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Quasi-geostrophic type equations

with weak initial data ∗

Jiahong Wu

Abstract

We study the initial value problem for the quasi-geostrophic type equa-
tions

∂θ

∂t
+ u · ∇θ + (−∆)λθ = 0, on R

n × (0,∞),

θ(x, 0) = θ0(x), x ∈ R
n ,

where λ(0 ≤ λ ≤ 1) is a fixed parameter and u = (uj) is divergence
free and determined from θ through the Riesz transform uj = ±Rπ(j)θ,
with π(j) a permutation of 1, 2, · · · , n. The initial data θ0 is taken in the
Sobolev space L̇r,p with negative indices. We prove local well-posedness
when

1

2
< λ ≤ 1, 1 < p <∞,

n

p
≤ 2λ− 1, r =

n

p
− (2λ− 1) ≤ 0 .

We also prove that the solution is global if θ0 is sufficiently small.

1 Introduction

In this paper we study the initial value problem (IVP) of the dissipative quasi-
geostrophic type (QGS) equations

∂θ
∂t
+ u · ∇θ + (−∆)λθ = 0, on Rn × (0,∞), (1.1)

θ(x, 0) = θ0(x), x ∈ Rn (1.2)

where λ(0 ≤ λ ≤ 1) is a fixed parameter and the velocity u = (u1, u2, · · · , un) is
divergence free and determined from θ by

uj = ±Rπ(j)θ, π(j) is a permutation of 1, 2, · · · , n (1.3)
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where uj may take either + or − sign and Rj = ∂j(−∆)−1/2 are the Riesz
transforms. Here Riesz potential operator (−∆)α is defined through the Fourier
transform:

f̂(ξ) =
∫
e−2πix·ξf(x) dx

̂((−∆)αf)(ξ) = (2π|ξ|)2αf̂(ξ)

A particularly important special case of (1.1) is the 2-D dissipative quasi-
geostrophic equations in which the velocity u = (u1, u2) can also be defined
through the stream function ψ:

u = (u1, u2) =

(
−
∂ψ

∂x2
,
∂ψ

∂x1

)
, (−∆)1/2ψ = −θ (1.4)

The 2-D QGS equations are derived from more general quasi-geostrophic ap-
proximations for flow in rapidly rotating 3-D half space, which in some im-
portant cases reduce to the evolution equation for the temperature on the 2-D
boundary given in (1.1), (1.2),(1.4) ([12, 2]). The scalar θ represents the poten-
tial temperature and u is the fluid velocity. These equations have been under
active investigation because of mathematical importance and potential applica-
tions in meteorology and oceanography ([12, 2, 1, 6]). As pointed out in [2], the
non-dissipative 2-D QGS equations are strikingly analogous to the 3-D Euler
equations and thus serve as a simple model in seeking possible singular solutions.
We are interested mainly in the well-posedness result for initial data θ0

in homogeneous Lebesgue spaces, θ0 ∈ L̇r,p(R
n) (defined below). By well-

posedness we mean existence, uniqueness and persistence (i.e. the solution
describes a continuous curve belonging to the same space as does the initial
data) and continuous dependence on the data.
Here the homogeneous Lebesgue space L̇s,q(R

n) consists of all v such that

(−∆)
s
2 v ∈ Lq, s ∈ R, 1 ≤ q <∞ ,

and the standard norm is given by

‖v‖s,q = ‖(−∆)
s/2v‖Lq .

These spaces are also called the spaces of Riesz potentials. Kato and Ponce [10]
consider the Navier-Stokes equations with initial data in this type of spaces.
We prove that if 12 < λ ≤ 1 and θ0 ∈ L̇r,p with r, p satisfying

1 < p <∞,
n

p
≤ 2λ− 1, r =

n

p
− (2λ− 1) ≤ 0 ,

then the IVP (1.1), (1.3), (1.2) is locally well-posed. The solution is global if θ0
is sufficiently small. The detailed statements are given in Theorem 2.2 of the
next section.
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Although there is a large body of literature on quasi-geostrophic equations
( [12, 1, 6, 2]), not many rigorous mathematical results concerning the solu-
tions have been obtained. In [2] Constantin-Majda-Tabak proved finite time
existence results for smooth data and developed mathematical criteria char-
acterizing blowup for the 2-D non-dissipative QGS equation. In [13] Resnick
obtained solutions of 2-D QGS equations with L2 data on periodic domain by
using Galerkin approximation. In a previous paper [15], the vanishing dissipa-
tion limits and Gevrey class regularity [3] for the 2-D dissipative QGS equations
are obtained. In this paper we consider the IVP of the general n-D QGS type
equations (defined by (1.1), (1.3, (1.2)) with initial data in Sobolev spaces of
negative indices and establish local well-posedness results. For sufficiently small
initial data, the solution is global. By taking n = 2 and p = 2, the well-posedness
reduces to the L2 results in 2-D.
The main result is presented in the next section, and it is proven using the

contraction-mapping principle.

2 Well-posedness

We need to use the spaces of weighted continuous functions in time, which
have been introduced by Kato, Ponce and others in solving the Navier-Stokes
equations ([8, 10, 11]).

Definition 2.1 Suppose T > 0 and α ≥ 0 are real numbers. The spaces Cα,s,q
and Ċα,s,q are defined as

Cα,s,q ≡ {f ∈ C((0, T ), L̇s,q), ‖f‖α,s,q <∞} ,

where the norm is given by

‖f‖α,s,q = sup{t
α‖f‖s,q, t ∈ (0, T )} .

Note that Ċα,s,q is a subspace of Cα,s,q:

Ċα,s,q ≡ {f ∈ Cα,s,q, lim
t→0

tα‖f(t)‖s,q = 0} .

When α = 0, the spaces C̄s,q are used for BC([0, T ), L̇s,q).

These spaces are important in uniqueness and local existence problems ([8,
10, 11]). Notice that f ∈ Cα,s,q (resp. f ∈ Ċα,s,q) implies that ‖f(t)‖s,q =
O(t−α) (resp. o(t−α)).
The main result of this section is the well-posedness theorem that states

Theorem 2.2 Assume that λ > 1/2 and θ0 ∈ L̇r,p with r, p satisfying

1 < p <∞,
n

p
≤ 2λ− 1, r =

n

p
− (2λ− 1)(≤ 0) (2.1)
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Then there exists T = T (θ0) and a unique solution θ(t) of the IVP (1.1),(1.3),
(1.2) in the time interval [0, T ) satisfying

θ ∈ YT ≡ (∩p≤q<∞C̄n
q−(2λ−1),q

)∩ (∩p≤q<∞ ∩s> nq−(2λ−1) Ċ(s−nq+(2λ−1))/(2λ),s,q
)

In particular,

θ ∈ BC([0, T ), L̇r,p) ∩ (∩s>rC((0, T ), L̇s,p)) .

Furthermore, for some neighborhood V of θ0, the mapping

P : V 7−→ YT : θ0 7−→ θ

is Lipschitz.

Remark 2.3 If ‖θ0‖r,p is small enough, then we can take T =∞.

We prove this theorem by the method of integral equations and contraction-
mapping arguments. Following standard practice ([4, 5, 7, 10]), we write the
QGS equation (1.1) into the integral form:

θ = Kθ0(t)−G(u, θ)(t) ≡ e
−Λ2λtθ0 −

∫ t
0

e−Λ
2λ(t−τ)(u · ∇θ)(τ)dτ , (2.2)

where K(t) = e−Λ
2λt is the solution operator of the linear equation

∂tθ + Λ
2λθ = 0, with Λ = (−∆)1/2 .

We observe that u · ∇θ =
∑
j uj∂jθ = ∇ · (uθ) provided that ∇ · u = 0. This

provides an alternative expression for G:

G(u, θ)(t) = G(uθ)(t) =

∫ t
0

∇ · e−Λ
2λ(t−τ)(uθ)(τ)dτ .

We shall solve (2.2) in the spaces of weighted continuous functions in time
introduced in the beginning of this section. To this end we need estimates for
the operators K and G acting between these spaces. These are established in
the two propositions that follow.

Proposition 2.4 (i) For 1 ≤ q <∞ and s ∈ R, the operator K maps contin-
uously from L̇s,q into C̄s,q ≡ BC([0,∞), L̇s,q).

(ii) If q1, q2, s1, s2 and α2 satisfy q1 ≤ q2, s1 ≤ s2, and

α2 =
1

2λ
(s2 − s1) +

1

2λ

(
n

q1
−
n

q2

)
,

then K maps continuously from L̇s1,q1 to Ċα2,s2,q2 (When α2 = 0, Ċ
should be replaced by C̄).
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Proof. To prove Assertion (i), it suffices to prove that for some constant C,

‖Kφ(t)‖Lq ≤ C‖φ‖Lq , for any t ∈ [0,∞) ,

which can be established using the Young’s inequality

‖Kφ(t)‖Lq ≤ ‖K(t)‖L1‖φ‖Lq

and the fact that

K̂(t)(ξ) = e−|2πξ|
2λt, ‖K(t)‖L1 = K̂(t)(0) = 1 .

To prove Assertion (ii), we first note that the operator (−∆)s0/2K(t) has
the property

‖(−∆)s0/2K(t)‖Lq(Rn) ≤ Ct
1
2λ (−s0−n(1−

1
q )) , (2.3)

where s0 ≥ 0, q ∈ [1,∞) and C is a constant. The proof of this property is
similar to that for the heat operator ([4, 5, 10]). To show (ii),it suffices show
that for some constant C,

sup
t∈[0,T )

tα2‖(−∆)
s0
2 Kφ(t)‖Lq2 ≤ C‖φ‖Lq1

with s0 = s2− s1 ≥ 0. This can be proved using the property (2.3) and Young’s
inequality

‖(−∆)
s0
2 Kφ(t)‖Lq2 ≤ C‖(−∆)

s0
2 K(t)‖Lq‖φ‖Lq1

with 1q = 1−
(
1
q1
− 1
q2

)
. 2

Now we give estimates for the operator

G(g)(t) =

∫ t
0

∇ ·K(t− τ)g(τ)dτ

Proposition 2.5 If q1, q2, s1, s2, α1 and α2 satisfy q1 ≤ q2,

s1 − 1 ≤ s2 < s1 + 2λ− 1−
(
n
q1
− n
q2

)
α1 < 1, and α2 = α1 − 1 +

1
2λ

[
s2 − s1 + 1 +

n
q1
− n
q2

]
,

then G is a continuous mapping from Ċα1,s1,q1 to Ċα2,s2,q2 .

Proof. Let g ∈ Ċα1,s1,q1 . Then clearly,

‖G(g)‖α2,s2,q2 = sup
t∈[0,T )

tα2
∫ t
0

‖(−∆)
(1+s0)
2 K(t− τ)

(
(−∆)

s1
2 g(τ)

)
‖Lq2dτ
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where s0 = s2 − s1. Using Young’s inequality,

‖G(g)‖α2,s2,q2 ≤ sup
t∈[0,T )

tα2
∫ t
0

‖(−∆)
(1+s0)
2 K(t− τ)‖Lq‖

(
(−∆)

s1
2 g(τ)

)
‖Lq1dτ

with 1
q
= 1−

(
1
q1
− 1
q2

)
. If s0+1 ≥ 0, we can use the property (2.3) of operator

K and obtain

‖G(g)‖α2,s2,q2 ≤ C‖g‖α1,s1,q1 sup
t∈[0,T )

tα2
∫ t
0

(t− τ)−
1
2λ (s0+1+n(1−

1
q ))τ−α1dτ

≤ C‖g‖α1,s1,q1 sup
t∈[0,T )

tα2−α1+1−
1
2λ (s0+1+n(1−

1
q )) ×

B

(
1−

1

2λ

[
s0 + 1 + n(1−

1

q
)

]
, 1− α1

)
,

where C is a constant and B(a, b) is the Beta function

B(a, b) =

∫ 1
0

(1− x)a−1xb−1 dx .

By noticing that B(a, b) is finite when a > 0, b > 0 and that

s0 = s2 − s1, 1−
1

q
=
1

q1
−
1

q2

we obtain
‖G(g)‖α2,s2,q2 ≤ C‖g‖α1,s1,q1 ,

if the indices satisfy 0 ≤ s2 − s1 + 1 < 2λ−
n
q1
− n
q2
, α1 < 1, and

α2 = α1 − 1 +
1

2λ

[
s2 − s1 + 1 +

n

q1
−
n

q2

]
.

2

To prove Theorem 2.2, we also need the following singular integral operator
estimate whose proof can be found in [14].

Lemma 2.6 For u = (uj) with uj = ±Rπ(j)θ( j = 1, 2, · · · , n), where Rj are
the Riesz transforms, we have the estimate

‖u‖Lq ≤ Cq‖θ‖Lq , 1 < q <∞

with Cq a constant depending on q.

Proof of Theorem 2.2. We distinguish between two cases: r < 0, and r = 0.
For r < 0, we define

X = C̄r,p ∩ Ċ− r
2λ
,0,p
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with norm for θ ∈ X given by

‖θ‖X = ‖θ −Kθ0‖0,r,p + ‖θ‖− r
2λ
,0,p ,

and the complete metric space XR to be the closed ball in X of radius R.
Consider the operator A(θ, θ0) : XR × V 7−→ X

A(θ, θ0)(t) = Kθ0(t)−G(uθ)(t), 0 < t < T ,

where V is some neighborhood of θ0 in L̇r,p and T will be chosen. Using Propo-
sition 2.4 by substituting s = r, q = p in (i) and

q1 = q2 = p, s1 = r, s2 = 0, α2 = −
r

2λ

in (ii), we find that Kθ̃0(t) ∈ XR for θ̃0 ∈ V if T is taken small enough and V
is chosen properly.
To estimate G, we use Proposition 2.5 with

q1 =
p

2
, q2 = p, s1 = 0, s2 = l + r, α1 = −

r

λ
, α2 =

l

2λ

to obtain for a constant c such that

‖G(uθ)‖ l
2λ ,l+r,p

≤ c‖uθ‖− rλ ,0,
p
2
≤ c‖u‖− r

2λ ,0,p
‖θ‖− r

2λ ,0,p

for l ∈ [0,−2r). To estimate u in terms of θ, we use Lemma 2.6, i.e. for
1 < p <∞,

‖u‖Lp ≤ Cp‖θ‖Lp

and eventually we obtain

‖G(uθ)‖ l
2λ ,l+r,p

≤ cCp‖θ‖
2
− r
2λ ,0,p

≤ cCpR
2 .

Notice that the restrictions (2.1) on r, p are necessary in order to apply Propo-
sitions 2.4, 2.5 and Lemma 2.6.
Furthermore,

‖A(θ, θ0)−A(θ̃, θ0)‖X = ‖G(uθ)−G(ũθ̃)‖X ,

where ũ = (ũj) with ũj = ±Rπ(j)θ̃(j = 1, 2, · · · , n). Using Proposition 2.5
again,

‖A(θ, θ0)−A(θ̃, θ0)‖X ≤ ‖G((ũ − u)θ̃)‖X + ‖G(u(θ − θ̃))‖X

≤ c
(
‖ũ− u‖X‖θ̃‖X + ‖θ − θ̃‖X‖u‖X

)
.

Since (ũ− u)j = ±Rπ(j)(θ̃ − θ), Lemma 2.6 implies

‖u‖X ≤ Cp‖θ‖X , ‖ũ− u‖X ≤ Cp‖θ̃ − θ‖X .
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Therefore, for constant satisfies C = cCp and

‖A(θ, θ0)−A(θ̃, θ0)‖X ≤ C(‖θ̃‖X + ‖θ‖X)‖θ̃ − θ‖X .

Our above estimates show that if we choose T small and R appropriately,
then A maps XR into itself and is a contraction. Consequently there exists a
unique fixed point θ ∈ XR: θ = P(θ0) satisfying θ = A(θ, θ0). It is easy to see
from these estimates that the uniqueness can be extended to all R′ by further
reducing the the time interval and thus to the whole X .
To prove the Lipschitz continuity of P on V , let θ = P(θ0) and ζ = P(ζ0)

for θ0, ζ0 ∈ V . Then

‖θ − ζ‖X = ‖A(θ, θ0)−A(ζ, ζ0)‖X

≤ ‖A(θ, θ0)−A(ζ, θ0)‖X + ‖A(ζ, θ0)−A(ζ, ζ0)‖X

≤ γ‖θ − ζ‖X + ‖K(θ0 − ζ0)‖X

Since A is a contraction, γ < 1. Therefore, the asserted property is obtained by
applying Proposition 2.4 to the second term of the last inequality.
To show that θ is in the asserted class YT (defined in Theorem 2.2), we notice

that

θ = A(θ, θ0) ≡ Kθ0 −G(uθ) .

We apply Proposition 2.4 twice to Kθ0 to show that

Kθ0 ∈ C̄n
q −(2λ−1),q

, Kθ0 ∈ Ċ(s−nq +(2λ−1))/(2λ),s,q

for any p ≤ q <∞ and s > n
q
− (2λ− 1). To show the second part

G(uθ) ∈ C̄n
q −(2λ−1),q

, p ≤ q <∞ (2.4)

we use Proposition 2.5 with

q1 =
p

2
, q2 = q, s1 = 0, s2 =

n

q
− (2λ− 1), α1 = −

r

λ
, α2 = 0

and obtain

‖G(uθ)‖0,nq −(2λ−1),q ≤ C‖uθ‖− rλ ,0,
p
2
≤ C‖u‖− r

2λ ,0,p
‖θ‖− r

2λ ,0,p
.

The asserted property (2.4) is established after we apply Lemma 2.6 to u.
Once again, we apply Proposition 2.5 with

q1 =
p
2 , q2 = q, s1 = 0, s2 = s,

α1 = −
r
λ , α2 =

1
2λ

[
s−
(
n
q − (2λ− 1)

)]
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to show that

G(uθ) ∈ Ċ(s− nq+(2λ−1))/(2λ),s,q
, for s > n

q
− (2λ− 1), (2.5)

but s should also satisfy

s < 2λ− 1−

(
2n

p
−
n

q

)

as required by Proposition 2.5. For large s, (2.5) can be shown by an induction
process (see an analogous argument in [8]).
We now deal with the case r = 0. Define

X = C̄0,p ∩ Ċ 1
4 ,0,

4λ−2
3λ−2 p

with the norm
‖θ‖X = ‖θ −Kθ0‖0,0,p + ‖θ‖ 1

4 ,0,
4λ−2
3λ−2p

.

For θ ∈ XR, we have by Proposition 2.5,

‖G(uθ)‖X = ‖G(uθ)‖0,0,p + ‖G(uθ)‖ 1
4 ,0,

4λ−2
3λ−2p

≤ c‖uθ‖ 1
2 ,0,

2λ−1
3λ−2 p

≤ c‖u‖ 1
4 ,0,

4λ−2
3λ−2p

‖θ‖ 1
4 ,0,

4λ−2
3λ−2p

.

Here c is a constant which may depend on the indices λ, p, and n. Using Lemma
2.6 again, we obtain a constant C such that

‖G(uθ)‖X ≤ C‖θ‖
2
X ≤ CR

2 .

Once the above estimates have been established, the rest of the proof in this
case is similar to that described in the case r < 0. 2
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