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Abstract

The initial value problem for the complex Ginzburg-Landau equa-
tion of the form (σ > 0, A ≥ 0, a > 0, b > 0, ν, µ being real):

∂tu = Au + (a + iν)∆u− (b + iµ)|u|2σu, (x, t) ∈ Rn × (0,∞)

with initial data u(x, 0) = u0(x) ∈ Hr
p is considered. The local well-

posedness is established for u0 ∈ Hr
p if r and p satisfy

1 < p < ∞,
1

σ(2σ + 1)
≤ n

p
<

1
σ

r0 < r < −2σr0, r0 =
n

p
− 1

σ

This result reduces to Hr theory by setting p = 2 [13]. By taking
A = ν = µ = 0, this reproduces a theorem for the nonlinear heat
equation in [15].
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1 Introduction

In this paper we consider the initial value problem (IVP) for the complex
Ginzburg-Landau (CGL) equation of the general form

∂tu = Au + (a + iν)∆u− (b + iµ)|u|2σu, (x, t) ∈ Rn × (0,∞) (1.1)

u(x, 0) = u0(x), x ∈ Rn (1.2)

where u is a complex-valued function of space-time and σ > 0, A ≥ 0, a >
0, b > 0, ν, µ are real parameters. We are mainly interested in the well-
posedness of the IVP (1.1), (1.2) with initial data u0 ∈ Hr

p , the Sobolev
spaces of negative indices (definition is given below).

The CGL equation has a long history in physics as a model equation de-
scribing the onset of instabilities in fluid mechanical systems as well as in the
theory of pattern formation and superconductivity. The IVP (1.1), (1.2) has
been studied recently ([11], [12], [13]) and the natural settings for the initial
data are Lp, Hr and more generally Hr

p . These types of initial data spaces
have been used in dealing with other nonlinear equations, for example, the
Navier-Stokes equations ([8],[6], [9]), the quasi-geostrophic equation ([3]), the
nonlinear heat (NLH) equation ([4],[14],[15]) and the nonlinear Schrödinger
(NLS) equation ([2],[5]).

For s ∈ R, q ∈ [1,∞), Hs
q ≡ Hs

q (Rn) denotes the Sobolev space consisting
of all functions f such that

(1−∆)
s
2 f ∈ Lq(Rn), i.e., ‖f‖s,q = ‖(1−∆)

s
2 f‖Lq < ∞

Clearly, Hs
2 = Hs. Some other properties concerning Hs

q can be found in [1].
Especially, we will need the imbedding theorem

Hs1
q1
⊂ Hs2

q2
, if s1 − n

q1

= s2 − n

q2

, 1 < q1 ≤ q2 < ∞,

(see e.g. [1], p.153).

Our main result states that if u0 ∈ Hr
p with r, p satisfying

1 < p < ∞,
1

σ(2σ + 1)
≤ n

p
<

1

σ
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r0 < r < −2σr0, r0 =
n

p
− 1

σ

then the IVP (1.1), (1.2) is locally well-posed. Precise statement is given in
Theorem 3.1.

As we know, σ is said to be critical (resp. supercritical, subcritical) at
the level of Lp if σ = n

p
(resp. >,<) and at the level of Hr if σ = 2

n−2r
(resp.

>,<). We can generalize this notion by saying that σ = p
n−pr

(resp. >,<)

is critical (resp. supercritical, subcritical) at the level of Hr
p . The local well-

posedness result we establish is for the subcritical case. New devices may
be necessary to extend the results to critical or supercritical case and the
compactness method is a possible choice [5].

Even though there is a large literature on the CGL equation, not many
papers deal with the IVP with weak initial data. In [13] Levermore and
Oliver prove the local well-posedness with distributional data in Hr(Tn) in
the subcritical case (i.e. r > n

2
− 1

σ
). Our result reduces to Hr theory on Rn

by setting p = 2. The proof in [13] is also based on contraction methods, but
the technical details are quite different.

If we let A = ν = µ = 0, the local well-posedness result reduces to a
parallel theorem obtained in [15] for the NLH equation. In [15] the initial
data in taken in homogeneous Lebesgue space Ḣr

p (replacing (1−∆) by −∆
in the definition of Hr

p), rather than Hr
p .

The well-posedness result is proved by contraction mapping arguments.
In Section 2 we establish estimates for the solution operator K to the linear
equation and the operator G (defined in (2.5)) over spaces of weighted con-
tinuous functions in time (see Definition 2.2). These estimates are used in
Section 3 to show the contraction.
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2 Preliminary estimates

We now consider the linear equation

∂tu = Au + (a + iν)∆u, (x, t) ∈ Rn × (0,∞) (2.1)

and its solution operator K(t) = eAt+((a+iν)∆t. K(t) is represented by the
convolution in x, i.e.,

K(t)f = kt ∗ f ≡ 1

(4π(a + iν)t)n/2
eAt− |x|2

4(a+iν)t ∗ f (2.2)

and the kernel kt satisfies

|kt(x)| ≤ 1

(4π|a + iν|t)n/2
e

At− a|x|2
4(a2+ν2)t

Furthermore, we have

Lemma 2.1 Let A ≥ 0, a > 0 and ν be real parameters in (2.1).

(a) For t > 0, ‖kt‖L1 =
(
1 +

[
ν
a

]2
)n

4
eAt and therefore

‖kt ∗ f‖Lp ≤
(

1 +
[ν

a

]2
)n

4

eAt‖f‖Lp , 1 ≤ p < ∞ (2.3)

(b) For s ≥ 0 and q ∈ [1,∞),

‖kt‖s,q = ‖(1−∆)
s
2 kt‖Lq ≤ Cke

Att
1
2 [−s−n(1− 1

q )] (2.4)

for some constant Ck depending on a, ν, s, q.

Proof (a) The value of ‖kt‖L1 is obtained by a simple calculation. The
inequality (2.3) is a consequence of Young’s inequality.

(b) If s
2

is an integer, (2.4) is obtained by a direct calculation. The general
case can be dealt with by interpolation.

We shall solve the IVP (1.1), (1.2) in the space of weighted continuous
functions in time, which we now introduce. Kato and his collaborators define
this type of spaces in solving the IVP for the Navier-Stokes equations with
various initial data ([6],[7],[8],[9],[10], [4]).
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Definition 2.2 For T > 0 and α ≥ 0, we define the space

Cα,s,q ≡ {f ∈ C((0, T ); Hs
q ), ‖f‖α,s,q < ∞}

where the norm ‖f‖α,s,q is given by

‖f‖α,s,q = sup{tα‖f(·, t)‖s,q : t ∈ (0, T )}
Ċα,s,q is defined to be a subspace of Cα,s,q

Ċα,s,q = {f ∈ Cα,s,q((0, T ); Hs
q ) : lim

t→0+
tα‖f(·, t)‖s,q = 0}

Ċα,s,q is a closed subspace of Cα,s,q. f ∈ Cα,s,q (resp. f ∈ Ċα,s,q) implies

‖f(·, t)‖s,q = O(t−α), (resp. ‖f(·, t)‖s,q = o(t−α)), as t → 0+

If T < ∞, Cα,s,q ⊂ Ċβ,s,q when α < β. The case α = 0 is special. Clearly,
Ċ0,s,q ⊂ BC([0, T ); Hs

q ) ⊂ C0,s,q, where BC([0, T ); Hs
q ) denotes the space

of Hs
q−valued bounded continuous functions on [0, T ). For simplicity, we’ll

write C̄s,q for BC([0, T ); Hs
q ).

To solve the IVP (1.1), (1.2), we need to establish estimates for the op-
erators K and G (defined in (2.5)) over the type of spaces we just defined.

Proposition 2.3 Let A ≥ 0, a > 0 and ν be real parameters.

(i) For q ∈ [1,∞), s ∈ R,

K(t)f → f in Hs
q as t → 0+

and K maps continuously from Hs
q to C̄s,q ⊂ C0,s,q.

(ii) If q1, q2, s1, s2 and α2 satisfy

q1 ≤ q2, s1 ≤ s2

α2 =
1

2

[
s2 − s1 +

n

q1

− n

q2

]

then K maps continuously from Hs1
q1

to Ċα2,s2,q2 (When α2 = 0, Ċα2,s2,q2

should be replaced by C̄s2,q2).
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Proof. (i) follows from the semi-group properties of K on Lq.

We now show (ii). Let s0 = s2 − s1 ≥ 0 and f ∈ Hs1
q1

. By Young’s
inequality,

‖K(t)f‖s2,q2 = ‖(1−∆)
s0
2 kt ∗

(
(1−∆)

s1
2

)
f‖Lq2 ≤ ‖(1−∆)

s0
2 kt‖Lq3‖f‖s1,q1

where q3 satisfies 1− 1
q3

= 1
q1
− 1

q2
. Using Lemma 2.1,

‖K(t)f‖s2,q2 ≤ Cke
Att

1
2

(
−s0− n

q1
+ n

q2

)
‖f‖s1,q1

which implies that K maps continuously from Hs1
q1

to Cα2,s2,q2 . Furthermore,

for α2 > 0, K maps into Ċα2,s2,q2 , not just Cα2,s2,q2 . This is because K maps
smooth functions into Cα2,s2,q2 ∩C0,s2,q2 ⊂ Ċα2,s2,q2 .

For α2 = 0, Ċ is replaced by C̄. Another easy proof can also be given in
this case. Since now

s1 − n

q1

= s2 − n

q2

, q1 ≤ q2

we can use the imbedding Hs1
q1
⊂ Hs2

q2
and (i) to show that K maps Hs1

q1
to

C̄s2,q2 .

We now give estimate for G:

G(g)(t) =

∫ t

0

K(t− τ)g(τ)dτ (2.5)

Proposition 2.4 If q1, q2, s1, s2, α1 and α2 satisfy

q1 ≤ q2 (2.6)

0 ≤ s2 − s1 < 2−
[

n

q1

− n

q2

]
(2.7)

α1 < 1, α2 = α1 − 1 +
1

2

[
s2 − s1 +

n

q1

− n

q2

]
(2.8)

Then G maps continuously from Ċα1,s1,q1 to Ċα2,s2,q2.
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Proof. Let g ∈ Ċα1,s1,q1 and s0 = s2 − s1.

‖G(g)(t)‖s2,q2 =

∫ t

0

‖(1−∆)
s0
2 kt ∗

(
(1−∆)

s1
2 g(τ)

)
‖Lq2dτ

Using Young’s inequality with 1− 1
q3

= 1
q1
− 1

q2
and Lemma 2.1,

‖G(g)(t)‖s2,q2 ≤
∫ t

0

‖(1−∆)
s0
2 kt‖Lq3‖g(τ)‖s1,q1dτ

≤ Cke
At‖g‖α1,s1,q1

∫ t

0

(t− τ)
1
2

(
−s0− n

q1
+ 1

q2

)
τ−α1dτ

= Cke
At‖g‖α1,s1,q1t

−α1+1− 1
2

(
−s0− n

q1
+ n

q2

) ∫ 1

0

(1− ρ)
1
2

(
−s0− n

q1
+ n

q2

)
ρ−α1dρ

Taking α2 = α1 − 1 + 1
2

[
s2 − s1 + n

q1
− n

q2

]
,

‖G(g)‖α2,s2,q2 ≤ Cke
At‖g‖α1,s1,q1B

(
1− 1

2

[
s2 − s1 +

n

q1

− n

q2

]
, 1− α1

)

We conclude the proof by noticing that the Beta function B is finite if

0 ≤ s2 − s1 < 2−
[

n

q1

− n

q2

]
, α1 < 1
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3 Well-posedness

We first state the main result.

Theorem 3.1 Let p and r satisfy

1 < p < ∞,
1

σ(2σ + 1)
≤ n

p
<

1

σ
, (3.1)

r0 < r < −2σr0, r0 ≡ n

p
− 1

σ
(3.2)

Then for any δ > 0, there is a T = T (δ) > 0 such that for every u0 ∈ Hr
p

with ‖u0‖r,p < δ there is a unique solution u of the IVP (1.1), (1.2) on (0, T )
satisfying

u ∈ ZT ≡ C̄r,p ∩
(
∩p≤q<∞ ∩λ>r Ċ λ−r

2
+ 1

2(
n
p
−n

q ),λ,q

)
(3.3)

Moreover, for any T ′ ∈ (0, T ), there is a neighborhood V of u0 in Hr
p such

that the solution map

P : V 7−→ ZT ′ , u0 7−→ u

is Lipschitz.

We make several remarks about this theorem.

Remark 3.2 Since we are mainly concerned about the case r < 0, the con-
straint r < −2σr0 for r0 < 0 is virtually no condition.

Remark 3.3 By taking p = 2, Theorem 3.1 reduces to Hr theory for the
CGL on Rn, parallel to Theorem 4 in [13] where the IVP (1.1), (1.2) with
data in Hr(Tn) is considered.

Remark 3.4 We observe that the time interval of existence depends only on
‖u0‖r,p, the norm of the initial data. Therefore it is sufficient to obtain global
control of Hr

p norm in order to show global existence.
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Theorem 3.1 is proved by contraction mapping arguments. To this end,
we write Equation 1.1 in the integral form

u = Ku0 + G(N(u)), N(u) = −(b + iµ)|u|2σu (3.4)

where K is the solution operator (2.2) to the linear equation (2.1) and G is
defined in (2.5). Then we show there is a fixed point for the integral equation
(3.4) in an appropriate space. As mentioned earlier, the space of weighted
continuous functions in time is suitable.

Proof of Theorem 3.1. For simplicity of notations, we may include the
factor eAt in the constants C1, C2, C3, · · · that appear below. This practice
causes no side effects because of the insignificant role played by eAt here.

Let the space XT and the norm for u ∈ XT given by

XT = C̄r,p ∩ Ċ− r
2
,0,p, ‖u‖XT

= ‖u‖0,r,p + ‖u‖− r
2
,0,p

Let XT,R ⊂ XT be the closed ball of radius R centered at 0 and XT,R is a
complete metric space. Consider the mapping A on XT,R with T, R yet to
be determined:

A(u) = Ku0 + G(N(u)), N(u) = −(b + iµ)|u|2σu

Applying (i) of Proposition 2.3 and (ii) with

q1 = p = q2, s1 = r, s2 = 0, α2 = −r

2

we obtain for two constants C1 and C2

‖Ku0‖0,r,p ≤ C1‖u0‖r,p, ‖Ku0‖− r
2
,0,p ≤ C2‖u0‖r,p

That is, ‖Ku0‖XT
≤ C3‖u0‖r,p with C3 = C1 + C2.

We now estimate G(N(u)). Choose p1 and r1 such that

p1 =
p

2σ + 1
< p, r1 − n

p1

= r − n

p

and use the imbedding Hr1
p1
⊂ Hr

p (see e.g. [1] , p.153) to obtain

‖G(N(u))‖0,r,p ≤ C4‖G(N(u))‖0,r1,p1
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We can now estimate ‖G(N(u))‖0,r1,p1 by applying Proposition 2.4 with

q1 = q2 =
p

2σ + 1

s1 = 0, s2 = r1 ≥ 0

α1 = −r

2
− σr0, α2 = 0

because the conditions (2.6), (2.7) and (2.8) are now satisfied under the
constraints (3.1), (3.2)

r1 = r − n

p
+

n

p1

> (2σ + 1)

(
n

p
− 1

σ(2σ + 1)

)
≥ 0

0 < s2 − s1 = r1 = r + 2σ
n

p
< −2σr0 + 2σ

n

p
= 2

α1 = −r

2
− σr0 < −r0

2
(2σ + 1) = −

(
n

p
− 1

σ(2σ + 1)

)(
σ +

1

2

)
+ 1 < 1

We obtain

‖G(N(u))‖0,r1,p1 ≤ C5‖N(u)‖− r
2
−σr0,0, p

2σ+1
≤ C5T

σ(r−r0)‖N(u)‖− (2σ+1)r
2

,0, p
2σ+1

Here we’ve used r > r0 to pick up the factor T σ(r−r0). Thus,

‖G(N(u))‖0,r,p ≤ C6T
σ(r−r0)‖u‖2σ+1

− r
2
,0,p ≤ C6T

σ(r−r0)‖u‖2σ+1
XT

(3.5)

where C6 = C4C5

√
b2 + µ2.

To estimate ‖G(N(u))‖− r
2
,0,p, we apply Proposition 2.4 with

q1 =
p

2σ + 1
, q2 = p,

s1 = 0, s2 = 0,

α1 = −r

2
− σr0, α2 = −r

2

and it is easy to check that the conditions (2.6), (2.7) and (2.8) are satisfied
because of the constraints (3.1) , (3.2) and r0 < 0. We obtain for some
constant C7

‖G(N(u))‖− r
2
,0,p ≤ C7‖N(u)‖− r

2
−σr0,0, p

2σ+1
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≤ C8T
σ(r−r0)‖u‖2σ+1

− r
2
,0,p ≤ C8T

σ(r−r0)‖u‖2σ+1
XT

(3.6)

where C8 = C7

√
b2 + µ2.

Now we show that A is a contraction. Using the inequality

||u|2σu− |ũ|2σũ| ≤ C9

(|u|2σ + |ũ|2σ
) |u− ũ|

for σ > 0 and some constant C9, we have for any u, ũ ∈ XT

‖A(u)−A(ũ)‖XT
= ‖G(N(u))−G(N(ũ))‖XT

≤ C10‖G((|u|2σ + |ũ|2σ)|u− ũ|)‖XT

where C10 =
√

b2 + µ2C9. Estimating G in XT similarly as in (3.5) and (3.6),

‖A(u)−A(ũ)‖XT
≤ C11T

σ(r−r0)‖(|u|2σ + |ũ|2σ)|u− ũ|‖−(2σ+1) r
2
,0, p

2σ+1

≤ C11T
σ(r−r0)

(
‖u‖2σ

− r
2
,0,p + ‖ũ‖2σ

− r
2
,0,p

)
‖u− ũ‖− r

2
,0,p

= C11T
σ(r−r0)

(‖u‖2σ
XT

+ ‖ũ‖2σ
XT

) ‖u− ũ‖XT

Summing up, we’ve found that for some constants CH , CI , CJ

‖A(u)‖XT
≤ CH‖u0‖r,p + CIT

σ(r−r0)‖u‖2σ+1
XT

‖A(u)−A(ũ)‖XT
≤ CJT σ(r−r0)

(‖u‖2σ
XT

+ ‖ũ‖2σ
XT

) ‖u− ũ‖XT

So the conditions that A map XT,R into itself and be a contraction are

CHδ + CIT
σ(r−r0)R2σ+1 ≤ R, 2CJT σ(r−r0)R2σ < 1 (3.7)

For δ > 0, we choose R > 0 and T = T (δ) > 0 such that (3.7) is satisfied.
Hence it follows from the contraction mapping principle that there is a fixed
point u ∈ XT,R for A, i.e., u = A(u). That is, u solves (3.4).

We now show that u is actually in ZT (defined in (3.3)). First we notice
that

u = A(u) = Ku0 + G(N(u))
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For p ≤ q < ∞, λ > r, Ku0 ∈ Ċλ−r
2

+ 1
2(

n
p
−n

q ),λ,q is an easy consequence of

Proposition 2.3. Thus Ku0 ∈ ZT . To show G(N(u)) ∈ ZT , we follow similar
procedures of establishing (3.5) and obtain for any p ≤ q < ∞ and λ > r

‖G(N(u))‖λ−r
2

+ 1
2(

n
p
−n

q ),λ,q

≤ C12T
σ(r−r0)‖N(u)‖− (2σ+1)r

2
,0, p

2σ+1

≤ C13T
σ(r−r0)‖u‖2σ+1

XT

Therefore u ∈ ZT .

The proof of the uniqueness and the local Lipschitz continuity is routine
and thus omitted.
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