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Abstract. This paper examines the global regularity problem on the two-
dimensional incompressible Boussinesq equations with fractional dissipation,
given by �αu in the velocity equation and by �βθ in the temperature equation,
where � =

√−� denotes the Zygmund operator. We establish the global exis-
tence and smoothness of classical solutions when (α, β) is in the critical range:
α > (

√
1777 − 23)/24 = 0.798103 . . ., β > 0 and α + β = 1. This result improves

previous work which obtained the global regularity for α > (23 − √
145)/12 ≈

0.9132, β > 0, and α + β = 1.

1 Introduction

This paper aims at the global regularity issue on the two-dimensional (2D)
Boussinesq equations with fractional dissipation

(1.1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tu + u · ∇u + ν�αu = −∇p + θe2 x ∈ R
2, t > 0,

∇ · u = 0, x ∈ R
2, t > 0,

∂tθ + u · ∇θ + κ�βθ = 0, x ∈ R
2, t > 0,

u(x, 0) = u0(x), θ(x, 0) = θ0(x), x ∈ R
2,

where u = u(x, t) denotes the 2D velocity, p = p(x, t) the pressure, θ = θ(x, t)
the temperature, e2 the unit vector in the vertical direction, and ν > 0, κ > 0,
0 < α ≤ 2 and 0 < β ≤ 2 are real parameters. Here � =

√−� represents the
Zygmund operator with �α being defined through the Fourier transform,

�̂α f (ξ ) = |ξ |α f̂ (ξ ),
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where the Fourier transform is given by

f̂ (ξ ) =
∫
R2

e−ix·ξ f (x) dx.

When α = β = 2, (1.1) reduces to the standard 2D Boussinesq equations with
Laplacian dissipation. The standard Boussinesq equations model geophysical
flows such as atmospheric fronts and oceanic circulation and also play an im-
portant role in the study of Raleigh-Bernard convection (see, e.g., [12, 20, 36, 42,
47, 48]).

Although (1.1) with fractional dissipation appears to be a purely mathemati-
cal generalization, it may be physically relevant. Firstly, closely related equations
such as the surface quasi-geostrophic equation model important geophysical phe-
nomena (see, e.g., [13, 22, 42]). Secondly, there are geophysical circumstances in
which the Boussinesq equations with fractional Laplacian may arise. Flows in the
middle atmosphere traveling upward undergo changes due to the changes of atmo-
spheric properties, although the incompressibility and Boussinesq approximations
are applicable. The effect of kinematic and thermal diffusion is attenuated by the
thinning of atmosphere. This anomalous attenuation can be modeled by using the
space fractional Laplacian; see [6, 20]. Thirdly, it may be possible to derive the
Boussinesq equations with fractional dissipation from the Boltzmann-type equa-
tions using suitable rescalings. A recent paper [23] derives the fractional Stokes
and Stokes-Fourier systems as the incompressible limit of the Boltzmann equation.

Mathematically, the 2D Boussinesq equations serve as a lower dimensional
model of the 3D hydrodynamics equations. In fact, the 2D Boussinesq equations
retain some key features of the 3D Navier-Stokes and the Euler equations such as
the vortex stretching mechanism. As pointed out in [37], the inviscid Boussinesq
equations can be identified with the 3D Euler equations for axisymmetric flows.
It is hoped that the study on the 2D Boussinesq equations will shed light on the
mysterious global existence and smoothness problem on the 3D Navier-Stokes and
Euler equations. The generalization to include the fractional dissipation facilitates
this purpose by allowing the simultaneous study of a whole parameter family of
equations.

One main pursuit in the study of (1.1) has been to obtain the global regularity
of its solutions for the smallest α and β. Intuitively, the smaller α and β are, the
harder the global regularity problem is. When there is no dissipation, namely,
ν = κ = 0 in (1.1), the global regularity problem remains open. The standard idea
of proving the global a priori bounds in Sobolev spaces fails. Potential finite time
singularities have been explored from different perspectives including boundary
effects and 1D models ([9, 10, 35, 44]).
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At the other extreme, when ν > 0, κ > 0, α = β = 2, the global regularity
can be easily obtained, in a similar fashion as for the 2D Navier-Stokes equations
([19, 37]). It is natural to examine (1.1) with intermediate dissipation, which has
attracted considerable attention in the last few years ([1, 2, 3, 7, 8, 14, 16, 17, 18,
24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 38, 41, 50, 49, 51, 52, 54, 55]). In [8] and
[27], it is shown that one full Laplacian dissipation in (1.1) is sufficient for the
global regularity. More precisely, (1.1) with α = 2 and κ = 0 or with β = 2 and
ν = 0 always admits global classical solutions.

More recent work further reduces the values of α and β, and existing research
appears to indicate that one-derivative dissipation is critical. Here, one-derivative
dissipation refers to the case when α + β = 1 in (1.1). For the convenience of
description, α+β = 1 is referred to as the critical case, α+β > 1 as the subcritical
case, and α + β < 1 as the supercritical case. To position our work in a suitable
context, we describe some recent results for these three cases.

We start with the subcritical case. Even this case is not easy. The global regu-
larity has so far been established only for three subcritical cases ([14, 38, 53]). The
global existence and regularity problem for the critical case is more difficult. Two
particular critical cases, α = 1, κ = 0 and β = 1, ν = 0, were studied by [25] and
[26], which introduced a combined quantity of the vorticity and the Riesz trans-
form of the temperature and were able to establish the global regularity for both
cases. For the more general critical case when the one derivative dissipation is split
between the velocity equation and the temperature equation, the situation becomes
more complex. The general critical case was recently dealt with by Jiu, Miao, Wu,
and Zhang and a global regularity result was obtained [29]. By reducing the global
regularity issue on the critical Boussinesq system to a parallel problem for an ac-
tive scalar equation with critical dissipation or, more precisely, the critical surface
quasi-geostrophic (SQG) equation and taking advantage of the recent advances on
the SQG equation, Jiu, Miao, Wu, and Zhang obtained the global regularity in the
critical regime: α + β = 1 and α > α0, where α0 = 23−√

145
12 ≈ 0.9132. Attempts

have also been made to go beyond the critical case and the global regularity has
been established when the dissipation is logarithmically more singular than the
critical case ([24, 31]). The global well-posedness problem for the supercritical
case α + β < 1 is completely open. The only result currently available is the
eventual regularity of weak solutions of (1.1) with α + β < 1 and α > α0 [30].

This paper establishes the global existence and regularity of classical solutions
of (1.1) when α and β are in the critical range: α + β = 1 and 1 > α >

√
1777−23

24 =
0.798103 . . .. This result improves the work of Jiu, Miao, Wu, and Zhang [29] by
allowing α to vary in a bigger interval, by keeping the relation α + β = 1. The
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precise statement of our result is given in the following theorem.

Theorem 1.1. Consider (1.1) with (u0, θ0) ∈ H σ(R2) for σ > 2. If the pa-
rameters in (1.1) satisfies ν > 0, κ > 0, 0.798103 . . . =

√
1777−23

24 < α < 1,
α + β = 1, then (1.1) has a unique global solution (u, θ) satisfying, for any T > 0,
(u, θ) ∈ C([0,T ];H σ(R2)).

We outline the main idea in the proof of this theorem and explain how to im-
prove [29]. A large portion of the efforts are devoted to obtaining global a priori
bounds for (u, θ). Because ∇ · u = 0, the L2-level global bounds for (u, θ) follow
from easy energy estimates,

‖θ(t)‖Lq ≤ ‖θ0‖Lq for q ∈ [1,∞],

‖θ(t)‖2
L2 + 2κ

∫ t

0
‖�β

2 θ(τ)‖2
L2 dτ = ‖θ0‖2

L2,(1.2)

‖u(t)‖2
L2 + 2ν

∫ t

0
‖�α

2 u(τ)‖2
L2 dτ ≤ (‖u0‖L2 + t‖θ0‖L2)2.

Naturally, the next target is the global H 1-bound for u or, equivalently, global
L2-bound for the vorticity ω = ∇ × u, which satisfies

(1.3)

⎧⎨
⎩∂tω + u · ∇ω + ν�αω = ∂1θ,

u = ∇⊥ψ, �ψ = ω or u = ∇⊥�−1ω.

Because of the presence of the “vortex stretching” term ∂1θ, direct energy esti-
mates do not yield the desired global bound for 0 < α < 1. For notational conve-
nience, throughout the rest of this paper, we set ν = κ = 1 in (1.1). The strategy is
to hide ∂1θ by considering the combined quantity G = ω−Rαθ with Rα = �−α∂1.
It is easy to check that G satisfies

(1.4) ∂tG + u · ∇G +�αG = [Rα, u · ∇]θ +�β−α∂1θ.

Here we have used the standard commutator notation

[Rα, u · ∇]θ = Rα(u · ∇θ) − u · ∇Rαθ.

Although (1.4) appears to be more complicated than the vorticity equation, the
commutator term [Rα, u · ∇]θ is less singular than ∂1θ in the vorticity equation.
In fact, we are able to show the global bound for ‖G‖L2 whenever α > 3/4 and
α + β = 1. The major contribution of this paper is on the global L6-bound for G.
Previously, for α > 4/5 and α+β = 1, [29] obtained a global bound for ‖G‖Lq for
q in the range

(1.5) 2 ≤ q < q0 ≡ 8 − 4α
8 − 7α

.
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Obviously, q0 ∈ (2, 4) when α ∈ (4/5, 1). We are able to enlarge the range of q

significantly. More precisely, we prove the following proposition.

Proposition 1.2. Let 0 < β < 1 and α + β = 1, with

1 > α >

√
1777 − 23

24
= 0.798103 . . . .

Let (u0, θ0) be as specified in Theorem 1.1, and let (u, θ) be the corresponding
smooth solution of (1.1). Assume G satisfies (1.4). Then, for any T > 0 and
t ≤ T ,

‖G(t)‖Lq ≤ C for 2 ≤ q ≤ 6,

where C is a constant depending on T and the initial data (u0, θ0).

The proof of Proposition 1.2 involves the decomposition of the velocity field

(1.6) u = ∇⊥�−1ω = ∇⊥�−1G + ∇⊥�−1 Rαθ ≡ uG + uθ ,

commutator estimates, and various functional inequalities.
Proposition 1.2 is crucial in further showing that G is actually globally regular

in the sense that

(1.7) ‖G(t)‖Bs
q,∞(R2) ≤ C for 0 ≤ s ≤ 3α− 2 and 2 ≤ q ≤ 6,

and for any T > 0 and t ≤ T , where C is a constant depending on T and the initial
data (u0, θ0). Here Bs

q,∞ denotes an inhomogeneous Besov space; see Section 2
for more details on Besov spaces. Once Proposition 1.2 is established, the proof
of (1.7) is similar to that of [29, Proposition 7.1]. A special consequence of (1.7)
is that G ∈ B0∞,1(R

2) ⊂ L∞(R2), which in turn implies that uG , defined in (1.6), is
Lipschitz, ‖∇uG(t)‖L∞ ≤ C. Then (1.6) with the equation of θ can be treated as a
generalized critical SQG equation, which, following a similar approach as in [29],
leads to the global regularity of (u, θ).

The rest of this paper is divided into two main sections. Section 2 recalls the
Littlewood-Paley decomposition, the definition of Besov spaces and some other
related relevant facts. It also presents several commutator estimates and a global
L2-bound for G, which serve as a preparation for the proof of Proposition 1.2.
Section 3 contains the proof of Proposition 1.2 and Theorem 1.1.

2 Preliminaries

This section includes several parts. It recalls the Littlewood-Paley theory, intro-
duces the Besov spaces, provides Bernstein inequalities and Kato-Ponce estimates,
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and proves several commutator estimates and a global L2-bound for G. We start
with the definitions of some of the functional spaces and related facts that are used
in the subsequent sections. Materials on Besov space and related facts presented
here can be found in several books and many papers; see, e.g., [4, 5, 39, 43, 46].

2.1 Fourier transform and the Littlewood-Paley theory. We start
with notation. The symbol S denotes the usual Schwarz class and S′ its dual,
the space of tempered distributions; S0 denotes the subspace of S defined by

S0 =
{
φ ∈ S :

∫
Rd
φ(x) xγ dx = 0, |γ| = 0, 1, 2, · · ·

}
,

and S′
0 denotes its dual. The space S′

0 can be identified with the space S′
0 = S′/S⊥

0 =
S′/P, where P denotes the space of multinomials. On the Schwartz class, we can
define the Fourier transform and its inverse via

f̂ (ξ ) =
∫
Rd

f (x)e−ixξdx, f (x) =
1

(2π)d

∫
Rd

f̂ (ξ )eixξdξ,

respectively.
To introduce the Littlewood-Paley decomposition, we write, for each j ∈ Z,

Aj =
{
ξ ∈ R

d : 2 j−1 ≤ |ξ | < 2 j+1
}
.

The Littlewood-Paley decomposition asserts the existence of a sequence of func-
tions {� j } j∈Z in S such that supp �̂ j ⊂ Aj , �̂ j (ξ ) = �̂0(2− jξ ) or � j (x) =
2 jd�0(2 j x), and

∞∑
j =−∞

�̂ j (ξ ) =

⎧⎨
⎩1 , if ξ ∈ R

d \ {0},
0 , if ξ = 0.

Therefore, for a general function ψ ∈ S, we have
∑∞

j =−∞ �̂ j (ξ )ψ̂(ξ ) = ψ̂(ξ ) for
ξ ∈ R

d \ {0}. Moreover, if ψ ∈ S0, then
∑∞

j =−∞ �̂ j (ξ )ψ̂(ξ ) = ψ̂(ξ ) for all ξ ∈ R
d ;

i.e., for ψ ∈ S0,
∑∞

j =−∞� j ∗ψ = ψ, and hence
∑∞

j =−∞� j ∗ f = f , f ∈ S′
0 in the

sense of weak-∗ topology of S′
0. For notational convenience, we define

(2.1) �̊ j f = � j ∗ f, j ∈ Z.

2.2 Besov spaces.

Definition 2.1. For s ∈ R and 1 ≤ p, q ≤ ∞, the homogeneous Besov
space B̊s

p,q consists of f ∈ S′
0 satisfying

‖ f ‖B̊s
p,q

≡ ‖2 js‖�̊ j f ‖Lp‖lq < ∞.
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We now choose � ∈ S such that �̂(ξ ) = 1 − ∑∞
j =0 �̂ j (ξ ), ξ ∈ R

d . Then, for
all ψ ∈ S, � ∗ψ +

∑∞
j =0� j ∗ψ = ψ, and hence � ∗ f +

∑∞
j =0� j ∗ f = f in S′ for

all f ∈ S′. To define the inhomogeneous Besov space, we set

(2.2) � j f =

⎧⎪⎪⎨
⎪⎪⎩

0, if j ≤ −2,

� ∗ f, if j = −1,

� j ∗ f, if j = 0, 1, 2, . . . .

Definition 2.2. The inhomogeneous Besov space Bs
p,q, 1 ≤ p, q ≤ ∞,

s ∈ R, consists of functions f ∈ S′ satisfying

‖ f ‖Bs
p,q

≡ ‖2 js‖� j f ‖Lp‖lq < ∞.

The Besov spaces B̊s
p,q and Bs

p,q with s ∈ (0, 1) and 1 ≤ p, q ≤ ∞ can be
equivalently defined by the norms

‖ f ‖B̊s
p,q

=
(∫

Rd

(‖ f (x + t) − f (x)‖Lp)q

|t|d+sq
dt
)1/q

,

‖ f ‖Bs
p,q

= ‖ f ‖Lp +
(∫

Rd

(‖ f (x + t) − f (x)‖Lp)q

|t|d+sq
dt
)1/q

,

respectively. When q = ∞, the expressions are interpreted as suprema instead of
integrals.

Many frequently used function spaces are special cases of Besov spaces. The
following proposition lists some useful equivalence and embedding relations.

Proposition 2.3. For all s ∈ R, H̊ s ∼ B̊s
2,2, Hs ∼ Bs

2,2. For all s ∈ R and
1 < q < ∞, B̊s

q,min{q,2} ↪→ W̊ s
q ↪→ B̊s

q,max{q,2}. In particular,

B̊0
q,min{q,2} ↪→ Lq ↪→ B̊0

q,max{q,2}.

For notational convenience, we write� j for �̊ j . There should be no confusion
if one bears in mind that the � j ’s associated with the homogeneous Besov spaces
are defined in (2.1), while those associated with the inhomogeneous Besov spaces
are defined in (2.2).

The partial sum S j is also a useful notation. For an integer j , the partial sum
S j is defined by S j ≡ ∑ j−1

k =−1�k, where�k is given by (2.2).

For all f ∈ S′, the Fourier transform of S j f is supported on the ball of radius 2 j .
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2.3 Bernstein inequalities and Kato-Ponce estimates. Bernstein’s in-
equalities are useful tools for dealing with Fourier localized functions, and these
inequalities trade integrability for derivatives. The following proposition provides
Bernstein type inequalities for fractional derivatives.

Proposition 2.4. Let α ≥ 0, 1 ≤ p ≤ q ≤ ∞, and f : Rd → C.

1) If supp f̂ ⊂ {ξ ∈ Rd : |ξ | ≤ K2 j }, for some integer j and constant K > 0,
then

‖�α f ‖Lq(Rd ) ≤ C1 2α j+ jd( 1
p − 1

q )‖ f ‖Lp(Rd ),

where C1 is a constant depending on K, α, p and q only.
2) If supp f̂ ⊂ {ξ ∈ R

d : K12 j ≤ |ξ | ≤ K22 j } for some integer j and constants
0 < K1 ≤ K2, then

C1 2α j‖ f ‖Lq(Rd ) ≤ ‖�α f ‖Lq(Rd ) ≤ C2 2α j+ jd( 1
p − 1

q )‖ f ‖Lp(Rd ),

where C2 is a constant depending on K1,K2, α, p and q only.

We use the following Kato-Ponce type estimate (also known as the fractional
Leibnitz rule) extensively:

(2.3) ‖�s( fg)‖Lp ≤ C(‖�s f ‖Lq1 ‖g‖Lr1 + ‖�sg‖Lq2‖ f ‖Lr2 ),

whenever s > 0, 1 < p, q1, q2 < ∞, 1 < r1, r2 ≤ ∞, 1
p = 1

q1
+ 1

r1
= 1

q2
+ 1

r2
. This

inequality can be found in many references; see [32] and [21] for recent results and
survey of the literature on the topic. As a corollary, we can deduce the following
estimate, at least for all integers m:

(2.4) ‖�s( f m)‖Lp ≤ C‖�s f ‖Lq‖ f ‖m−1
Lr(m−1),

whenever 1 < p, q, r < ∞ and 1
p = 1

q + 1
r .

2.4 Commutator estimates. As we have seen already, the equation (1.4)
involves commutators. Thus, we need to develop corresponding estimates so that
we can bound the commutators suitably.

Lemma 2.5. Let 1 > α > 1/2 and 1 < p < ∞, 1 < p1, p2 ≤ ∞ : 1
p = 1

p1
+ 1

p2
.

For any integer k and uG and uθ as defined in (1.6),

‖�k([Rα, uG · ∇]θ)‖Lp ≤ C2(1−α)k‖G‖Lp1 ‖θ‖Lp2 ;(2.5)

‖�k([Rα, uθ · ∇]ψ)‖Lp ≤ C2(2−2α)k‖θ‖Lp1 ‖ψ‖Lp2 .(2.6)
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More generally, for 0 ≤ s ≤ 1 − α,

‖�k([Rα, uG · ∇]θ)‖Lp ≤ Cs2
(1−α−s)k‖G‖Lp1‖�sθ‖Lp2 ;(2.7)

‖�k([Rα, uθ · ∇]ψ)‖Lp ≤ Cs2
(2−2α−s)k‖�sθ‖Lp1 ‖ψ‖Lp2 .(2.8)

Proof. Most of the proof is devoted to establishing (2.5) and (2.6). At the
end, we indicate what minor modifications are needed to establish (2.7) and (2.8).

To simplify notation, we write u j := � j u, u<k := Sku, and u[k−A,k+B] :=∑k+B
j =k−A u j . If A,B < 10, we denote u[k−A,k+B] by u∼k, etc. We use the follow-

ing paraproduct decomposition for the product of two functions:

�k( fg) = �k( f<k−10g∼k) +�k( f∼kg<k+10) +�k

( ∞∑
l =k+10

f lg∼l

)
.

We refer to the first term as low-high interaction, the second term is high-low inter-
action, and the third term is high-high interaction. Only the low-high interaction
term is not straightforward and requires the commutator structure. Note that, ac-
cording to the definition (1.6), uG ∼ �−1G and uθ ∼ �−αθ. More precisely, for
all 1 ≤ p ≤ ∞,

‖�l(uG)‖Lp ∼ 2−l‖�lG‖Lp ≤ C2−l‖G‖Lp ;

‖�l(uθ)‖Lp ∼ 2−αl‖�lθ‖Lp ≤ C2−αl‖θ‖Lp .

High-low interactions. For (2.5), we have, by Hölder’s inequality,

‖�k([Rα, (uG)∼k · ∇]θ<k+10)‖Lp ≤ C‖Rα�k[(uG)∼k · ∇θ<k+10]‖Lp

+ ‖[(uG)∼k · ∇]Rαθ<k+10‖Lp)

≤ C2k(1−α)‖(uG)∼k‖Lp1 ‖∇θ<k+10‖Lp2

+ C‖(uG)∼k‖Lp1 ‖�2−αθ<k+10‖Lp2 .

But ‖(uG)∼k‖Lp1 ≤ C2−k‖G‖Lp1 , and

(2.9) ‖∇θ<k+10‖Lp2 ≤ C2k‖θ‖Lp2 , ‖�2−αθ<k+10‖Lp2 ≤ C2(2−α)k‖θ‖Lp2 .

Putting everything together yields the desired inequality

‖�k([Rα, (uG)∼k · ∇]θ<k+10)‖Lp ≤ C2k(1−α)‖G‖Lp1‖θ‖Lp2 .

Similarly, for (2.6), we have, by Hölder’s inequality,

‖�k([Rα, (uθ)∼k · ∇]ψ<k+10)‖Lp ≤ C‖Rα[(uθ)∼k · ∇ψ<k+10]‖Lp

+ ‖[(uθ)∼k · ∇]Rαψ<k+10‖Lp

≤ C2k(1−α)‖(uθ)∼k‖Lp1 ‖∇ψ<k+10‖Lp2

+ C‖(uθ)∼k‖Lp1 ‖�2−αψ<k+10‖Lp2 .
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Again, ‖(uθ)∼k‖Lp1 ≤ C2−kα‖θ‖Lp1 , which, in conjunction with (2.9), yields

‖�k([Rα, (uθ)∼k · ∇]ψ<k+10)‖Lp ≤ C22(1−α)k‖θ‖Lp1 ‖ψ‖Lp2 .

High-high interactions. For (2.5), we have that u · ∇θ = ∇ · [u θ] (since
∇ · u = 0). Thus, by Hölder’s inequality,

∥∥∥ ∞∑
l =k+10

�k([Rα, (uG)l · ∇]θ∼l)
∥∥∥

Lp
≤ C

∞∑
l =k+10

‖Rα∇�k[(uG)l · θ∼l]‖Lp

+ C
∞∑

l =k+10

‖∇�k[(uG)l·]Rαθ∼l‖Lp

≤ C2k(2−α)
∞∑

l =k+10

‖(uG)l‖Lp1 ‖θ∼l‖Lp2

+ C2k
∞∑

l =k+10

‖(uG)l‖Lp1 ‖�1−αθ∼l‖Lp2

≤ C‖G‖Lp1 ‖θ‖Lp2

∞∑
l =k+10

(2k(2−α)2−l + 2k2−αl)

≤ C2k(1−α)‖G‖Lp1‖θ‖Lp2 .

For (2.6), we proceed in the same way, but note that near the end, we need α > 1/2.
We have

∥∥∥ ∞∑
l =k+10

�k([Rα, (uθ)l · ∇]ψ∼l)
∥∥∥

Lp
≤ C

∞∑
l =k+10

‖Rα∇�k[(uθ)l · ψ∼l]‖Lp

+ C
∞∑

l =k+10

‖∇�k[(uθ)l·]Rαψ∼l‖Lp

≤ C2k(2−α)
∞∑

l =k+10

‖(uθ)l‖Lp1 ‖ψ∼l‖Lp2

+ C2k
∞∑

l =k+10

‖(uθ)l‖Lp1 ‖�1−αψ∼l‖Lp2

≤ C‖G‖Lp1 ‖θ‖Lp2

∞∑
l =k+10

(2k(2−α)2−αl + 2k2−l(2α−1))

≤ C22k(1−α)‖G‖Lp1‖θ‖Lp2 .

Low-high interactions. Now we need to estimate

‖�k([Rα, (uG)<k−10 · ∇]θ∼k)‖Lp.
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As before, we use the divergence free condition to reduce to

‖�k([Rα, (uG)<k−10 · ∇]θ∼k)‖Lp = ‖∇�k([Rα, (uG)<k−10·]θ∼k)‖Lp

≤ C2k‖�k([Rα, (uG)<k−10·]θ∼k)‖Lp,

so that now, we need to check

(2.10) ‖�k([Rα, (uG)<k−10·]θ∼k)‖Lp ≤ C2−kα‖G‖Lp1 ‖θ‖Lp2 .

In addition, Rα = ∂1�−α, so we use the (standard) product rule to conclude

[Rα, (uG)<k−10·]θ∼k = Rα[(uG)<k−10 · θ∼k] − (uG)<k−10 · Rαθ∼k

= �−α[∂1(uG)<k−10 · θ∼k] + [�−α, (uG)<k−10·]∂1θ∼k.

Clearly, the first term satisfies the required estimates, since

‖�k�
−α[∂1(uG)<k−10 · θ∼k]‖Lp ≤ 2−kα‖∂1(uG)<k−10‖Lp1 ‖θ∼k‖Lp2

≤ C2−kα‖G‖Lp1 ‖θ‖Lp2 ,

which is (2.10). It then remains to show

(2.11) ‖�k[�
−α, f<k−10]g∼k‖Lp ≤ C2−k(1+α)‖∇ f ‖Lp1 ‖g‖Lp2 .

Indeed, applying (2.11) to f = uG, g = ∂1θ yields the desired result.
To establish (2.11), write

�k[�
−α, f<k−10]g∼k = �k�

−α[ f<k−10g∼k] −�k[ f<k−10�
−αg∼k]

Denote the multiplier of g∼k by �̃k. Note that, by the support properties of the
corresponding multipliers, �̃k�k = �k. Thus,

�k[�
−α, f<k−10]g∼k = �k�̃k�

−α[ f<k−10g∼k] −�k[ f<k−10�
−αg∼k]

= �k([�̃k�
−α, f<k−10]g∼k).

Thuerefore, it suffices to estimate ‖[�̃k�
−α, f<k−10]g∼k‖Lp . We have �̃k�

−α =
2−kαPk, where P̂k f (ξ ) = χ̃(2−kξ ) f̂ (ξ ) and χ̃ is a C∞ function supported in
{ξ : |ξ | ∈ (1/2, 2)}. Thus, we need to show

(2.12) ‖[Pk, f ]g‖Lp ≤ C2−k‖∇ f ‖Lp1 ‖g‖Lp2 .

But this is a standard result in harmonic analysis. For the sake of completeness,
we provide a short proof. We begin with

[Pk, f ]g(x) = 2kd
∫

d
χ̂(2k(x − y))( f (y) − f (x))g(y)dy

= 2kd
∫

d
χ̂(2k(x − y))g(y)(

∫ 1

0
〈y − x,∇ f (x − ρ(x − y))〉dρ)dy.
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It follows that

|[Pk, f ]g(x)| ≤
∫ 1

0

∫
d
|∇ f (x − ρz)||g(x − z)|2kd |z||χ̂(2kz))|dzdρ.

By Hölder’s inequlality,

‖[Pk, f ]g‖Lp ≤ C‖∇ f ‖Lp1 ‖g‖Lp2

∫
d
2kd |z||χ̂(2kz))|dz = C2−k‖∇ f ‖Lp1 ‖g‖Lp2 .

This finishes the proof of (2.12) and hence of (2.5).
For the low-high interaction term of (2.6), we reduce similarly. More precisely,

by the divergence free condition,

‖�k([Rα, (uθ)<k−10 · ∇]ψ∼k)‖Lp = ‖∇�k([Rα, (uθ)<k−10·]ψ∼k)‖Lp

≤ C2k‖�k([Rα, (uθ)<k−10·]ψ∼k)‖Lp,

Also,

[Rα, (uθ)<k−10·]ψ∼k) = Rα[(uθ)<k−10 · ψ∼k] − (uθ)<k−10 · Rαψ∼k

= �−α[∂1(uθ)<k−10 · ψ∼k] + [�−α, (uθ)<k−10·]∂1ψ∼k.

For the first term, since ‖∂1(uθ)<k−10‖Lp1 ≤ C2k(1−α)‖θ‖Lp1 , we have

‖�k�
−α[∂1(uθ)<k−10 · ψ∼k]‖Lp ≤ 2−kα‖∂1(uθ)<k−10‖Lp1 ‖ψ∼k‖Lp2

≤ C2k(1−2α)‖θ‖Lp1 ‖ψ‖Lp2 .

For the second term, we can reduce, in a similar way, making it necessary to prove
only an estimate in the form

‖[�̃k�
−α, (uθ)<k−10]ψ∼k‖Lp ≤ 2−2αk‖θ‖Lp1 ‖ψ‖Lp2 .

Recalling �̃k�
−α = 2−kαPk, by (2.12) and ‖∇(uθ)<k−10‖Lp1 ≤ C2k(1−α)‖θ‖Lp1 , we

have

‖[�̃k�
−α, (uθ)<k−10]ψ∼k‖Lp = 2−kα‖Pk, (uθ)<k−10]ψ∼k‖Lp

≤ C2−k(1+α)‖∇(uθ)<k−10‖Lp1 ‖ψ‖Lp2

≤ C2−2kα‖θ‖Lp1 ‖ψ‖Lp2 .

Regarding the proofs of (2.7) and (2.8), one just needs to go back to the argu-
ments presented above and trace the derivatives. More precisely, for (2.7), things
are clear in the high-high and the low high interaction cases, since we use (2.5)
and the inequality 2k(1−α)‖θ≥k−10‖Lp2 ≤ C2k(1−α−s)‖�sθ‖Lp2 . In the high-low in-
teraction case, note that we have used ‖∇θ<k+10‖Lp2 ≤ 2k‖θ‖Lp2 . If we instead use
‖∇θ<k+10‖Lp2 ≤ 2k(1−s)‖�sθ‖Lp2 , we obtain (2.7), instead of (2.5). The arguments
for (2.8) are of similar nature, so we omit them. �
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Corollary 2.6. Let 1 > α > 1/2 and 1 < p2 < ∞, 1 < p1, p3 ≤ ∞, so that
1
p1

+ 1
p2

+ 1
p3

= 1. For every s1 : 0 ≤ s1 < 1 − α and s2 : s2 > 1 − α − s1, there
exists a C = C(p1, p2, p3, s1, s2) such that

(2.13)
∣∣∣ ∫

d
F [Rα, uG · ∇]θdx

∣∣∣ ≤ C‖�s1θ‖Lp1 ‖F‖Ws2,p2 ‖G‖Lp3 .

Similarly, for every s1 : 0 ≤ s1 < 1 − α and s2 : s2 > 2 − 2α− s1,

(2.14)
∣∣∣ ∫

d
F [Rα, uθ · ∇]ψdx

∣∣∣ ≤ C‖�s1θ‖Lp1 ‖F‖Ws2,p2 ‖ψ‖Lp3 .

Proof. Recall that
∑

j �̊ j = Id . Take �̃ j with similar properties, so that
�̃ j�̊ j = �̊ j . For (2.13), we have by (2.7),∣∣∣ ∫

d
F [Rα, uθ · ∇]ψdx

∣∣∣ ≤ ∑
j

∫
|�̃ jF ||�̊ j [Rα, uG · ∇]θ]|dx

≤ C
∑

j

2 j (1−α−s1)‖�̃ j F‖Lp2‖G‖Lp3 ‖�s1θ‖Lp1

≤ C‖G‖Lp3 ‖�s1θ‖Lp1 max(‖F<10‖Lp2 , sup
j≥0

2 js2‖�̃ j F‖Lp2 ),

which of course implies (2.13). The proof of (2.14) is similar. �

2.5 L2 bound for G. We present the global L2 bound for G which improves
the corresponding L2-bound of [29, Theorem 5.1] by relaxing the condition from
α > 4/5 to α > 3/4.

Lemma 2.7. Let α > 3/4 and (u, θ) be the solution of (1.1) in some interval
[0,T ]. Then G defined in (1.4) satisfies

‖G(t)‖2
L2 +

∫ t

0
‖�α

2 G(τ)‖2
L2dτ ≤ C(T, u0, θ0)

for every 0 ≤ t ≤ T .

Proof. The proof is similar to that of [29, Theorem 5.1], but we make use of
the global bound (see (1.2))∫ T

0
‖�β

2 θ(τ)‖2
L2 dτ < C(T, θ0).

Taking the inner product of (1.4) with G, we obtain, after integrating by parts,

(2.15)
1
2

d
dt

‖G‖2
L2 + ‖�α

2 G‖2
L2 = J1 + J2,
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where
J1 =

∫
G�1−2α∂1θ dx, J2 =

∫
G[Rα, u · ∇]θ dx.

Applying Hölder’s inequality and noting that the Riesz transform �−1∂1 is
bounded in Lq for all 1 < q < ∞, we obtain, since 3/4 < α < 1,

|J1| ≤ ‖�2− 5
2αθ‖L2 ‖�α

2 G‖L2 ≤ 1
4

‖�α
2 G‖2

L2 + C ‖θ‖2

H
β
2
.

To bound J2, we write u = uG + uθ as in (1.6). Again, since 3/4 < α < 1, we can
choose 1 − α < s < α/2 and then apply Corollary 2.6 to obtain∣∣∣ ∫ G[Rα, uG · ∇]θ dx

∣∣∣ ≤ C ‖θ‖L∞‖G‖L2‖G‖Hs ≤ C‖θ0‖L∞‖G‖L2‖G‖
H
α
2

≤ 1
4
‖�α

2 G‖2
L2 + C ‖G‖2

L2 .

Applying Corollary 2.6 with s1 = (1−α)
2 and 3

2 (1 − α) < s2 <
α
2 , we have

∣∣∣ ∫ G [Rα, uθ · ∇]θ dx
∣∣∣ ≤ C ‖�s1θ‖L2 ‖θ‖L∞‖G‖Hs2 ≤ C‖θ0‖L∞‖�β

2 θ‖L2‖G‖
H
α
2

≤ 1
4

‖�α
2 G‖2

L2 + C‖�β
2 θ‖2

L2 .

Therefore,

|J2| ≤ 1
2
‖�α

2 G‖2
L2 + C ‖G‖2

L2 + C‖�β
2 θ‖2

L2 .

Inserting the bounds for J1 and J2 into (2.15) and applying Gronwall’s inequality
yield the desired bound. �

3 On the L6 bound for G

This section provides a proof of Proposition 1.2, which provides a global L6-bound
for G. Once Proposition 1.2 is established, Theorem 1.1 can be proved similarly
to its counterpart in [29]. Nevertheless we give a brief outline of its proof here.

Let us prepare the proof of Proposition 1.2 with the following observation.
By the estimates for the evolution of θ in (1.2), we have control of ‖θ(t)‖L∞ and
‖�(1−α)/2θ‖L2

t L2
x
. By the Gagliardo-Nirenberg inequality [40], for all γ ∈ (0, 1/2),

(3.1) ‖�γ(1−α)θ‖
L

1
γ
t L

1
γ
x

≤ ‖�(1−α)/2θ‖2γ
L2

t L2
x
‖θ0‖1−2γ

L∞
tx
.

Proof of Proposition 1.2. Consider γ ∈ (0, 1/2) to be fixed momentarily,
and let αcr be the solution of (2 − γ)(1 − α) = α

2 , i.e., αcr = (4 − 2γ)/(5 − 2γ).
Note that for each α > αcr , (2 − γ)(1 − α) < α

2 . We henceforth assume α > αcr .
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In view of Lemma 2.7, it suffices to consider the case q = 6. Multiplying (1.4)
by G|G|4 = G5 and integrating in x, we obtain

(3.2)
1
q
∂t‖G(t)‖6

L6 +
∫

G5�αG dx =
∫

G5[Rα, u · ∇]θ dx +
∫

G5�1−2α∂1θ dx.

By the maximum principle of [15] and Sobolev embedding, we have∫
G5�αG dx ≥ C

∫
|�α

2 G3|2dx ≥ C‖G‖6

L
12

2−α
.

Next, we deal with the second term on the right-hand side of (3.2). Note that
∂1�

−1 is the Riesz transform in the first variable, which is bounded on all Lp

spaces, 1 < p < ∞. By Hölder’s inequality and the Kato-Ponce estimate (2.4),∣∣∣ ∫ G5�1−2α∂1θdx
∣∣∣ ≤ ‖�γ(1−α)θ‖

L
1
γ
x

‖∂1�−1�(2−γ)(1−α)(G5)‖
L

1
1−γ

≤ C‖�γ(1−α)θ‖
L

1
γ
x

‖�(2−γ)(1−α)G‖L2‖G‖4

L
8

1−2γ

≤ C‖�γ(1−α)θ‖
L

1
γ
x

‖G‖Hα/2‖G‖4

L
8

1−2γ
,

where in the last line, we have used our assumption that α > αcr .
Write u = uG +uθ as in (1.6). Then the first term on the right-hand side of (3.2)

splits into two terms. We have, according to (2.14), for every s > (2 − γ)(1 − α),∣∣∣ ∫ G5[Rα, uθ · ∇]θdx
∣∣∣ ≤ Cs‖�γ(1−α)θ‖

L
1
γ
‖θ‖L∞‖G5‖

W
s, 1

1−γ

≤ ‖�γ(1−α)θ‖
L

1
γ
x

‖θ0‖L∞‖G‖Hs‖G‖4

L
8

1−2γ
.

We now pick s so close to (2 − γ)(1 − α) that (2 − γ)(1 − α) < s < α/2. This is
possible, because α > αcr . Then∣∣∣ ∫ G5[Rα, uθ · ∇]θdx

∣∣∣ ≤ C‖�γ(1−α)θ‖
L

1
γ
x

‖G‖Hα/2‖G‖4

L
8

1−2γ
.

We now handle the term
∫

G5[Rα, uG · ∇]θdx. By (2.13),∣∣∣ ∫ G5[Rα, uG · ∇]θ
∣∣∣ ≤ ‖�(1−γ)(1−α)+ρ(G5)‖Lp1‖G‖L6‖�γ(1−α)θ‖

L
1
γ
x

,

where ρ > 0 is a small parameter and

(3.3)
1
p1

=
5
6

− γ.

By the Kato-Ponce estimate and the Gagliardo-Nirenberg inequality,

‖�(1−γ)(1−α)+ρ(G5)‖Lp1 ≤C ‖�(1−γ)(1−α)+ρG‖Lp2 ‖G‖4
L4p3

≤C‖G‖a
H
α
2
‖G‖1−a

L6 ‖G‖4b
L6 ‖G‖4(1−b)

L
12

2−α
,
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where a, b ∈ (0, 1) and p2, p3 ∈ (1,∞) satisfy

(1 − γ)(1 − α) + ρ =
α

2
a,(3.4)

1
p2

=
(1 − γ)(1 − α) + ρ

2
+ a

(
1
2

− α

4

)
+

1
6
(1 − a) =

1 + 2a
6

,

1
p3

=
1
p1

− 1
p2

=
2 − a

3
− γ,

1
4p3

=
1
6
b + (1 − b)

2 − α

12
, or b = 1 − 1

α
(a + 3γ).(3.5)

We return later in the proof to check that a, b ∈ (0, 1). Combining (3.1) and (3.4)
yields∣∣∣ ∫ G5[Rα, uG · ∇]θ

∣∣∣ ≤ C‖G‖4(1−b)

L
12

2−α
‖G‖a

H
α
2
‖� 1−α

2 θ‖2γ
L2

x
‖G‖2−a+4b

L6

≤ 1
8
‖G‖6

L
12

2−α
+C

(
‖G‖a

H
α
2
‖� 1−α

2 θ‖2γ
L2

x

)( 3
2(1−b) )

′
‖G‖(2−a+4b)( 3

2(1−b) )
′

L6 ,

where (3/2(1−b))′ is the conjugate index of 3/2(1−b). We collect all the estimates
for the right-hand side of (3.2) to obtain

∂t‖G‖6
L6 + C‖G‖6

L
12

2−α
≤ C‖�γ(1−α)θ‖

L
1
γ
‖G‖Hα/2‖G‖4

L
8

1−2γ

+ C
(
‖G‖a

H
α
2
‖� 1−α

2 θ‖2γ
L2

x

)( 3
2(1−b) )

′
‖G‖(2−a+4b)( 3

2(1−b) )
′

L6 .

By the Gagliardo-Nirbenberg inequality, we have

‖G‖
L

8
1−2γ

≤ ‖G‖β1

L6‖G‖1−β1

L
12

2−α
,

where β1 = β1(γ, α) is determined from

(3.6)
1 − 2γ

8
=
β1

6
+ (1 − β1)

2 − α

12
or β1 =

12
α

(
1 − 2γ

8
+
α− 2
12

)
.

Note that our γ, α need to be such that β1(γ, α) ∈ (0, 1). We return later in the
proof to check this. We invoke (3.1) and apply Young’s inequality to obtain

‖�γ(1−α)θ‖
L

1
γ
x

‖G‖Hα/2‖G‖4

L
8

1−2γ
≤ 1

8
‖G‖6

L
12

2−α
+C(‖� 1−α

2 θ‖2γ
L2

x
‖G‖Hα/2‖G‖4β1

L6 )(
3

2(1−β1) )
′
.

Thus,

∂t‖G‖6
L6 ≤ C

(
‖G‖a

H
α
2
‖� 1−α

2 θ‖2γ
L2

x

)( 3
2(1−b) )

′
‖G‖(2−a+4b)( 3

2(1−b) )
′

L6

+ C(‖� 1−α
2 θ‖2γ

L2
x
‖G‖Hα/2 )(

3
2(1−β1) )

′‖G‖4β1( 3
2(1−β1) )

′

L6 .
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To close the argument, we need to show that the indices satisfy

(2 − a + 4b)
( 3
2(1 − b)

)′ ≤ 6, 4β1

( 3
2(1 − β1)

)′ ≤ 6,(3.7)

(a + 2γ)
( 3
2(1 − b)

)′ ≤ 2,
( 3
2(1 − β1)

)′ ≤ 2
2γ + 1

.(3.8)

Indeed, by Young’s inequality, we have

(
‖G‖a

H
α
2
‖� 1−α

2 θ‖2γ
L2

x

)( 3
2(1−b) )

′
≤ C(‖G‖2

Hα/2 + ‖� 1−α
2 θ‖2

L2
x
),

(‖� 1−α
2 θ‖2γ

L2
x
‖G‖Hα/2 )(

3
2(1−β1) )

′ ≤ C(‖G‖2
Hα/2 + ‖� 1−α

2 θ‖2
L2

x
)

and

‖G‖(2−a+4b)( 3
2(1−b) )

′

L6 ≤ C(1 + ‖G‖6
L6),

‖G‖4β1( 3
2(1−β1) )

′

L6 ≤ C(1 + ‖G‖6
L6).

This implies the differential inequality

∂t‖G‖6
L6 ≤ C(1 + ‖G‖6

L6)
(
‖G‖2

Hα/2 + ‖� 1−α
2 θ‖2

L2
x

)
.

Applying Gronwall’s inequality then yields

‖G(T )‖6
L6 ≤ (1 + ‖G(0)‖6

L6) exp(A(T )),

where

A(T ) =
∫ T

0

(
‖G‖2

Hα/2 + ‖� 1−α
2 θ‖2

L2
x

)
dt < ∞.

This finishes the argument.
It remains to analyze the inequalities (3.7) and (3.8). It turns out that (3.7) is

always satisfied. The first inequality in (3.7) in the same as

2 − a + 4b ≤ 6
(

1 − 2(1 − b)
3

)
= 2 + 4b,

which is trivially true for a > 0. The second inequality in (3.7) is always true as
well, since

4β1 ≤ 6
(

1 − 2
3
(1 − β1)

)
= 4β1 + 2.

The first condition in (3.8) simplifies to

a + 2γ ≤ 2
3

+
4
3
b,
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or, according to (3.4) and (3.5),(
1 +

4
3α

)
2
α

((1 − γ)(1 − α) + ρ) +
(

2 +
4
α

)
γ ≤ 2.

Since ρ can be taken as small as we wish, we can further reduce this inequality to

6(1 − γ)α2 + (1 − 7γ)α− 4(1 − γ) > 0,

which is equivalent to

α > α1(γ) ≡ −(1 − 7γ) +
√

(1 − 7γ)2 + 96(1 − γ)2

12(1 − γ)
.

The second condition in (3.8), namely, ( 3
2(1−β1)

)′ ≤ 2
2γ+1 is equivalent to

3
2(1 − β1)

≥ 2
1 − 2γ

, equivalently,β1 ≥ 1 + 6γ
4

.

Using (3.6) for β1, we obtain

α ≥ 12γ + 2
3 − 6γ

.

This means that α needs to satisfy the inequalities

α > max
(
α1(γ),

12γ + 2
3 − 6γ

,
4 − 2γ
5 − 2γ

)
.

The smallest value of this maximum is achieved for γ0 = 43−√
1777

36 . Thus the value
of αcr is minimized and we get

αcr =
4 − 2γ0

5 − 2γ0
=

12γ0 + 2
3 − 6γ0

=

√
1777 − 23

24
= 0.798103 . . . .

Finally, recall that we also need to check that a, b, β1 ∈ (0, 1) for γ = γ0 and
α ∈ (αcr, 1). Figure 1 below verifies this. �

We now briefly sketch the proof of Theorem 1.1.

Sketch of proof of Theorem 1.1. The global existence and smoothness
of solutions is proven in two steps. The first step uses the local well-posedness of
(1.1), which can be established through a standard procedure; see, e.g., [37, 50].
The second step extends the local solution of the first step to a global solution
via a priori estimates. Proposition 1.2 provides a global Lq-bound for G for each
2 ≤ q ≤ 6. As in [29, Proposition 7.1], we can show that, for all 0 ≤ s ≤ 3α− 2,

sup
0≤t≤T

‖G(t)‖Bs
6,∞ ≤ C(T, u0, θ0).
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Figure 1. Graphs of a, b, and β1 for γ = γ0 and α ∈ (αcr, 1).

Recall the embedding, B3α−2
6,∞ (R2) ↪→ B0∞,1(R

2) for α > 7/9. In light of it, for
α > (

√
1777 − 23)/24 > 7/9,

‖∇uG‖L∞ = ‖∇∇⊥�−1G‖L∞ ≤ ‖G‖B0
∞,1

≤ ‖G‖Bs
6,∞ .

This yields a global Lipschitz bound on uG. The rest of the proof is the same as
that in [29]; we thus omit further details. �
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