Quasi-geostrophic type equations with weak initial data *

Jiahong Wu

Abstract

We study the initial value problem for the quasi-geostrophic type equations $$
\begin{gathered} \frac{\partial \theta}{\partial t}+u \cdot \nabla \theta+(-\Delta)^{\lambda} \theta=0, \quad \text { on } \quad \mathbb{R}^{n} \times(0, \infty) \\ \theta(x, 0)=\theta_{0}(x), \quad x \in \mathbb{R}^{n} \end{gathered}
$$

where $\lambda(0 \leq \lambda \leq 1)$ is a fixed parameter and $u=\left(u_{j}\right)$ is divergence free and determined from θ through the Riesz transform $u_{j}= \pm \mathcal{R}_{\pi(j)} \theta$, with $\pi(j)$ a permutation of $1,2, \cdots, n$. The initial data θ_{0} is taken in the Sobolev space $\dot{L}_{r, p}$ with negative indices. We prove local well-posedness when

$$
\frac{1}{2}<\lambda \leq 1, \quad 1<p<\infty, \quad \frac{n}{p} \leq 2 \lambda-1, \quad r=\frac{n}{p}-(2 \lambda-1) \leq 0
$$

We also prove that the solution is global if θ_{0} is sufficiently small.

1 Introduction

In this paper we study the initial value problem (IVP) of the dissipative quasigeostrophic type (QGS) equations

$$
\begin{gather*}
\frac{\partial \theta}{\partial t}+u \cdot \nabla \theta+(-\Delta)^{\lambda} \theta=0, \quad \text { on } \quad \mathbb{R}^{n} \times(0, \infty) \tag{1.1}\\
\theta(x, 0)=\theta_{0}(x), \quad x \in \mathbb{R}^{n} \tag{1.2}
\end{gather*}
$$

where $\lambda(0 \leq \lambda \leq 1)$ is a fixed parameter and the velocity $u=\left(u_{1}, u_{2}, \cdots, u_{n}\right)$ is divergence free and determined from θ by

$$
\begin{equation*}
u_{j}= \pm \mathcal{R}_{\pi(j)} \theta, \quad \pi(j) \text { is a permutation of } 1,2, \cdots, n \tag{1.3}
\end{equation*}
$$

[^0]where u_{j} may take either + or - sign and $\mathcal{R}_{j}=\partial_{j}(-\Delta)^{-1 / 2}$ are the Riesz transforms. Here Riesz potential operator $(-\Delta)^{\alpha}$ is defined through the Fourier transform:
\[

$$
\begin{gathered}
\widehat{f}(\xi)=\int e^{-2 \pi i x \cdot \xi} f(x) d x \\
\left(\left(\frac{-\Delta)^{\alpha}}{} f\right)(\xi)=(2 \pi|\xi|)^{2 \alpha} \widehat{f}(\xi)\right.
\end{gathered}
$$
\]

A particularly important special case of (1.1) is the 2-D dissipative quasigeostrophic equations in which the velocity $u=\left(u_{1}, u_{2}\right)$ can also be defined through the stream function ψ :

$$
\begin{equation*}
u=\left(u_{1}, u_{2}\right)=\left(-\frac{\partial \psi}{\partial x_{2}}, \frac{\partial \psi}{\partial x_{1}}\right), \quad(-\Delta)^{1 / 2} \psi=-\theta \tag{1.4}
\end{equation*}
$$

The 2-D QGS equations are derived from more general quasi-geostrophic approximations for flow in rapidly rotating 3-D half space, which in some important cases reduce to the evolution equation for the temperature on the 2-D boundary given in $(1.1),(1.2),(1.4)([12,2])$. The scalar θ represents the potential temperature and u is the fluid velocity. These equations have been under active investigation because of mathematical importance and potential applications in meteorology and oceanography ($[12,2,1,6]$). As pointed out in [2], the non-dissipative 2-D QGS equations are strikingly analogous to the 3-D Euler equations and thus serve as a simple model in seeking possible singular solutions.

We are interested mainly in the well-posedness result for initial data θ_{0} in homogeneous Lebesgue spaces, $\theta_{0} \in \dot{L}_{r, p}\left(\mathbb{R}^{n}\right)$ (defined below). By wellposedness we mean existence, uniqueness and persistence (i.e. the solution describes a continuous curve belonging to the same space as does the initial data) and continuous dependence on the data.

Here the homogeneous Lebesgue space $\dot{L}_{s, q}\left(\mathbb{R}^{n}\right)$ consists of all v such that

$$
(-\Delta)^{\frac{s}{2}} v \in L^{q}, \quad s \in \mathbb{R}, \quad 1 \leq q<\infty
$$

and the standard norm is given by

$$
\|v\|_{s, q}=\left\|(-\Delta)^{s / 2} v\right\|_{L^{q}}
$$

These spaces are also called the spaces of Riesz potentials. Kato and Ponce [10] consider the Navier-Stokes equations with initial data in this type of spaces.

We prove that if $\frac{1}{2}<\lambda \leq 1$ and $\theta_{0} \in \dot{L}_{r, p}$ with r, p satisfying

$$
1<p<\infty, \quad \frac{n}{p} \leq 2 \lambda-1, \quad r=\frac{n}{p}-(2 \lambda-1) \leq 0
$$

then the IVP (1.1), (1.3), (1.2) is locally well-posed. The solution is global if θ_{0} is sufficiently small. The detailed statements are given in Theorem 2.2 of the next section.

Although there is a large body of literature on quasi-geostrophic equations ($[12,1,6,2]$), not many rigorous mathematical results concerning the solutions have been obtained. In [2] Constantin-Majda-Tabak proved finite time existence results for smooth data and developed mathematical criteria characterizing blowup for the 2-D non-dissipative QGS equation. In [13] Resnick obtained solutions of 2-D QGS equations with L^{2} data on periodic domain by using Galerkin approximation. In a previous paper [15], the vanishing dissipation limits and Gevrey class regularity [3] for the 2-D dissipative QGS equations are obtained. In this paper we consider the IVP of the general n-D QGS type equations (defined by (1.1), (1.3, (1.2)) with initial data in Sobolev spaces of negative indices and establish local well-posedness results. For sufficiently small initial data, the solution is global. By taking $n=2$ and $p=2$, the well-posedness reduces to the L^{2} results in 2-D.

The main result is presented in the next section, and it is proven using the contraction-mapping principle.

2 Well-posedness

We need to use the spaces of weighted continuous functions in time, which have been introduced by Kato, Ponce and others in solving the Navier-Stokes equations $([8,10,11])$.

Definition 2.1 Suppose $T>0$ and $\alpha \geq 0$ are real numbers. The spaces $C_{\alpha, s, q}$ and $\dot{C}_{\alpha, s, q}$ are defined as

$$
C_{\alpha, s, q} \equiv\left\{f \in C\left((0, T), \dot{L}_{s, q}\right), \quad\|f\|_{\alpha, s, q}<\infty\right\}
$$

where the norm is given by

$$
\|f\|_{\alpha, s, q}=\sup \left\{t^{\alpha}\|f\|_{s, q}, \quad t \in(0, T)\right\}
$$

Note that $\dot{C}_{\alpha, s, q}$ is a subspace of $C_{\alpha, s, q}$:

$$
\dot{C}_{\alpha, s, q} \equiv\left\{f \in C_{\alpha, s, q}, \quad \lim _{t \rightarrow 0} t^{\alpha}\|f(t)\|_{s, q}=0\right\}
$$

When $\alpha=0$, the spaces $\bar{C}_{s, q}$ are used for $B C\left([0, T), \dot{L}_{s, q}\right)$.
These spaces are important in uniqueness and local existence problems ([8, 10, 11]). Notice that $f \in C_{\alpha, s, q}$ (resp. $f \in \dot{C}_{\alpha, s, q}$) implies that $\|f(t)\|_{s, q}=$ $O\left(t^{-\alpha}\right)\left(\right.$ resp. $o\left(t^{-\alpha}\right)$).

The main result of this section is the well-posedness theorem that states
Theorem 2.2 Assume that $\lambda>1 / 2$ and $\theta_{0} \in \dot{L}_{r, p}$ with r, p satisfying

$$
\begin{equation*}
1<p<\infty, \quad \frac{n}{p} \leq 2 \lambda-1, \quad r=\frac{n}{p}-(2 \lambda-1)(\leq 0) \tag{2.1}
\end{equation*}
$$

Then there exists $T=T\left(\theta_{0}\right)$ and a unique solution $\theta(t)$ of the IVP (1.1),(1.3), (1.2) in the time interval $[0, T)$ satisfying
$\theta \in Y_{T} \equiv\left(\cap_{p \leq q<\infty} \bar{C}_{\frac{n}{q}-(2 \lambda-1), q}\right) \cap\left(\cap_{p \leq q<\infty} \cap_{s>\frac{n}{q}-(2 \lambda-1)} \dot{C}_{\left(s-\frac{n}{q}+(2 \lambda-1)\right) /(2 \lambda), s, q}\right)$
In particular,

$$
\theta \in B C\left([0, T), \dot{L}_{r, p}\right) \cap\left(\cap_{s>r} C\left((0, T), \dot{L}_{s, p}\right)\right)
$$

Furthermore, for some neighborhood V of θ_{0}, the mapping

$$
\mathfrak{P}: V \longmapsto Y_{T}: \quad \theta_{0} \longmapsto \theta
$$

is Lipschitz.
Remark 2.3 If $\left\|\theta_{0}\right\|_{r, p}$ is small enough, then we can take $T=\infty$.
We prove this theorem by the method of integral equations and contractionmapping arguments. Following standard practice ([4, 5, 7, 10]), we write the QGS equation (1.1) into the integral form:

$$
\begin{equation*}
\theta=K \theta_{0}(t)-G(u, \theta)(t) \equiv e^{-\Lambda^{2 \lambda} t} \theta_{0}-\int_{0}^{t} e^{-\Lambda^{2 \lambda}(t-\tau)}(u \cdot \nabla \theta)(\tau) d \tau \tag{2.2}
\end{equation*}
$$

where $K(t)=e^{-\Lambda^{2 \lambda} t}$ is the solution operator of the linear equation

$$
\partial_{t} \theta+\Lambda^{2 \lambda} \theta=0, \quad \text { with } \quad \Lambda=(-\Delta)^{1 / 2}
$$

We observe that $u \cdot \nabla \theta=\sum_{j} u_{j} \partial_{j} \theta=\nabla \cdot(u \theta)$ provided that $\nabla \cdot u=0$. This provides an alternative expression for G :

$$
G(u, \theta)(t)=G(u \theta)(t)=\int_{0}^{t} \nabla \cdot e^{-\Lambda^{2 \lambda}(t-\tau)}(u \theta)(\tau) d \tau
$$

We shall solve (2.2) in the spaces of weighted continuous functions in time introduced in the beginning of this section. To this end we need estimates for the operators K and G acting between these spaces. These are established in the two propositions that follow.

Proposition 2.4 (i) For $1 \leq q<\infty$ and $s \in \mathbb{R}$, the operator K maps continuously from $\dot{L}_{s, q}$ into $\bar{C}_{s, q} \equiv B C\left([0, \infty), \dot{L}_{s, q}\right)$.
(ii) If $q_{1}, q_{2}, s_{1}, s_{2}$ and α_{2} satisfy $q_{1} \leq q_{2}, \quad s_{1} \leq s_{2}$, and

$$
\alpha_{2}=\frac{1}{2 \lambda}\left(s_{2}-s_{1}\right)+\frac{1}{2 \lambda}\left(\frac{n}{q_{1}}-\frac{n}{q_{2}}\right)
$$

then K maps continuously from $\dot{L}_{s_{1}, q_{1}}$ to $\dot{C}_{\alpha_{2}, s_{2}, q_{2}}\left(\right.$ When $\alpha_{2}=0, \dot{C}$ should be replaced by \bar{C}).

Proof. To prove Assertion (i), it suffices to prove that for some constant C,

$$
\|K \phi(t)\|_{L^{q}} \leq C\|\phi\|_{L^{q}}, \quad \text { for any } t \in[0, \infty)
$$

which can be established using the Young's inequality

$$
\|K \phi(t)\|_{L^{q}} \leq\|K(t)\|_{L^{1}}\|\phi\|_{L^{q}}
$$

and the fact that

$$
\widehat{K}(t)(\xi)=e^{-|2 \pi \xi|^{2 \lambda} t}, \quad\|K(t)\|_{L^{1}}=\widehat{K}(t)(0)=1
$$

To prove Assertion (ii), we first note that the operator $(-\Delta)^{s_{0} / 2} K(t)$ has the property

$$
\begin{equation*}
\left\|(-\Delta)^{s_{0} / 2} K(t)\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C t^{\frac{1}{2 \lambda}\left(-s_{0}-n\left(1-\frac{1}{q}\right)\right)} \tag{2.3}
\end{equation*}
$$

where $s_{0} \geq 0, q \in[1, \infty)$ and C is a constant. The proof of this property is similar to that for the heat operator $([4,5,10])$. To show (ii), it suffices show that for some constant C,

$$
\sup _{t \in[0, T)} t^{\alpha_{2}}\left\|(-\Delta)^{\frac{s_{0}}{2}} K \phi(t)\right\|_{L^{q_{2}}} \leq C\|\phi\|_{L^{q_{1}}}
$$

with $s_{0}=s_{2}-s_{1} \geq 0$. This can be proved using the property (2.3) and Young's inequality

$$
\left\|(-\Delta)^{\frac{s_{0}}{2}} K \phi(t)\right\|_{L^{q_{2}}} \leq C\left\|(-\Delta)^{\frac{s_{0}}{2}} K(t)\right\|_{L^{q}}\|\phi\|_{L^{q_{1}}}
$$

with $\frac{1}{q}=1-\left(\frac{1}{q_{1}}-\frac{1}{q_{2}}\right)$.
Now we give estimates for the operator

$$
G(g)(t)=\int_{0}^{t} \nabla \cdot K(t-\tau) g(\tau) d \tau
$$

Proposition 2.5 If $q_{1}, q_{2}, s_{1}, s_{2}, \alpha_{1}$ and α_{2} satisfy $q_{1} \leq q_{2}$,

$$
\begin{gathered}
s_{1}-1 \leq s_{2}<s_{1}+2 \lambda-1-\left(\frac{n}{q_{1}}-\frac{n}{q_{2}}\right) \\
\alpha_{1}<1, \quad \text { and } \quad \alpha_{2}=\alpha_{1}-1+\frac{1}{2 \lambda}\left[s_{2}-s_{1}+1+\frac{n}{q_{1}}-\frac{n}{q_{2}}\right]
\end{gathered}
$$

then G is a continuous mapping from $\dot{C}_{\alpha_{1}, s_{1}, q_{1}}$ to $\dot{C}_{\alpha_{2}, s_{2}, q_{2}}$.
Proof. Let $g \in \dot{C}_{\alpha_{1}, s_{1}, q_{1}}$. Then clearly,

$$
\|G(g)\|_{\alpha_{2}, s_{2}, q_{2}}=\sup _{t \in[0, T)} t^{\alpha_{2}} \int_{0}^{t}\left\|(-\Delta)^{\frac{\left(1+s_{0}\right)}{2}} K(t-\tau)\left((-\Delta)^{\frac{s_{1}}{2}} g(\tau)\right)\right\|_{L^{q_{2}}} d \tau
$$

where $s_{0}=s_{2}-s_{1}$. Using Young's inequality,

$$
\|G(g)\|_{\alpha_{2}, s_{2}, q_{2}} \leq \sup _{t \in[0, T)} t^{\alpha_{2}} \int_{0}^{t}\left\|(-\Delta)^{\frac{\left(1+s_{0}\right)}{2}} K(t-\tau)\right\|_{L^{q}}\left\|\left((-\Delta)^{\frac{s_{1}}{2}} g(\tau)\right)\right\|_{L^{q_{1}}} d \tau
$$

with $\frac{1}{q}=1-\left(\frac{1}{q_{1}}-\frac{1}{q_{2}}\right)$. If $s_{0}+1 \geq 0$, we can use the property (2.3) of operator K and obtain

$$
\begin{aligned}
\|G(g)\|_{\alpha_{2}, s_{2}, q_{2}} \leq & C\|g\|_{\alpha_{1}, s_{1}, q_{1}} \sup _{t \in[0, T)} t^{\alpha_{2}} \int_{0}^{t}(t-\tau)^{-\frac{1}{2 \lambda}\left(s_{0}+1+n\left(1-\frac{1}{q}\right)\right)} \tau^{-\alpha_{1}} d \tau \\
\leq & C\|g\|_{\alpha_{1}, s_{1}, q_{1}} \sup _{t \in[0, T)} t^{\alpha_{2}-\alpha_{1}+1-\frac{1}{2 \lambda}\left(s_{0}+1+n\left(1-\frac{1}{q}\right)\right)} \times \\
& B\left(1-\frac{1}{2 \lambda}\left[s_{0}+1+n\left(1-\frac{1}{q}\right)\right], 1-\alpha_{1}\right)
\end{aligned}
$$

where C is a constant and $B(a, b)$ is the Beta function

$$
B(a, b)=\int_{0}^{1}(1-x)^{a-1} x^{b-1} d x
$$

By noticing that $B(a, b)$ is finite when $a>0, b>0$ and that

$$
s_{0}=s_{2}-s_{1}, \quad 1-\frac{1}{q}=\frac{1}{q_{1}}-\frac{1}{q_{2}}
$$

we obtain

$$
\|G(g)\|_{\alpha_{2}, s_{2}, q_{2}} \leq C\|g\|_{\alpha_{1}, s_{1}, q_{1}}
$$

if the indices satisfy $0 \leq s_{2}-s_{1}+1<2 \lambda-\frac{n}{q_{1}}-\frac{n}{q_{2}}, \alpha_{1}<1$, and

$$
\alpha_{2}=\alpha_{1}-1+\frac{1}{2 \lambda}\left[s_{2}-s_{1}+1+\frac{n}{q_{1}}-\frac{n}{q_{2}}\right] .
$$

To prove Theorem 2.2, we also need the following singular integral operator estimate whose proof can be found in [14].
Lemma 2.6 For $u=\left(u_{j}\right)$ with $u_{j}= \pm \mathcal{R}_{\pi(j)} \theta(j=1,2, \cdots, n)$, where \mathcal{R}_{j} are the Riesz transforms, we have the estimate

$$
\|u\|_{L^{q}} \leq C_{q}\|\theta\|_{L^{q}}, \quad 1<q<\infty
$$

with C_{q} a constant depending on q.
Proof of Theorem 2.2. We distinguish between two cases: $r<0$, and $r=0$. For $r<0$, we define

$$
X=\bar{C}_{r, p} \cap \dot{C}_{-\frac{r}{2 \lambda}, 0, p}
$$

with norm for $\theta \in X$ given by

$$
\|\theta\|_{X}=\left\|\theta-K \theta_{0}\right\|_{0, r, p}+\|\theta\|_{-\frac{r}{2 \lambda}, 0, p}
$$

and the complete metric space X_{R} to be the closed ball in X of radius R. Consider the operator $\mathcal{A}\left(\theta, \theta_{0}\right): X_{R} \times V \longmapsto X$

$$
\mathcal{A}\left(\theta, \theta_{0}\right)(t)=K \theta_{0}(t)-G(u \theta)(t), \quad 0<t<T
$$

where V is some neighborhood of θ_{0} in $\dot{L}_{r, p}$ and T will be chosen. Using Proposition 2.4 by substituting $s=r, q=p$ in (i) and

$$
q_{1}=q_{2}=p, \quad s_{1}=r, \quad s_{2}=0, \quad \alpha_{2}=-\frac{r}{2 \lambda}
$$

in (ii), we find that $K \tilde{\theta}_{0}(t) \in X_{R}$ for $\tilde{\theta}_{0} \in V$ if T is taken small enough and V is chosen properly.

To estimate G, we use Proposition 2.5 with

$$
q_{1}=\frac{p}{2}, \quad q_{2}=p, \quad s_{1}=0, \quad s_{2}=l+r, \quad \alpha_{1}=-\frac{r}{\lambda}, \quad \alpha_{2}=\frac{l}{2 \lambda}
$$

to obtain for a constant c such that

$$
\|G(u \theta)\|_{\frac{l}{2 \lambda}, l+r, p} \leq c\|u \theta\|_{-\frac{r}{\lambda}, 0, \frac{p}{2}} \leq c\|u\|_{-\frac{r}{2 \lambda}, 0, p}\|\theta\|_{-\frac{r}{2 \lambda}, 0, p}
$$

for $l \in[0,-2 r)$. To estimate u in terms of θ, we use Lemma 2.6, i.e. for $1<p<\infty$,

$$
\|u\|_{L^{p}} \leq C_{p}\|\theta\|_{L^{p}}
$$

and eventually we obtain

$$
\|G(u \theta)\|_{\frac{l}{2 \lambda}, l+r, p} \leq c C_{p}\|\theta\|_{-\frac{r}{2 \lambda}, 0, p}^{2} \leq c C_{p} R^{2}
$$

Notice that the restrictions (2.1) on r, p are necessary in order to apply Propositions 2.4, 2.5 and Lemma 2.6.

Furthermore,

$$
\left\|\mathcal{A}\left(\theta, \theta_{0}\right)-\mathcal{A}\left(\tilde{\theta}, \theta_{0}\right)\right\|_{X}=\|G(u \theta)-G(\tilde{u} \tilde{\theta})\|_{X}
$$

where $\tilde{u}=\left(\tilde{u}_{j}\right)$ with $\tilde{u}_{j}= \pm \mathcal{R}_{\pi(j)} \tilde{\theta}(j=1,2, \cdots, n)$. Using Proposition 2.5 again,

$$
\begin{aligned}
\left\|\mathcal{A}\left(\theta, \theta_{0}\right)-\mathcal{A}\left(\tilde{\theta}, \theta_{0}\right)\right\|_{X} & \leq\|G((\tilde{u}-u) \tilde{\theta})\|_{X}+\|G(u(\theta-\tilde{\theta}))\|_{X} \\
& \leq c\left(\|\tilde{u}-u\|_{X}\|\tilde{\theta}\|_{X}+\|\theta-\tilde{\theta}\|_{X}\|u\|_{X}\right) .
\end{aligned}
$$

Since $(\tilde{u}-u)_{j}= \pm \mathcal{R}_{\pi(j)}(\tilde{\theta}-\theta)$, Lemma 2.6 implies

$$
\|u\|_{X} \leq C_{p}\|\theta\|_{X}, \quad\|\tilde{u}-u\|_{X} \leq C_{p}\|\tilde{\theta}-\theta\|_{X}
$$

Therefore, for constant satisfies $C=c C_{p}$ and

$$
\left\|\mathcal{A}\left(\theta, \theta_{0}\right)-\mathcal{A}\left(\tilde{\theta}, \theta_{0}\right)\right\|_{X} \leq C\left(\|\tilde{\theta}\|_{X}+\|\theta\|_{X}\right)\|\tilde{\theta}-\theta\|_{X}
$$

Our above estimates show that if we choose T small and R appropriately, then \mathcal{A} maps X_{R} into itself and is a contraction. Consequently there exists a unique fixed point $\theta \in X_{R}: \theta=\mathfrak{P}\left(\theta_{0}\right)$ satisfying $\theta=\mathcal{A}\left(\theta, \theta_{0}\right)$. It is easy to see from these estimates that the uniqueness can be extended to all R^{\prime} by further reducing the the time interval and thus to the whole X.

To prove the Lipschitz continuity of \mathfrak{P} on V, let $\theta=\mathfrak{P}\left(\theta_{0}\right)$ and $\zeta=\mathfrak{P}\left(\zeta_{0}\right)$ for $\theta_{0}, \zeta_{0} \in V$. Then

$$
\begin{aligned}
& \|\theta-\zeta\|_{X}=\left\|\mathcal{A}\left(\theta, \theta_{0}\right)-\mathcal{A}\left(\zeta, \zeta_{0}\right)\right\|_{X} \\
& \quad \leq\left\|\mathcal{A}\left(\theta, \theta_{0}\right)-\mathcal{A}\left(\zeta, \theta_{0}\right)\right\|_{X}+\left\|\mathcal{A}\left(\zeta, \theta_{0}\right)-\mathcal{A}\left(\zeta, \zeta_{0}\right)\right\|_{X} \\
& \quad \leq \gamma\|\theta-\zeta\|_{X}+\left\|K\left(\theta_{0}-\zeta_{0}\right)\right\|_{X}
\end{aligned}
$$

Since \mathcal{A} is a contraction, $\gamma<1$. Therefore, the asserted property is obtained by applying Proposition 2.4 to the second term of the last inequality.

To show that θ is in the asserted class Y_{T} (defined in Theorem 2.2), we notice that

$$
\theta=\mathcal{A}\left(\theta, \theta_{0}\right) \equiv K \theta_{0}-G(u \theta)
$$

We apply Proposition 2.4 twice to $K \theta_{0}$ to show that

$$
K \theta_{0} \in \bar{C}_{\frac{n}{q}-(2 \lambda-1), q}, \quad K \theta_{0} \in \dot{C}_{\left(s-\frac{n}{q}+(2 \lambda-1)\right) /(2 \lambda), s, q}
$$

for any $p \leq q<\infty$ and $s>\frac{n}{q}-(2 \lambda-1)$. To show the second part

$$
\begin{equation*}
G(u \theta) \in \bar{C}_{\frac{n}{q}-(2 \lambda-1), q}, \quad p \leq q<\infty \tag{2.4}
\end{equation*}
$$

we use Proposition 2.5 with

$$
q_{1}=\frac{p}{2}, \quad q_{2}=q, \quad s_{1}=0, \quad s_{2}=\frac{n}{q}-(2 \lambda-1), \quad \alpha_{1}=-\frac{r}{\lambda}, \quad \alpha_{2}=0
$$

and obtain

$$
\|G(u \theta)\|_{0, \frac{n}{q}-(2 \lambda-1), q} \leq C\|u \theta\|_{-\frac{r}{\lambda}, 0, \frac{p}{2}} \leq C\|u\|_{-\frac{r}{2 \lambda}, 0, p}\|\theta\|_{-\frac{r}{2 \lambda}, 0, p}
$$

The asserted property (2.4) is established after we apply Lemma 2.6 to u.
Once again, we apply Proposition 2.5 with

$$
\begin{gathered}
q_{1}=\frac{p}{2}, \quad q_{2}=q, \quad s_{1}=0, \quad s_{2}=s, \\
\alpha_{1}=-\frac{r}{\lambda}, \quad \alpha_{2}=\frac{1}{2 \lambda}\left[s-\left(\frac{n}{q}-(2 \lambda-1)\right)\right]
\end{gathered}
$$

to show that

$$
\begin{equation*}
G(u \theta) \in \dot{C}_{\left(s-\frac{n}{q}+(2 \lambda-1)\right) /(2 \lambda), s, q}, \quad \text { for } s>\frac{n}{q}-(2 \lambda-1) \tag{2.5}
\end{equation*}
$$

but s should also satisfy

$$
s<2 \lambda-1-\left(\frac{2 n}{p}-\frac{n}{q}\right)
$$

as required by Proposition 2.5. For large $s,(2.5)$ can be shown by an induction process (see an analogous argument in [8]).

We now deal with the case $r=0$. Define

$$
X=\bar{C}_{0, p} \cap \dot{C}_{\frac{1}{4}, 0, \frac{4 \lambda-2}{3 \lambda-2} p}
$$

with the norm

$$
\|\theta\|_{X}=\left\|\theta-K \theta_{0}\right\|_{0,0, p}+\|\theta\|_{\frac{1}{4}, 0, \frac{4 \lambda-2}{3 \lambda-2} p}
$$

For $\theta \in X_{R}$, we have by Proposition 2.5,

$$
\begin{aligned}
\|G(u \theta)\|_{X} & =\|G(u \theta)\|_{0,0, p}+\|G(u \theta)\|_{\frac{1}{4}, 0, \frac{4 \lambda-2}{3 \lambda-2} p} \\
& \leq c\|u \theta\|_{\frac{1}{2}, 0, \frac{2 \lambda-1}{3 \lambda-2} p} \\
& \leq c\|u\|_{\frac{1}{4}, 0, \frac{4 \lambda-2}{3 \lambda-2} p}\|\theta\|_{\frac{1}{4}, 0, \frac{4 \lambda-2}{3 \lambda-2} p}
\end{aligned}
$$

Here c is a constant which may depend on the indices λ, p, and n. Using Lemma 2.6 again, we obtain a constant C such that

$$
\|G(u \theta)\|_{X} \leq C\|\theta\|_{X}^{2} \leq C R^{2}
$$

Once the above estimates have been established, the rest of the proof in this case is similar to that described in the case $r<0$.

Acknowledgments I would like to thank Professor P. Constantin for teaching me the quasi-geostrophic equations and Professor C. Kenig for his helpful suggestions.

References

[1] J. Charney, N. Phillips, Numerical integrations of the quasi-geostrophic equations for barotropic and simple baroclinic flows, J. Meteorol., 10(1953), 71-99.
[2] P. Constantin, A. Majda, E. Tabak, Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar, Nonlinearity, 7(1994), 1495-1533
[3] C. Foias, R. Temam, Gevrey class regularity for the solutions. of the NavierStokes equations, J. Funct. Anal., 87(1989), 359-369.
[4] Y. Giga, Solutions for semilinear parabolic equations in L^{p} and regularity of weak solutions of the Navier-Stokes system, J. Diff. Eq., 62(1986), 186-212.
[5] Y. Giga, T. Miyakawa, H. Osada, Two dimensional Navier-Stokes flow with measures as initial vorticity, Arch. Rational Mech. Anal., 104(1988), 223-250.
[6] I. Held, R. Pierrehumbert, S. Garner, K. Swanson, Surface quasigeostrophic dynamics, J. Fluid Mech., 282(1995), 1-20.
[7] T. Kato, Strong $L^{p}-$ solutions of the Navier-Stokes equation in \mathbb{R}^{m} with applications to weak solutions, Math. Z., 187(1984), 471-480.
[8] T. Kato, The Navier-Stokes solutions for an incompressible fluid in \mathbb{R}^{2} with measure as the initial vorticity, Diff. Integral Eq., 7(1994), 949-966.
[9] T. Kato, H. Fujita, On the nonstationary Navier-Stokes equations, Rend. Sem. mat. Univ. Padova, 32(1962), 243-260.
[10] T. Kato, G. Ponce, The Navier-Stokes equations with weak initial data, Int. Math. Research Notices, 10(1994), 435-444.
[11] T. Kato, G. Ponce, Well-posedness of the Euler and the Navier-Stokes equations in the Lebesgue spaces $L_{s}^{p}\left(\mathbb{R}^{2}\right)$, Rev. Mat. Iber. 2(1986), 73-88.
[12] J. Pedlosky, "Geophysical Fluid Dynamics", Springer, New York, 1987.
[13] S. Resnick, "Dynamical Problems in Non-linear Advective Partial Differential Equations", Ph.D. thesis, University of Chicago, 1995
[14] E.M. Stein, "Singular Integrals and Differentiability Properties of Functions", NJ: Princeton University Press, 1970
[15] J. Wu, Inviscid limits and regularity estimates for the solutions of the 2-D dissipative quasi-geostrophic equations, Indiana Univ. Math. J., 46(1997), in press.

Jiahong Wu
School of Mathematics, Institute for Advanced Study
Princeton, NJ 08540. USA
E-mail address: jiahong@math.utexas.edu

[^0]: * 1991 Mathematics Subject Classifications: 35K22, 35Q35, 76U05.

 Key words and phrases: Quasi-geostrophic equations, Weak data, Well-posedness.
 (C) 1998 Southwest Texas State University and University of North Texas.

 Submitted November 26, 1996. Published June 12, 1998.
 Supported by NSF grant DMS 9304580 at IAS.

