θ∥∥
Ḣ 1−s

≤ C‖G‖p−2

L
2p

2−α

‖G‖
Ḣ

2+s−α− 2(2−α)
p

‖∇u‖L2‖θ‖
B

1−s−β
∞,2

.

For p satisfying (3.1), we can choose s ∈ (0, 1) such that

1 − s − β < 0, 2 + s − α − 2(2 − α)

p
= α

2
.

Bounding ‖∇u‖L2 by

‖∇u‖L2 ≤ ‖G‖L2 + ∥∥Λ1−βθ
∥∥

L2 ≤ ‖G‖L2 + C‖θ‖3− 2
β

L2

∥∥Λ
β
2 θ

∥∥ 2
β
−2

L2 ,

we obtain, invoking the global bound for ‖G‖L2 ,

|F1| ≤ C‖G‖p−2

L
2p

2−α

‖G‖
Ḣ

α
2

(‖G‖L2 + ‖θ‖
H

β
2

)‖θ0‖L∞

≤ C0

4
‖G‖p

L
2p

2−α

+ C
(‖G‖

p
2
L2 + ∥∥Λ

β
2 θ

∥∥( 2
β
−2)

p
2

L2

)‖G‖
p
2

Ḣ
α
2

≤ C0

4
‖G‖p

L
2p

2−α

+ C‖G‖2

Ḣ
α
2

+ C
∥∥Λ

β
2 θ

∥∥( 2
β
−2)

p
2

4
4−p

L2 .

It is easy to check that, for β ≥ 2
3 and p satisfying (3.1), we have(

2

β
− 2

)
p

2

4

4 − p
≤ 2.

Again, by Proposition 2.3,

|F2| ≤
∥∥Λs

(
G|G|p−2)∥∥

L2

∥∥Λ1+α−β−sθ
∥∥

L2

≤ C‖G‖p−2

L
2p

2−α

‖G‖
Ḣ

α
2

∥∥Λ
β
2 θ

∥∥a

L2‖θ‖1−a

L2

≤ C0 ‖G‖p
2p + C‖G‖2

˙ α
2

+ C
(‖θ‖1−a

L2

∥∥Λ
β
2 θ

∥∥a

L2

) 2p
4−p ,
4 L 2−α H
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where a = 2(1+α−β−s)
β

and a · 2p
4−p

≤ 2. Inserting the bounds for F1 and F2 in (3.2) and then inte-
grating with respect to t yield the desired bound. This completes the proof of Proposition 3.1. �
4. Iteration and global bound for ‖G‖Lp with any 2 < p < ∞

The goal of this section is to show that, for any 2 < p < ∞, ‖G‖Lp admits a global bound. 
More precisely, we prove the following proposition.

Proposition 4.1. Assume that α and β satisfy (1.5). Assume (u0, θ0) satisfies (1.6) and let (u, θ)

be the corresponding solution of (1.1). Then, for 2 ≤ p < ∞ and any T > 0, t ≤ T ,∥∥G(t)
∥∥

Lp ≤ C(T ,u0, θ0),

where C(T , u0, θ0) is a constant depending on p, T and the initial data only.

In order to achieve this bound, we exploit the dissipation in the temperature equation and 
derive the inequality bounding 2rβj‖	jθ‖Lr

t L
q in terms of ‖ω‖Lr

t L
q
x

(see Lemma 4.2). To be 
more precise, we consider the transport–diffusion equation{

∂t θ + u · ∇θ + Λβθ = 0,

θ(x,0) = θ0(x).
(4.1)

Lemma 4.2. Let p ∈ (1, ∞). Assume that θ0 ∈ Lp ∩ L∞. Assume that (u, θ) solves (4.1). Let ω
be the corresponding vorticity. Then, for any r ∈ [1, ∞) and any integer j ≥ 0,

2rβj

t∫
0

‖	jθ‖r
Lp dτ ≤ C2(r−1)βj‖	jθ0‖r

Lp + C‖θ0‖r
L∞

t∫
0

‖ω‖r
Lp dτ, (4.2)

where C is a constant independent of j .

Proof. Applying 	j to the equation in (4.1) yields

∂t	j θ + u · ∇	jθ + Λβ	jθ = −[	j,u · ∇]θ.

Multiplying the above equation by 	jθ |	jθ |p−2, integrating by parts and using Hölder’s in-
equality, we get

1

p

d

dt
‖	jθ‖p

Lp +
∫

	jθ |	jθ |p−2(Λβ	jθ
)
dx ≤ ‖	jθ‖p−1

Lp

∥∥[	j,u · ∇]θ∥∥
Lp .

Recalling the following generalized Bernstein inequality (see [28]),

cp2βj‖	jθ‖p
Lp ≤

∫
	jθ |	jθ |p−2(Λβ	jθ

)
dx

and applying Lemma A.7,
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∥∥[	j,u · ∇]θ∥∥
Lp ≤ C‖∇u‖Lp‖θ‖L∞,

we obtain

d

dt
‖	jθ‖Lp + c2βj‖	jθ‖Lp ≤ C‖∇u‖Lp‖θ‖L∞ .

Integrating in time and using the fact that

‖∇u‖Lp ≤ C‖ω‖Lp for any p ∈ (1,∞),

we have

∥∥	jθ(t)
∥∥

Lp ≤ C‖	jθ0‖Lpe−ct2βj + C‖θ0‖L∞

t∫
0

e−c(t−τ)2βj ‖ω‖Lpdτ.

Taking the Lr -norm in time each side and using Young’s inequality for convolution, we ob-
tain (4.2). This complete the proof of Lemma 4.2. �
Proof of Proposition 4.1. The proof relies on an iterative process. By Proposition 3.1, for p0
given by (3.1),

‖G‖Lp ≤ C for any 2 < p < p0.

Consequently, for 2 < p < p0 and 1 ≤ r ≤ 2,

t∫
0

‖ω‖r
Lp dτ ≤

t∫
0

‖G‖r
Lp dτ +

t∫
0

∥∥Λ1−βθ
∥∥r

Lp dτ

≤
t∫

0

‖G‖r
Lp dτ + C

t∫
0

‖θ‖r

H
β
2

dτ ≤ C(t),

where C(t) is a constant depending on t and the initial data. Therefore, by Lemma 4.2, for 
2 < p < p0 and 1 ≤ r ≤ 2,

2rβj

t∫
0

‖	jθ‖r
Lp dτ ≤ C2(r−1)βj‖	jθ0‖r

Lp + C‖θ0‖r
L∞

t∫
0

‖ω‖r
Lp dτ

≤ C(t). (4.3)

Let p∗ be close to p0, say p∗ = p0 −δ for a small δ > 0. Since 1 +α−2β < 0, we can choose p1
satisfying

p1 > p0, 1 + α − 2β + 2 − 2
< 0. (4.4)
p∗ p1
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We first show the global bound of ‖G‖Lp ≤ C for any p0 ≤ p ≤ p1. Taking the inner product 
of (2.1) with G|G|p−2, we have

1

p

d

dt
‖G‖p

Lp +
∫

G|G|p−2ΛαGdx = F1 + F2, (4.5)

where

F1 = −
∫

G|G|p−2[Rβ,u · ∇]θ dx,

F2 =
∫

G|G|p−2Λα−β∂1θ dx.

We start with the estimate of F2, which is simpler. By Hölder’s inequality,

|F2| ≤ ‖G‖p−1
Lp

∥∥Λα−β∂1θ
∥∥

Lp .

By Bernstein’s inequality,∥∥Λα−β∂1θ
∥∥

Lp ≤
∑

j≥−1

∥∥	jΛ
α−β∂1θ

∥∥
Lp

≤ C‖θ0‖L2 +
∑
j≥0

2(1+α−β)j 22j ( 1
p∗ − 1

p
)‖	jθ‖Lp∗

≤ C‖θ0‖L2 +
∑
j≥0

2(1+α−2β+ 2
p∗ − 2

p
)j 2βj‖	jθ‖Lp∗ . (4.6)

By Hölder’s inequality,

|F1| ≤ ‖G‖p−1
Lp

∥∥[Rβ,u · ∇]θ∥∥
Lp .

The commutator will be estimated as follows. We first apply the trivial inequality∥∥[Rβ,u · ∇]θ∥∥
Lp ≤

∑
k≥−1

∥∥	k[Rβ,u · ∇]θ∥∥
Lp

and then bound the right-hand side as in the proof of Proposition A.6. Writing

	k[Rβ,u · ∇]θ = J1 + J2 + J3,

where

J1 =
∑

|j−k|≤2

	k

(
Rβ(Sj−1u	j∇θ) − Sj−1uRβ	j∇θ

)
,

J2 =
∑

	k

(
Rβ(	juSj−1∇θ) − 	juRβSj−1∇θ

)
,

|j−k|≤2
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J3 =
∑

j≥k−1

	k

(
Rβ(	ju	̃j∇θ) − 	juRβ	̃j∇θ

)
,

we have ∑
k≥−1

∥∥	k[Rβ,u · ∇]θ∥∥
Lp ≤

∑
k≥−1

(‖J1‖Lp + ‖J2‖Lp + ‖J3‖Lp

)
.

Applying Lemma A.7 and by Bernstein’s inequality, we have∑
k≥−1

‖J1‖Lp ≤ C
∑

k≥−1

2(1−β)k‖∇Sk−1u‖Lp‖	kθ‖L∞

≤ C‖∇u‖Lp

∑
k≥−1

2(1−β)k‖	kθ‖L∞

≤ C‖∇u‖Lp

(
‖θ0‖L2 +

∑
k≥0

2(1−2β+ 2
p∗ )k2βk‖	kθ‖Lp∗

)
.

By Hölder’s and Bernstein’s inequalities and the fact that Sk−1∇θ = 0 for k < 1,∑
k≥−1

‖J2‖Lp ≤ C
∑
k≥1

2−βk‖∇	ku‖Lp‖Sk−1∇θ‖L∞

≤ C‖∇u‖Lp

∑
k≥1

2−βk
∑

m≤k−2

‖	m∇θ‖L∞

≤ C‖∇u‖Lp

∑
k≥1

2−βk
∑

m≤k−2

2(1+ 2
p∗ −β)m2βm‖	mθ‖Lp∗

≤ C‖∇u‖Lp

∑
k≥1

2(1+ 2
p∗ −2β)k

∑
m≤k−2

2(1+ 2
p∗ −β)(m−k)2βm‖	mθ‖Lp∗ .

Similarly, we have∑
k≥−1

‖J3‖Lp ≤
∑

k≥−1

∑
j≥k−1

2k−j 2(1−β)j‖∇	ju‖Lp‖	jθ‖L∞

≤ ‖∇u‖Lp

∑
k≥−1

∑
j≥k−1

2k−j 2(1+ 2
p∗ −2β)j 2βj‖	jθ‖Lp∗ .

‖∇u‖Lp can be bounded by

‖∇u‖Lp ≤ C‖ω‖Lp ≤ C‖G‖Lp + C
∥∥Λ−β∂1θ

∥∥
Lp

while ‖Λ−β∂1θ‖Lp can be bounded as in (4.6) by

∥∥Λ−β∂1θ
∥∥

Lp ≤ C‖θ0‖L2 +
∑

2(1−2β+ 2
p∗ − 2

p
)j 2βj‖	jθ‖Lp∗ .
j≥0



4200 W. Yang et al. / J. Differential Equations 257 (2014) 4188–4213
Therefore,

∥∥[Rβ,u · ∇]θ∥∥
Lp ≤ Cg(t)

(
‖G‖Lp + ‖θ0‖L2 +

∑
j≥0

2(1−2β+ 2
p∗ − 2

p
)j 2βj‖	jθ‖Lp∗

)
,

where g(t) is given by

g(t) ≡ ‖θ0‖L2 +
∑
k≥0

2(1−2β+ 2
p∗ )k2βk‖	kθ‖Lp∗

+
∑
k≥1

2(1+ 2
p∗ −2β)k

∑
m≤k−2

2(1+ 2
p∗ −β)(m−k)2βm‖	mθ‖Lp∗

+
∑

k≥−1

2k−j
∑

j≥k−1

2(1+ 2
p∗ −2β)j 2βj‖	jθ‖Lp∗ .

Inserting the bounds for F1 and F2 in (4.5), we obtain

d

dt
‖G‖Lp ≤ C‖θ0‖L2 + C

∑
j≥0

2(1+α−2β+ 2
p∗ − 2

p
)j 2βj‖	jθ‖Lp∗ + Cg(t)‖G‖Lp

+ Cg(t)

(
‖θ0‖L2 +

∑
j≥0

2(1−2β+ 2
p∗ − 2

p
)j 2βj‖	jθ‖Lp∗

)
. (4.7)

We then integrate in time. Due to (4.4) and (4.3) with r = 1,

t∫
0

∑
j≥0

2(1+α−2β+ 2
p∗ − 2

p
)j 2βj‖	jθ‖Lp∗ dτ =

∑
j≥0

2(1+α−2β+ 2
p∗ − 2

p
)j 2βj

t∫
0

‖	jθ‖Lp∗ dτ

≤ sup
j≥0

2βj

t∫
0

‖	jθ‖Lp∗ dτ

≤ C(t).

Since α and β satisfy (1.5), especially β > 10−5α
10−4α

, we have 1 − 2β + 2
p∗ < 0. Thus,

t∫
0

g(τ) dτ ≤ C sup
j≥0

2βj

t∫
0

‖	jθ‖Lp∗ dτ ≤ C(t)

and

t∫
g(τ)

∑
j≥0

2(1−2β+ 2
p∗ − 2

p
)j 2βj‖	jθ‖Lp∗ dτ ≤ C sup

j≥0
22βj

t∫
‖	jθ‖2

Lp∗ dτ ≤ C(t)
0 0
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due to (4.3) with r = 2. Integrating (4.7) and using the bounds above, we obtain∥∥G(t)
∥∥

Lp ≤ C(t)

for any p0 ≤ p ≤ p1. The process above can be iterated for p1 < p ≤ p2 with the gap p2 − p1
as large as p1 − p0. Therefore, an iterative process would allow us to extend the global bound to 
any 2 < p < ∞. This completes the proof of Proposition 4.1. �
5. Global bounds for ‖G‖B0

∞,1
and for ‖u‖B1

∞,1

This section establishes a global bound for ‖G‖B0∞,1
and consequently a global bound for 

‖u‖L1
t B

1∞,1
and then ‖ω‖L∞

t B0∞,1
. We state our results in two propositions. The first proposi-

tion is a global L∞ for G for the completeness. The second proposition proves a global bound 
for ‖G‖B0∞,1

, which consequently yields ‖u‖L1
t B

1∞,1
. Once we have this bound for the velocity, 

then all other a priori bounds follow.

Proposition 5.1. Assume that α and β satisfy (1.5). Assume (u0, θ0) satisfies (1.6) and let (u, θ)

be the corresponding solution of (1.1). Then, for any T > 0 and t ≤ T ,∥∥G(t)
∥∥

L∞ ≤ C(T ,u0, θ0),

where C(T , u0, θ0) is a constant depending on T and the initial data only.

Proposition 5.2. Assume that α and β satisfy (1.5). Assume (u0, θ0) satisfies (1.6) and let (u, θ)

be the corresponding solution of (1.1). Then, for any T > 0 and t ≤ T ,∥∥G(t)
∥∥

B0∞,1
≤ C(T ,u0, θ0), (5.1)

where C(T , u0, θ0) is a constant depending on T and the initial data only. A special consequence 
is the global bound

‖u‖B1∞,1
≤ C(T ,u0, θ0).

Furthermore,

‖ω‖L2∩B0∞,1
≤ C(T ,u0, θ0), ‖θ‖B1∞,1

≤ C(T ,u0, θ0).

To prove Proposition 5.2, we need the following lemma (see, e.g., [28]).

Lemma 5.3. Let (p, r) ∈ [1, ∞]. If v is a Lipschitz divergence-free vector field, u is a solution of 
the following equation {

∂tu + v · ∇u + νΛαu = f, 0 ≤ α ≤ 2

u(x,0) = u0 ∈ B0

p,r
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Then for any t > 0, there exists a constant C such that

‖u‖L∞
t B0

p,r
≤ C

(‖u0‖B0
p,r

+ ‖f ‖L1
t B

0
p,r

)(
1 +

t∫
0

‖∇v‖L∞dt

)
,

where the space–time Besov space L∞
t B0

p,r is defined Appendix A.

Proof of Proposition 5.1. Recall that G satisfies

∂tG + u · ∇G + ΛαG = Λα−β∂1θ − [Rβ,u · ∇]θ. (5.2)

By the maximum principle,

‖G‖L∞ ≤ ‖G0‖L∞ +
t∫

0

(∥∥Λα−β∂1θ
∥∥

L∞ + ∥∥[Rβ,u · ∇]θ∥∥
L∞

)
dτ. (5.3)

Since 1 + α − 2β < 0, we take p sufficiently large such that 1 + α − 2β + 4
p

< 0. Then,

∥∥Λα−β∂1θ
∥∥

L∞ ≤ ∥∥Λα−β∂1θ
∥∥

B0∞,1
=

∑
j≥−1

∥∥	jΛ
α−β∂1θ

∥∥
L∞

≤ C‖θ0‖L2 +
∑
j≥0

2(1+α−2β+ 2
p

)j 2βj‖	jθ‖Lp . (5.4)

By Bernstein’s inequality and by Proposition A.6,∥∥[Rβ,u · ∇]θ∥∥
L∞ ≤ ∥∥[Rβ,u · ∇]θ∥∥

B0∞,1
=

∑
j≥−1

∥∥	j [Rβ,u · ∇]θ∥∥
L∞

≤
∑

j≥−1

2
2
p

j
∥∥	j [Rβ,u · ∇]θ∥∥

Lp

= ∥∥[Rβ,u · ∇]θ∥∥
B

2
p
p,1

≤ ‖∇u‖Lp‖θ‖
B

2
p +1−β

∞,1

. (5.5)

In addition,

‖∇u‖Lp ≤ ‖G‖Lp + C
∥∥Λ−β∂1θ

∥∥
Lp

≤ ‖G‖Lp + C‖θ0‖L2 + C
∑
j≥0

2(1−2β)j 2βj‖	jθ‖Lp

and
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‖θ‖
B

2
p +1−β

∞,1

≤ C
∑

j≥−1

2(1−β+ 2
p

)j‖	jθ‖L∞

≤ C‖θ0‖L2 + C
∑
j≥0

2(1−2β+ 4
p

)j 2βj‖	jθ‖Lp .

Inserting the bounds above in (5.3) and noticing (4.3), we obtain

‖G‖L∞ ≤ ‖G0‖L∞ + C(t).

This completes the proof of Proposition 5.1. �
Proof of Proposition 5.2. Applying Lemma 5.3 with p = ∞ and r = 1 to (5.2) yields

‖G‖B0∞,1
≤ C

(‖G0‖B0∞,1
+ ∥∥Λα−β∂1θ

∥∥
L1

t B
0∞,1

+ ∥∥[Rβ,u · ∇]θ∥∥
L1

t B
0∞,1

)(
1 +

t∫
0

‖∇u‖L∞dt

)
. (5.6)

Making use of the bounds in (5.4) and (5.5), we have the estimate

‖G0‖B0∞,1
+ ∥∥Λα−β∂1θ

∥∥
L1

t B
0∞,1

+ ∥∥[Rβ,u · ∇]θ∥∥
L1

t B
0∞,1

≤ C(t).

Using Littlewood–Paley decomposition and the fact that ‖	ju‖L∞ ≈ 2−j‖	jω‖L∞ for any 
j ≥ 0, we get

‖∇u‖L∞ ≤ ‖	−1∇u‖L∞ +
∑
j≥0

‖	j∇u‖L∞

≤ C‖u‖L2 +
∑
j≥0

‖	jω‖L∞

≤ C(t) + ‖ω‖B0∞,1
.

In addition, by G = ω +Rβθ

t∫
0

‖ω‖B0∞,1
dτ ≤

t∫
0

‖G‖B0∞,1
dτ +

t∫
0

‖Rβθ‖B0∞,1
dτ ≤ C(t) +

t∫
0

‖G‖B0∞,1
dτ.

It then follows from (5.6) that

‖G‖B0∞,1
≤ C(t)

(
C(t) +

t∫
‖G‖B0∞,1

dτ

)
.

0
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Gronwall’s inequality then implies (5.1). Consequently,

t∫
0

‖∇u‖L∞ dτ ≤
t∫

0

‖u‖B1∞,1
dτ ≤ C(t) +

t∫
0

‖ω‖B0∞,1
dτ ≤ C(t).

Therefore, according to the equation of θ ,

‖∇θ‖L2 ≤ ‖∇θ0‖L2e
∫ t

0 ‖∇u‖L∞ dτ ≤ C(t),

‖θ‖B1∞,1
≤ ‖θ0‖B1∞,1

e

∫ t
0 ‖u‖

B1∞,1
dτ ≤ C(t).

It then follows from the vorticity equation that

‖ω‖L2∩B0∞,1
≤ C(t).

This completes the proof of Proposition 5.2. �
6. Proof of Theorem 1.1

This section proves Theorem 1.1. The proof of Theorem 1.1 is divided into two main parts: 
the uniqueness and existence. To prove the uniqueness, we need the following simple fact.

Lemma 6.1. Let s ∈ (−1, 1), � ∈ [1, ∞], and v be a Lipschitz divergence-free vector field. As-
sume that u solves {

∂tu + v · ∇u + Λαu + ∇p = f, 0 ≤ α ≤ 2,

u(x,0) = u0 ∈ B0
p,r ,

where p, r ∈ [1, ∞]. Then, for any t > 0, there exists a constant C such that

‖u‖L∞
t Bs

2,∞ ≤ CeCV (t)
(‖u0‖Bs

2,∞ + (
1 + t

1− 1
�
)‖f ‖

L�
t B

s+ α
� −α

2,∞

)
,

where V (t) := ∫ t

0 ‖∇v‖L∞dt .

Proof of Theorem 1.1. We first prove the uniqueness. We show that any two solutions satisfy-
ing (1.7) must be the same. We draw ideas from [19], and [27]. Let (u(i), θ(i)) with i = 1, 2 be 
two solutions of (1.1) satisfying (1.7). We set u = u(1) − u(2) and θ = θ(1) − θ(2). Then

∂tu + u(1) · ∇u + Λαu + ∇p = −u · ∇u(2) + θe2,

∂t θ + u(1) · ∇θ + Λβθ = −u · ∇θ(2),

(u, θ)|t=0 = (u0, θ0).

To estimate u, we apply Lemma 6.1. The two terms on the right of the equation for u are esti-
mated differently. For this purpose, we write u = U1 + U2 where Ui solves
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∂tUi + u(1) · ∇Ui + ΛαUi + ∇pi = Fi, i = 1,2,

with F1 = −u · ∇u(2) and F2 = θe2. To estimate U1, we use Lemma 6.1 with � = 1 and s = 0
while, to estimate U2, we use Lemma 6.1 with � = +∞ and s = 0. This yields, for every t ∈
[0, T ],

‖u‖L∞
t B0

2,∞
≤ Ce

C‖u(1)‖
L1

t B1∞,1
(‖u0‖B0

2,∞
+ ∥∥u · ∇u(2)

∥∥
L1

t B
0
2,∞

+ (1 + t)‖θ‖L∞
t B−α

2,∞
)
. (6.1)

It is easy to check by the paraproduct decomposition that∥∥u · ∇u(2)
∥∥

B0
2,∞

≤ ‖u‖L2

∥∥u(2)
∥∥

B1∞,1
.

Using the logarithmic interpolation inequality

‖u‖L2 ≤ ‖u‖B0
2,∞

log

(
e + 1

‖u‖B0
2,∞

)
log

(
e + ‖u‖H 1

)
,

we obtain ∥∥u · ∇u(2)
∥∥

B0
2,∞

≤ ∥∥u(2)
∥∥

B1∞,1
μ

(‖u‖B0
2,∞

)
log

(
e + ‖u‖H 1

)
, (6.2)

where μ(x) = x log(e + 1
x
). On the other hand, applying Lemma 6.1 with � = 1 and s = 0 to the 

equation for θ yields

‖θ‖L∞
t B−α

2,∞
≤ Ce

C‖u(1)‖
L1

t B1∞,1
(‖θ0‖B−α

2,∞
+ ∥∥u · ∇θ(2)

∥∥
L1

t B
−α
2,∞

)
. (6.3)

To estimate the right-hand side, we have the following product estimate∥∥u · ∇θ(2)
∥∥

B−α
2,∞

≤ ‖u‖L2

∥∥θ(2)
∥∥

B1−α
∞,1

≤ ∥∥θ(2)
∥∥

B1−α
∞,1

μ
(‖u‖B0

2,∞

)
log

(
e + ‖u‖H 1

)
. (6.4)

Inserting (6.2) and (6.3) with (6.4) in (6.1) leads to an inequality of the form for Z(t) :=
‖u‖L∞

t B0
2,∞

+ ‖θ‖L∞
t B−α

2,∞
,

Z(t) ≤ f (t)

[
Z(0) +

t∫
0

(∥∥u2(τ )
∥∥

B1∞,1
+ ∥∥θ2(τ )

∥∥
B1−α

∞,1

)
μ

(
Z(τ )

)
dτ

]
,

where f (t) is an explicit function depending continuously on t and ‖u(i)‖L∞
t H 1∩L1

t B
1∞,1

with 

i = 1, 2. The uniqueness then follows from the Osgood Lemma B.1 and the fact that Z(0) = 0. 
In addition, for the purpose of later applications, we have, by Remark B.2,

Z(0) ≤ α(T ) ⇒ Z(t) ≤ β(T )
(
Z(0)

)γ (T )
, (6.5)
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where α, β and γ are explicit functions depending continuously on T and on the norms 
‖u(i)‖L∞

t H 1∩L1
t B

1∞,1
with i = 1, 2.

We now prove the existence. First we smooth the data to get the following approximate system⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu

(n) + u(n) · ∇u(n) + Λαu(n) = −∇p(n) + θ(n)e2, x ∈R2, t > 0,

∂t θ
(n) + u(n) · ∇θ(n) + Λβθ(n) = 0, x ∈ R2, t > 0,

∇ · u(n) = 0, x ∈R2, t > 0,

u(n)(x,0) = Snu0, θ(n)(x,0) = Snθ0(x), x ∈R2.

(6.6)

For (u0, θ0) ∈ L2, Snu0 and Snθ0 are Hs for any s ∈ R. An application of the Picard type theorem 
would yield the local well-posedness of (6.6). As shown in the previous sections, (u(n), θ(n))

obeys the global a priori estimates (uniform with respect to n), for any T > 0,∥∥u(n)
∥∥

L∞
T (H 1∩B1∞,1)

≤ C(T ),
∥∥θ(n)

∥∥
L∞

T (L2∩B1∞,1)
≤ C(T ).

In particular, u(n) is Lipschitz for all time, which implies that (u(n), θ(n)) is global in time. In 
addition, up to the extraction of a subsequence of (u(n), θ(n)), (u(n), θ(n)) converges weakly to 
(u, θ), which satisfies the same estimate as above. Furthermore, as shown in the uniqueness part, 
we have by (6.5)∥∥u(n) − u(m)

∥∥
L∞

T B0
2,∞

+ ∥∥θ(n) − θ(m)
∥∥

L∞
T B−α

2,∞
≤ β(T )(an,m)γ (T ),

where

an,m = ∥∥(Sn − Sm)u0
∥∥

B0
2,∞

+ ∥∥(Sn − Sm)θ0
∥∥

B−α
2,∞

.

This proves that u(n) is a Cauchy sequence and hence that it converges strongly to u in the 
space L∞

T B0
2,∞. By interpolation we can easily get the strong convergence of u(n) to u in 

L2([0, T ] × R2). This implies that u(n) ⊗ u(n) converges in L1([0, T ] × R2). But since θ(n)

converges to θ weakly in L2([0, T ] ×R2), then, by weak strong convergence, we have also that 
u(n)θ(n) converges weakly to uθ . This allows us to pass to the limit in the system (6.6) and to 
get that (u, θ) is a solution of our original problem, namely (1.1). This completes the proof of 
Theorem 1.1. �
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Appendix A. Functional spaces and commutator estimates

This appendix serves two purposes. First, it provides the definitions of some of the functional 
spaces and related facts used in the previous sections. Materials presented here can be found 



W. Yang et al. / J. Differential Equations 257 (2014) 4188–4213 4207
in several books and many papers (see, e.g., [4,5,28,34,35]). Second, we give the proof of a 
commutator estimate used in the previous sections.

We start with several notation. S denotes the usual Schwartz class and S ′ its dual, the space 
of tempered distributions. S0 denotes a subspace of S defined by

S0 =
{
φ ∈ S:

∫
Rd

φ(x)xγ dx = 0, |γ | = 0,1,2, · · ·
}

and S ′
0 denotes its dual. S ′

0 can be identified as

S ′
0 = S ′/S⊥

0 = S ′/P

where P denotes the space of multinomials. To introduce the Littlewood–Paley decomposition, 
we write for each j ∈ Z

Aj = {
ξ ∈ Rd : 2j−1 ≤ |ξ | < 2j+1}.

The Littlewood–Paley decomposition asserts the existence of a sequence of functions {Φj }j∈Z ∈
S such that

supp Φ̂j ⊂ Aj , Φ̂j (ξ) = Φ̂0
(
2−j ξ

)
or Φj(x) = 2jdΦ0

(
2j x

)
,

and

∞∑
j=−∞

Φ̂j (ξ) =
{

1, if ξ ∈Rd \ {0},
0, if ξ = 0.

Therefore, for a general function ψ ∈ S , we have

∞∑
j=−∞

Φ̂j (ξ)ψ̂(ξ) = ψ̂(ξ) for ξ ∈ Rd \ {0}.

In addition, if ψ ∈ S0, then

∞∑
j=−∞

Φ̂j (ξ)ψ̂(ξ) = ψ̂(ξ) for any ξ ∈ Rd .

That is, for ψ ∈ S0,

∞∑
Φj ∗ ψ = ψ
j=−∞
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and hence

∞∑
j=−∞

Φj ∗ f = f, f ∈ S ′
0

in the sense of weak-∗ topology of S ′
0. For notational convenience, we define

	̇jf = Φj ∗ f, j ∈ Z. (A.1)

Definition A.1. For s ∈ R and 1 ≤ p, q ≤ ∞, the homogeneous Besov space Ḃs
p,q consists of 

f ∈ S ′
0 satisfying

‖f ‖Ḃs
p,q

≡ ∥∥2js‖	̇jf ‖Lp

∥∥
lq

< ∞.

We now choose Ψ ∈ S such that

Ψ̂ (ξ) = 1 −
∞∑

j=0

Φ̂j (ξ), ξ ∈Rd .

Then, for any ψ ∈ S ,

Ψ ∗ ψ +
∞∑

j=0

Φj ∗ ψ = ψ

and hence

Ψ ∗ f +
∞∑

j=0

Φj ∗ f = f

in S ′ for any f ∈ S ′. To define the inhomogeneous Besov space, we set

	jf =
⎧⎨⎩

0, if j ≤ −2,

Ψ ∗ f, if j = −1,

Φj ∗ f, if j = 0,1,2, · · · .
(A.2)

Definition A.2. The inhomogeneous Besov space Bs
p,q with 1 ≤ p, q ≤ ∞ and s ∈ R consists of 

functions f ∈ S ′ satisfying

‖f ‖Bs
p,q

≡ ∥∥2js‖	jf ‖Lp

∥∥
lq

< ∞.

The Besov spaces Ḃs
p,q and Bs

p,q with s ∈ (0, 1) and 1 ≤ p, q ≤ ∞ can be equivalently defined 
by the norms
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‖f ‖Ḃs
p,q

=
( ∫
Rd

(‖f (x + t) − f (x)‖Lq )q

|t |d+sq
dt

)1/q

,

‖f ‖Bs
p,q

= ‖f ‖Lq +
( ∫
Rd

(‖f (x + t) − f (x)‖Lp)q

|t |d+sq
dt

)1/q

.

When q = ∞, the expressions are interpreted in the normal way.

Definition A.3. For t > 0, s ∈R and 1 ≤ p, q, r ≤ ∞, the space–time spaces Lr
t Ḃ

s
p,q and Lr

t B
s
p,q

are defined through the norms

‖f ‖Lr
t Ḃ

s
p,q

≡ ∥∥2js‖	̇jf ‖Lr
t L

p

∥∥
lq

,

‖f ‖Lr
t B

s
p,q

≡ ∥∥2js‖	jf ‖Lr
t L

p

∥∥
lq

.

These spaces are related to the classical space–time spaces Lr
t Ḃ

s
p,q and Lr

t B
s
p,q via the 

Minkowski inequality. Many frequently used function spaces are special cases of Besov spaces. 
The following proposition lists some useful equivalence and embedding relations.

Proposition A.4. For any s ∈ R,

Ḣ s ∼ Ḃs
2,2, H s ∼ Bs

2,2.

For any s ∈R and 1 < q < ∞,

Ḃs
q,min{q,2} ↪→ Ẇ s

q ↪→ Ḃs
q,max{q,2}.

In particular, Ḃ0
q,min{q,2} ↪→ Lq ↪→ Ḃ0

q,max{q,2}.

For notational convenience, we write 	j for 	̇j . There will be no confusion if we keep 
in mind that 	j ’s associated with the homogeneous Besov spaces are defined in (A.1) while 
those associated with the inhomogeneous Besov spaces are defined in (A.2). Besides the 
Fourier localization operators 	j , the partial sum Sj is also a useful notation. For an inte-
ger j ,

Sj ≡
j−1∑

k=−1

	k,

where 	k is given by (A.2). For any f ∈ S ′, the Fourier transform of Sjf is supported on the 
ball of radius 2j .

Bernstein’s inequalities are useful tools in dealing with Fourier localized functions and these 
inequalities trade integrability for derivatives. The following proposition provides Bernstein type 
inequalities for fractional derivatives.
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Proposition A.5. Let α ≥ 0. Let 1 ≤ p ≤ q ≤ ∞.

1) If f satisfies

supp f̂ ⊂ {
ξ ∈Rd : |ξ | ≤ K2j

}
,

for some integer j and a constant K > 0, then∥∥(−	)αf
∥∥

Lq(Rd )
≤ C122αj+jd( 1

p
− 1

q
)‖f ‖Lp(Rd ).

2) If f satisfies

supp f̂ ⊂ {
ξ ∈Rd : K12j ≤ |ξ | ≤ K22j

}
for some integer j and constants 0 < K1 ≤ K2, then

C122αj‖f ‖Lq(Rd ) ≤ ∥∥(−	)αf
∥∥

Lq(Rd )
≤ C222αj+jd( 1

p
− 1

q
)‖f ‖Lp(Rd ),

where C1 and C2 are constants depending on α, p and q only.

The rest of this appendix provides a proof for the following commutator estimate.

Proposition A.6. Let β ∈ (0, 1), (p, r) ∈ [2, ∞) × [1, ∞]. Let s ∈ (0, 1) satisfy s − β < 0, then 
there exists a constant C = C(p, r) such that∥∥[Rβ, f ]g∥∥

Bs
p,r

≤ ‖∇f ‖Lp‖g‖
B

s−β∞,r
. (A.3)

To prove this estimate, we need a simple inequality (see, e.g. [18]).

Lemma A.7. Given (p, m) ∈ [1, ∞]2 such that p > m1 with m1 the conjugate exponent of m, let
f , g and h be three functions such that ∇f ∈ Lp , g ∈ Lm and xh ∈ Lm1 . Then∥∥h ∗ (fg) − f (h ∗ g)

∥∥
Lp ≤ ‖xh‖Lm1 ‖∇f ‖Lp‖g‖Lm.

Proof of Proposition A.6. Let k ≥ −1 be an integer. By the notion of paraproducts, we write

	k[Rβ, f ]g = J1 + J2 + J3,

where

J1 =
∑

|j−k|≤2

	k

(
Rβ(Sj−1f 	jg) − Sj−1fRβ	jg

)
,

J2 =
∑

|j−k|≤2

	k

(
Rβ(	jf Sj−1g) − 	jfRβSj−1g

)
,

J3 =
∑

	k

(
Rβ(	jf 	̃jg) − 	jfRβ	̃j g

)
,

j≥k−1
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with 	̃j = 	j−1 + 	j + 	j+1. We first note that, if the Fourier transform of F is supported in 
the annulus around radius 2j , then RβF can be represented as a convolution,

RβF = hj ∗ F, hj (x) = 2d+1−βh0
(
2j x

)
for a function h0 in the Schwartz class S whose spectrum does not meet the origin. This can be 
obtained by simply examining the Fourier transform of RβF . By the definition of Bs

p,r ,

∥∥[Rβ, f ]g∥∥
Bs

p,r
= ∥∥2sk

∥∥	k[Rβ, f ]g∥∥
Lp

∥∥
lr

≤ ∥∥2sk‖J1‖Lp

∥∥
lr

+ ∥∥2sk‖J2‖Lp

∥∥
lr

+ ∥∥2sk‖J3‖Lp

∥∥
lr
. (A.4)

Applying Lemma A.7, we have

‖J1‖Lp ≤ C2(1−β)k
∥∥|x|2dkh0

(
2kx

)∥∥
L1‖∇Sk−1f ‖Lp‖	kg‖L∞

≤ C2−βk‖∇f ‖Lp‖	kg‖L∞ .

Thus, ∥∥2sk‖J1‖Lp

∥∥
lr

≤ C‖∇f ‖Lp‖g‖
B

s−β∞,r
. (A.5)

By Bernstein’s inequality, we have

‖J2‖Lp ≤ C2−βk‖∇f ‖Lp‖Sk−1g‖L∞

≤ C2−βk‖∇f ‖Lp

∑
m≤k−2

‖	mg‖L∞

≤ C‖∇f ‖Lp

∑
m≤k−2

2−β(k−m)2−βm‖	mg‖L∞ .

Since s − β < 0, we obtain, by applying Young’s inequality for series,∥∥2sk‖J2‖Lp

∥∥
lr

≤ C‖∇f ‖Lp‖g‖
B

s−β∞,r
. (A.6)

Similarly, we have

‖J3‖Lp ≤ C
∑

j≥k−1

2−βj‖∇f ‖Lp‖	jg‖L∞ .

Therefore, for s > 0, by Young’s inequality for series,

∥∥2sk‖J3‖Lp

∥∥
lr

≤ C

∥∥∥∥2sk

( ∑
j≥k−1

2−βj‖∇f ‖Lp‖	jg‖L∞
)∥∥∥∥

lr

≤ C‖∇f ‖Lp‖g‖ s−β . (A.7)

B∞,r
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Combining (A.4), (A.5), (A.6) and (A.7), we obtain the desired bound in (A.3). This completes 
the proof of Proposition A.6. �
Appendix B. Some basic inequalities

For the convenience of readers, we provide a statement of the Osgood lemma used in Sec-
tion 6. In addition, a simple estimate used in Section 6 is also stated.

Lemma B.1 (Osgood lemma). Let γ ∈ L1
loc(R+; R+), μ be a continuous nondecreasing function, 

a ∈ R+ and α be a measurable function satisfying

0 ≤ α(t) ≤ a +
t∫

0

γ (τ)μ
(
α(τ)

)
dτ, ∀t ∈R+.

If we assume that a > 0, then

−M
(
α(t)

) +M(a) ≤
t∫

0

γ (τ)dτ with M(x) :=
1∫

x

1

μ(r)
dr.

If we assume a = 0 and limx→0+ M(x) = +∞, then α(t) = 0, ∀t ∈ R+.

Remark B.2. In the particular case μ(r) = r(1 − log r), one can show, for any t > 0,

α(0) ≤ e1−exp(
∫ t

0 γ (τ)dτ) ⇒ α(t) ≤ α(0)exp(−∫ t
0 γ (τ)dτ)e1−exp(−∫ t

0 γ (τ)dτ).
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