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a b s t r a c t

This paper investigates the global regularity issue concerning a model equation proposed
by Hou and Lei (2008) [9] to understand the stabilizing effects of the nonlinear terms in the
3D axisymmetric Navier–Stokes and Euler equations. We establish the global regularity of
a generalized version of their model with a fractional Laplacian when the fractional power
satisfies an explicit condition. This condition is exactly the same as in the case of the 3D
generalized Navier–Stokes equations and is due to the balance between a more regular
nonlinearity and a less effective (five-dimensional) Laplacian.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The global regularity issue concerning the 3D axisymmetric Navier–Stokes and Euler equations has recently attracted
a lot of attention and much progress has been made (see e.g. [1–8]). The results presented here were motivated by recent
work of Hou and his collaborators on two models for the axisymmetric Navier–Stokes and Euler equations [4,6,7].

In several recent papers [3–5,9], Hou et al. proposed two systems of equations for study in order to understand the
stabilizing effects of the nonlinear terms in the 3D axisymmetric Navier–Stokes and Euler equations. We shall briefly
summarize their derivation of thesemodel equations. The incompressible 3D axisymmetric Navier–Stokes equations can be
written as
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where ur , uθ and uz are the cylindrical coordinates of the velocity field u, andD
Dt

= ∂t + ur∂r + uz∂z .
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When ν = 0, these equations reduce to the axisymmetric Euler equations. The corresponding vorticity ω = ∇ × u obey

D
Dt
ωr

= ν


∂rr +

1
r
∂r + ∂zz −

1
r2


ωr

+ (ωr∂r + ωz∂z)ur ,D
Dt
ωθ +

uθωr

r
= ν


∂rr +

1
r
∂r + ∂zz −

1
r2


ωθ + (ωr∂r + ωz∂z)uθ +

urωθ

r
,D

Dt
ωz

= ν


∂rr +

1
r
∂r + ∂zz


ωz

+ (ωr∂r + ωz∂z)uz .

(1.2)

Noticing that ur and uz can be represented by ψθ , ωr and ωz by uθ and ωθ and ψθ are related by

−


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1
r
∂r + ∂2z −

1
r2


ψθ

= ωθ , (1.3)

the axisymmetric Navier–Stokes equations reduce to a system of equations for the swirl components ψθ , uθ and ωθ . By
substituting the expansions of ψθ , uθ and ωθ near r = 0 and keeping the leading order terms, Hou and Li derived
an one-dimensional model that approximates the Navier–Stokes equations along the symmetric axis [9]. This model has
some interesting properties. In particular, the nonlinear terms have a very special structure and appear to have depletion
mechanism that prevents a finite-time singularity.

By substituting the new variables

u1 =
uθ

r
, ω1 =

ωθ

r
, ψ1 =

ψθ

r
in the swirl component equations of (1.1), (1.2) and in (1.3), and dropping the convection terms, Hou and Lei [4] obtained
the following system of model equations
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(1.4)

Clearly this systemof equations is self-contained.When the convection terms are added back to this systemof equations, the
3D axisymmetric Navier–Stokes equations can be recovered. Even without the convection terms, these equations possess
many similarities as the 3D axisymmetric Navier–Stokes equations. As demonstrated in [4,5], regularity criteria of the
Prodi–Serrin type and of the Beal–Kato–Majda type still hold for this system of equations.

Our attention is focused on the open problemofwhether classical solutions of (1.4) are global in time. This is an extremely
difficult problem and the intention here is to examine it from a more general point of view. We generalize this model to
include dissipation given by a general fractional Laplacian. For this purpose, we need to interpret these equations as a system
of equations in five-dimensional space. To be more precise, we set y = (y1, y2, y3, y4, z) ∈ R5 and write ∆y for the 5D
Laplacian, namely

∆y =

4
j=1

∂yjyj + ∂zz .

If a function f = f (y) is axisymmetric about the z-axis, then

∆yf =


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f .

Identifying u1, ω1 and ψ1 as 5D axisymmetric functions, we can write the equations in (1.4) as∂tu1 = ν∆yu1 + 2∂zψ1 u1,

∂tω1 = ν∆yω1 + ∂z(u2
1),

−∆yψ1 = ω1.

Replacing ∆y by the fractional Laplacian −(−∆y)
α for a parameter α > 0 in the first two equations, we obtain the

generalized Hou–Lei model∂tu1 = −ν(−∆y)
αu1 + 2∂zψ1 u1,

∂tω1 = −ν(−∆y)
αω1 + ∂z(u2

1),
(−∆y)ψ1 = ω1.

(1.5)
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More generally, for any integer n ≥ 3, we can consider the following equations of n+2-dimensional axisymmetric functions
u1, ω1 and ψ1,∂tu1 = −ν(−∆n+2)

αu1 + 2∂zψ1 u1

∂tω1 = −ν(−∆n+2)
αω1 + ∂z(u2

1),
(−∆n+2)ψ1 = ω1,

(1.6)

where ∆n+2 denotes the Laplacian operator in Rn+2. We study the initial-value problems of these generalized Hou–Lei
equations with the initial data

u1(x, 0) = u10(x), ω1(x, 0) = ω10(x), ψ1(x, 0) = ψ10(x). (1.7)

This paper establishes the global regularity of (1.5) for α ≥
5
4 and that of (1.6) for α ≥

1
2 +

n
4 . We remark that the

condition on α is exactly the same as the condition for the generalized Navier–Stokes equations (see e.g. [10]). Through the
construction of the model (1.5), the convection terms in the Navier–Stokes equations have been removed and the nonlinear
terms in (1.5) are significantlyweakened. The dissipation in (1.5) grows out of the original 3D Laplacian in the Navier–Stokes
equations and is represented by the axisymmetric 5D Laplacian. When α ≥

1
2 +

n
4 , we are able to control the nonlinear part

through the dissipation.
The global regularity results can be stated as the following theorems. In the these theorems and in the rest of this paper,

∥f ∥q with 1 ≤ q ≤ ∞ denotes the norm in the Lebesgue space Lq(R5), ∥f ∥Hk denotes the norm in the space Hk(R5) and
∥f ∥k,q the norm in the Sobolev spaceW k,q(R5).

Theorem 1.1. Consider the generalized 3D model (1.5). Assume that the initial data (u10, ω10, ψ10) in (1.7) satisfies

u10 ∈ H1(R5), ψ10 ∈ H2(R5) and ω10 = −∆yψ10.

When α ≥
5
4 , the solution (u1, ω1, ψ1) emanating from (u10, ω10, ψ10) remains bounded in H1(R5) × L2(R5) × H2(R5) for all

time. More precisely, we have, for any 0 ≤ t < ∞,
∥u1∥H1(R5) + 2∥ω1∥

2
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0
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2
2


dt ≤ C,

whereΛy = (−∆y)
1/2 and C is a constant depending on ∥u10∥H1 , ∥ω1∥2 and ∥ψ10∥H2 only.

A similar global result holds for the general system of equations given by (1.6).

Theorem 1.2. Consider the generalized model (1.6) with the initial data given by (1.7). Assume that (u10, ω10, ψ10) satisfies

u10 ∈ H1(Rn+2), ψ10 ∈ H2(Rn+2) and ω10 = −∆n+2ψ10.

If

α ≥
1
2

+
n
4
,

then any solution of (1.6) emanating from (u10, ω10, ψ10) remains bounded in H1(Rn+2)× L2(Rn+2)× H2(Rn+2) for all time.

The next section presents the proofs of these two theorems.

2. Proofs

This section proves Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Multiplying the first equation in (1.5) by u1, the second by 2ψ1, integrating over y ∈ R5 and
performing several integration by parts, we obtain
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To obtain further bounds, wemultiply the first equation in (1.5) by∆yu1, the second by 2ω1, integrate over y ∈ R5 to obtain
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where

J1 =


2∂zψ1 u1∆yu1 dy, J2 =


2ω1 ∂zu2

1 dy.

We estimate J1 and J2. By Hölder’s inequality,

|J1| ≤ C ∥∆yu1∥2 ∥∂zψ1∥4 ∥u1∥4. (2.3)

By the Gagliardo–Nirenberg type inequality, for α ≥ 1,
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we obtain

∥u1∥4 ≤ C ∥u1∥
a
2 ∥∇yu1∥

b
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where the indices a, b, c, d ∈ [0, 1] and satisfy

a + b + c + d = 1,
1
4

=
a
2

+ b

1
2

−
1
5


+ c


1
2

−
α

5


+ d


1
2

−
1 + α

5


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Writing a and b in terms of c and d, we have

a = −
1
4

+ (α − 1)c + αd, b =
5
4

− αc − (1 + α)d. (2.7)

Similarly,
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h
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where the indices e, f , g, h ∈ [0, 1] and satisfy
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1
4

=
e
2

+ f

1
2

−
1
5


+ g


1
2

−
α

5


+ h


1
2

−
1 + α

5


. (2.9)

Or

e = (α − 1)g + αh −
1
4
, f =

5
4

− αg − (1 + α)h. (2.10)

Inserting (2.4), (2.5) and (2.8) in (2.3), we obtain
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When
2

1 + α
+ d + h ≤ 2,

we apply Young’s inequality with
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+
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where
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+ a

, γ2 = p e, γ3 = p b, γ4 = p f , γ5 = p c, γ6 = p g.

When γ3 + γ4 ≤ 2 and γ5 + γ6 ≤ 2, namely

p(b + f ) ≤ 2 and p(c + g) ≤ 2, (2.13)
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we can apply Young’s inequality again to further bound J1 by

|J1| ≤
ν

2
∥Λαyω1∥

2
2 +

ν

2
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Invoking (2.7), (2.10) and (2.12), the conditions in (2.13) can be rewritten as

2(α + 1)
2α − (α + 1)(d + h)

·


5
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2(α + 1)
2α − (α + 1)(d + h)

(c + g) ≤ 2. (2.16)
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When α ≥
5
4 ,

α + 5
2α(α + 1)

≤
2α
α + 1

andwe can select suitable c , g , d and h so that (2.17) holds and thus (2.13) holds. Some special choices of the indices a, b, c, d
and e, f , g, h are

a = 0, b =
4
9
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4
9
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1
9
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4
9
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4
9
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5
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1
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5
4 .

We now bound J2. By the third equation in (1.5), J2 can be written as

J2 = −4


u1 ∂zu1∆yψ1 dy.

For any p, q ∈ [1,∞] and 1
p +

1
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1
2 , we have, by Hölder’s inequality,

|J2| ≤ ∥u1∥p ∥∂zu1∥q∥ω1∥2. (2.18)

Furthermore, by the Gagliardo–Nirenberg type inequalities
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with the indices satisfying
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1
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we obtain

∥u1∥p ∥∂zu1∥q ≤ C ∥u1∥
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10
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3
10
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Inserting (2.20) in (2.18) and applying Young’s inequality, we obtain

|J2| ≤
ν

2
∥Λ1+αu1∥

2
2 + C(ν) ∥u1∥

2a1
2−d3
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2 .
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+

2
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≤ 2, (2.23)

a further application of Young’s inequality implies

|J2| ≤
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
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2
2


. (2.24)

Whenα ≥
5
4 , we can choose suitable a1, b2, c3 and d3 so that they satisfy (2.21)–(2.23). In fact, these conditions are equivalent

to

a1 + c3 = 2 − (b3 + d3),

(b3 + d3)+ α(c3 + d3) =
7
2
,

c3 + d3 ≤ 2, b3 + d3 ≤ 1

and all of them are obviously satisfied if we set

a1 = 0, b3 = 2 −
5
2α
, c3 = 1 and d3 =

5
2α

− 1.

Combining (2.2), (2.14) and (2.24), we find that

d
dt


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2
2 + 2∥ω1∥

2
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
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2
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
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γ1
2 ∥∇yψ1∥

γ2
2


∥Λαy u1∥

2
+ ∥Λ1+α

y ψ1∥
2
2

 
∥∇yu1∥

2
2 + 2∥ω1∥

2
2


+ C(ν) ∥u1∥

2a1
2−d3
2 ∥Λαu1∥

2
2


∥∇yu1∥

2
2 + 2∥ω1∥

2
2


.

It then follows from Gronwall’s inequality and (2.1) that
∥∇yu1∥

2
2 + 2∥ω1∥

2
2


+ ν

 t

0


∥Λ1+α

y u1∥
2
2 + 2∥Λαyω1∥

2
2


dt ≤ C,

where C is a constant depending on the norms of the initial data, namely ∥u10∥2 + ∥∇yu10∥2, ∥∇yψ10∥2 and ∥ω10∥2. When
the initial data are more regular, the solution of (1.5) can be shown to be more regular. In particular, smooth data yield
smooth solutions. This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. The proof is similar to the proof of Theorem 1.1. The estimates in the proof of Theorem 1.1 remain
valid although the associated indices should be suitably modified. For example, (2.6), (2.7), (2.9), (2.10) and (2.15)–(2.17)
should be changed to (2.25)–(2.31), respectively, where the new equations are given by

a + b + c + d = 1, (2.25)
1
4

=
a
2

+ b

1
2

−
1

n + 2


+ c


1
2

−
α

n + 2


+ d


1
2

−
1 + α

n + 2


,

a = −
n − 2
4

+ (α − 1)c + αd, b =
n + 2
4

− αc − (1 + α)d, (2.26)

e + f + g + h = 1, (2.27)
1
4

=
e
2

+ f

1
2

−
1

n + 2


+ g


1
2

−
α

n + 2


+ h


1
2

−
1 + α

n + 2


,

e = −
n − 2
4

+ (α − 1)g + αh, f =
n + 2
4

− αg − (1 + α)h, (2.28)

2(α + 1)
2α − (α + 1)(d + h)

·


n + 2
2

− α(c + g)− (1 + α)(d + h)


≤ 2, (2.29)

2(α + 1)
2α − (α + 1)(d + h)

(c + g) ≤ 2, (2.30)
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n(α + 1)+ 2 − 2α
2α(α + 1)

≤ (c + g)+ (d + h) ≤
2α
α + 1

. (2.31)

When α ≥
1
2 +

n
4 ,

n(α + 1)+ 2 − 2α
2α(α + 1)

≤
2α
α + 1

and the indices a, b, c, d, e, f , g and h can be selected so that all the estimates in the proof of Theorem 1.1 remain valid. A
special set of indices is

a = e = 0, b = f =
4α2

+ (6 − n)α − n − 2
4α(α + 1)

, c = g =
1

α + 1
, d = h =

(n − 6)α + n + 2
4α(α + 1)

.

We omit further details and this completes the proof of Theorem 1.2. �
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