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Abstract
The magneto-micropolar equations are important models in fluid mechanics and material
sciences. This paper focuses on the global regularity problem on the 2Dmagneto-micropolar
equations with fractional dissipation. We establish the global regularity for three important
fractional dissipation cases. Direct energy estimates are not sufficient to obtain the desired
global a priori bounds in each case. To overcome the difficulties, we employ various technics
including the regularization of generalized heat operators on the Fourier frequency localized
functions, logarithmic Sobolev interpolation inequalities and themaximal regularity property
of the heat operator.
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1 Introduction

This paper studies the global (in time) regularity of solutions to the two-dimensional (2D)
magneto-micropolar equations with fractional dissipation

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t u + u · ∇u + (ν + κ)(−�)αu = −∇ p + 2κ∇ × � + b · ∇b,

∂t� + u · ∇� + 4κ� + μ (−�)γ � = 2κ∇ × u,

∂t b + u · ∇b + η(−�)βb = b · ∇u,

∇ · u = 0, ∇ · b = 0,

(u(x, 0),�(x, 0), b(x, 0)) = (u0(x),�0(x), b0(x)).

(1.1)
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Here the fractional Laplacian operator (−�)α is defined via the Fourier transform,

̂(−�)α f (ξ) = |ξ |2α f̂ (ξ).

When α = β = γ = 1, (1.1) becomes the magneto-micropolar equations with standard
Laplacian operator dissipation. Micropolar fluids represent a class of fluids with nonsym-
metric stress tensor (called polar fluids) such as fluids consisting of suspending particles,
dumbbell molecules, etc. The magneto-micropolar equations model the motion of electri-
cally conducting micropolar fluids in the presence of a magnetic field. They govern a wide
range of fluids such as the motion of aggregates of small solid ferromagnetic particles in
viscous magnetic fluids. The magneto-micropolar equations are derived by combining the
equations of continuity, momentum,Maxwell and angular momentum (see, e.g., [4,14]). The
magneto-micropolar equations have recently attracted considerable attention in the com-
munity of mathematical fluids (see, e.g. [5–11,13,22,25,26,28,31,32,34,35]). Physically u
denotes the velocity of the fluid, p the pressure, � denotes the micro-rotation velocity, b the
magnetic field, ν the kinematic viscosity, κ the vortex viscosity, μ the angular viscosity, and
η the magnetic diffusivity. In the 2D case, � is a scalar function and ∇ × � really means
∇ × (0, 0,�) = (∂x2�,−∂x1�), which represents a 2D vector. For the 2D velocity u, the
vorticity ω = ∇ × u = ∂x1u2 − ∂x2u1 is a scalar function.

We remark that (1.1) with the fractional Laplacian operators is physically relevant. Replac-
ing the standard Laplacian operators, these fractional diffusion operators model the so-called
anomalous diffusion, a much studied topic in physics, probability and finance (see, e.g.,
[1,16,23]). Especially, (1.1) allows us to study long-range diffusive interactions. In addition,
(1.1) with hyperviscosity (α > 1) is used in turbulence modeling to control the effective
range of the non-local dissipation and to make numerical resolutions more efficient (see,
e.g., [12]). Two of our main theorems stated below, Theorems 1.1 and 1.2, deal with exactly
the hyperviscosity case. The results presented here assess the validity of employing (1.1)
with hyperviscosity in turbulence modeling.

Mathematically, by considering (1.1), we can examine a family of systems simultane-
ously. Our aim here is to establish the global regularity for (1.1) with the smallest amount
of dissipation and broaden the current global well-posedness results on magneto-micropolar
equations. The general approach to establish the global existence and regularity results con-
sists of two main steps. The first step assesses the local (in time) well-posedness while the
second extends the local solution into a global one by obtaining global (in time) a priori
bounds. For the systems of equations concerned here, the local well-posedness follows from
standard approach such as successive approximations. We are able to obtain the global reg-
ularity for three important fractional dissipation cases.

In the first case, we set ν > 0, κ > 0, η > 0 and μ = 0 in (1.1). No dissipation due to the
angular viscosity is involved. More precisely, we consider

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t u + u · ∇u + (ν + κ)(−�)αu = −∇ p + 2κ∇ × � + b · ∇b,

∂t� + u · ∇� + 4κ� = 2κ∇ × u,

∂t b + u · ∇b + η(−�)βb = b · ∇u,

∇ · u = 0, ∇ · b = 0,

(u(x, 0),�(x, 0), b(x, 0)) = (u0(x),�0(x), b0(x)).

(1.2)

Our regularity result can be stated as follows.

Theorem 1.1 Consider (1.2) with ν > 0, κ > 0, η > 0, and

1 < α < 2, 0 < β < 1, α + β ≥ 2. (1.3)
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Global regularity for 2D fractional magneto-micropolar equations 777

Assume (u0,�0, b0) ∈ Hs(R2) with s > 2, ∇ · u0 = 0 and ∇ · b0 = 0. Then (1.2) has a
unique global solution (u,�, b) satisfying, for any T > 0,

(u,�, b) ∈ L∞([0, T ]; Hs(R2)).

The proof of Theorem 1.1 relies on the global a priori bound for ‖(u,�, b)‖Hs . When α

and β satisfy (1.3), the global L2-bound follows directly from the equations. However, for
0 < β < 1, it is not easy to obtain the global bounds for the derivatives of (u,�, b). Due to
the lack of dissipation in the equation of �, we need a global bound for

∫ t
0 ‖∇u(τ )‖L∞ dτ

or for a quantity that is close to the regularity level of ‖∇u‖L∞ . In fact, our main effort is
devoted to the global bound, for some q ∈ (1,∞) and for any t > 0,

∫ t

0
‖� 2

q ω‖Lq dt < ∞, (1.4)

where ω = ∇ × u represents the vorticity. ‖� 2
q ω‖Lq is close to ‖∇u(τ )‖L∞ in the sense

that, for σ > 2,

‖∇u‖L∞ ≤ C1(1 + ‖u‖L2) + C2 ‖� 2
q ω‖Lq log(e + ‖�σ u‖L2).

It is easy to check that the vorticity ω obeys

∂tω + u · ∇ω + (ν + κ)(−�)αω = b · ∇ j − 2κ ��, (1.5)

where j = ∇ ×b denotes the current density. However, direct energy estimates involving the
vorticity equation in (1.5) do not yield (1.4) due to the presence of the term �� and the lack
of global bound on the derivatives of �. We developed two different approaches to establish
(1.4). The first is to hide the term �� in (1.5) and work with the combined quantity

G = ω + 2κ

ν + κ
Rα� with Rα = (−�)−α�.

G satisfies

∂t G + u · ∇G + (ν + κ)(−�)αG

= 4κ2

ν + κ
Rαω − 2κ

ν + κ
[Rα, u · ∇]� + b · ∇ j − 4κ2

ν + κ
Rα�.

By considering the equations of G and of j , we are then able to obtain a global L2-bound for
G and j . By showing a global bound for � in H−1, we able to obtain a global for ω in L2 or
u in H1. Through an iterative process, we establish (1.4). The details are given Sect. 2. This
approach is useful in handling coupled systems of equations with high derivative coupling
terms. We remark that the practice of working with combined quantities has been exercised
in the study of several other equations (see, e.g., [8,15,17]).

An alternative approach for proving (1.4) is to first obtain extra regularity on b (beyond
what the basic L2 estimate provides) and then rewrite the vorticity equation in an integral form
via the fractional Laplacian operator. Taking full advantage of the generalized heat operator
e−(−�)α t and controlling ‖�(t)‖Lq in terms of

∫ t
0 ‖ω(τ)‖Lq dτ , we are able to prove (1.4).

This alternative approach is provided in the appendix.
The global regularity for (1.2) with α+β < 2with 0 < β < 1 is currently open. It appears

extremely difficult to establish the global H1-bound on the solutions when α + β < 2 with
β < 1. In fact, even in the special case when � ≡ 0 [(1.2) then becomes the magneto-
hydrodynamics equations], the global well-posedness result still requires dissipation only
logarithmically weaker than the dissipation level α + β = 2 (see [30]).
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778 H. Shang, J. Wu

Yamazaki has previously established the global regularity of (1.2) when α = 1 and β = 1
[34]. Even this case is not trivial. The global regularitywas achieved in [34] by fully exploiting
the structure of the system and bounding the Lebesgue norm of the first derivatives of the
solution.

The second fractional dissipation case examined here involves no angular viscosity and
no magnetic diffusivity, namely μ = 0 and η = 0 in (1.1). More precisely, we consider

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t u + u · ∇u + (ν + κ)(−�)αu = −∇ p + 2κ∇ × � + b · ∇b,

∂t� + u · ∇� + 4κ� = 2κ∇ × u,

∂t b + u · ∇b = b · ∇u,

∇ · u = 0, ∇ · b = 0,

(u(x, 0),�(x, 0), b(x, 0)) = (u0(x),�0(x), b0(x)).

(1.6)

We establish that (1.6) with α = 2 possesses a unique global solution when (u0,�0, b0) is
sufficiently smooth, as stated in the following theorem.

Theorem 1.2 Consider (1.6) with ν > 0, κ > 0 and α = 2. Assume (u0,�0, b0) ∈ Hs(R2)

with s > 2, ∇ · u0 = 0 and ∇ · b0 = 0. Then (1.6) has a unique global solution (u,�, b)

satisfying, for any T > 0,

(u,�, b) ∈ L∞([0, T ]; Hs(R2)).

The effort of proving Theorem 1.2 is devoted to the global bounds for ‖(u,�, b)‖Hs . The
global L2 bound follows from (1.6) directly, but the global H1-bound relies on a logarithmic
interpolation inequality. Due to the lack of dissipation in the equations of � and b, it appears
to be difficult to establish the global H1 bound for α < 2. We remark that Theorem 1.2 with
� ≡ 0 reduces to a global result on the 2D magneto-hydrodynamic equation [33].

The third fractional dissipation case dealt with here is given by
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t u + u · ∇u + (ν + κ)(−�)αu = −∇ p + 2κ∇ × � + b · ∇b,

∂t� + u · ∇� + 4κ� − μ�� = 2κ∇ × u,

∂t b + u · ∇b − η�b = b · ∇u,

∇ · u = 0, ∇ · b = 0,

(u(x, 0),�(x, 0), b(x, 0)) = (u0(x),�0(x), b0(x)).

(1.7)

We show that (1.7) with any α > 0 always has a unique global solution.

Theorem 1.3 Consider (1.7) with α > 0, ν > 0, κ > 0, μ > 0 and η > 0. Assume
(u0,�0, b0) ∈ Hs(R2) with s > 2, ∇ · u0 = 0 and ∇ · b0 = 0. Then (1.7) has a unique
global solution (u,�, b) satisfying, for any T > 0,

(u,�, b) ∈ L∞([0, T ]; Hs(R2)).

To prove Theorem 1.3, our focus is again on the global a priori bound for ‖(u,�, b)‖Hs .
In this case, there is no essential difficulty to obtain the global L2 and global H1-bounds, but
we need to resort to the maximal regularity principle of the heat operator in order to obtain
global space-time Lq

t L p
x bounds for the vorticity ω and the current density j . These bounds

allow us to further obtain the global H2 and Hs bounds.
The rest of this paper is organized as follows. Sections 2, 3 and 4 are devoted to the proofs

of Theorems 1.1, 1.2 and 1.3, respectively. The last part of this paper is an appendix, which
presents an alternative approach to the global H1-bound for solutions of (1.2).
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Global regularity for 2D fractional magneto-micropolar equations 779

2 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1, stating the global existence and unique-
ness of solutions to the 2D magneto-micropolar equations (1.2). The key step is to establish
the global a priori bound on the solution (u,�, b) in Hs . More precisely, we prove the
following main proposition.

Proposition 2.1 Consider (1.2) with ν > 0, κ > 0, η > 0, and α and β satisfying

1 < α < 2, 0 < β < 1, α + β ≥ 2.

Assume (u0,�0, b0) ∈ Hs(R2) with s > 2, and ∇ · u0 = 0, ∇ · b0 = 0. Then the corre-
sponding solution of (1.2) is globally bounded in Hs(R2).

The proof of Proposition 2.1 requires several steps. We also need some preparatory facts.
For the sake of clarity, we divide the rest of this section into four subsections. The first
subsection provides several calculus inequalities and logarithmic interpolation inequalities
involving fractional Laplacian operators.

2.1 Inequalities involving fractional Laplacian operators

This subsection prepares several tools needed for the proofs of the theorems. The first contains
two calculus inequalities involving fractional differential operators. They can be found in

many references, e.g., [18], [19, p. 334]. We recall that � = (−�)
1
2 denotes the Zygmund

operator.

Lemma 2.2 Let s > 0. Let 1 < r < ∞ and 1
r = 1

p1
+ 1

q1
= 1

p2
+ 1

q2
with q1, p2 ∈ (1,∞)

and p1, q2 ∈ [1,∞]. Then,

‖[�s, f ]g‖Lr ≤ C
(‖∇ f ‖L p1 ‖�s−1g‖Lq1 + ‖�s f ‖L p2 ‖g‖Lq2

)

and

‖�s( f g)‖Lr ≤ C
(‖�s f ‖L p1 ‖g‖Lq1 + ‖ f ‖L p2 ‖�s g‖Lq2

)
,

where C’s are constants depending on the indices s, r , p1, q1, p2 and q2.

The second tool provides an upper bound for the action of the generalized heat operator
on functions with Fourier transform supported on an annulus. The bound for the standard
heat operator can be found in [2]. This generalization can be established by modifying the
original proof.

Lemma 2.3 Let A = {ξ ∈ R

d : r1 ≤ |ξ | ≤ r2} with 0 < r1 < r2 being constants. Let α > 0.
Then, there exist c > 0 and C > 0 such that, for p ∈ [1,∞] and f satisfying

f ∈ L p(Rd), supp f̂ ⊂ λA,

we have, for t > 0 and λ > 0,

‖e−(−�)α t f ‖L p(Rd ) ≤ C e−ctλ2α ‖ f ‖L p(Rd ).

Another very important class of tools are the logarithmic Besov interpolation inequalities.
The version presented here is different from the standard ones and we provide a proof. In the
following lemma, B0

q,∞ denotes a Besov space.
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780 H. Shang, J. Wu

Lemma 2.4 For s > 2 and q ∈ (1,∞), there exists two constants C1 and C2 such that

‖∇u‖L∞ ≤ C1(1 + ‖u‖L2) + C2 ‖� 2
q ∇u‖B0

q,∞ log(e + ‖�su‖L2). (2.1)

Especially,

‖∇u‖L∞ ≤ C1(1 + ‖u‖L2) + C2 ‖� 2
q ∇u‖Lq log(e + ‖�su‖L2).

In addition, a variant of (2.1) is to replace ‖� 2
q ∇u‖B0

q,∞ by the H1-norm of ω = ∇ × u,

‖∇u‖L∞ ≤ C1(1 + ‖u‖L2) + C2 ‖ω‖H1 log(e + ‖�su‖L2). (2.2)

To help understand this lemma and its proof, we recall the definitions of the Fourier
localization operators and the Besov spaces, and provide some closely related facts below.
The materials presented here can be found in several books and many papers (see, e.g.,
[2,3,24,27,29]).

We start with several notational conventions. S denotes the usual Schwarz class and S ′ its
dual, the space of tempered distributions. To introduce the Littlewood-Paley decomposition,
we write for each j ∈ Z

A j =
{
ξ ∈ R

d : 2 j−1 ≤ |ξ | < 2 j+1
}

.

The Littlewood–Paley decomposition asserts the existence of a sequence of functions
{� j } j∈Z ∈ S such that

supp�̂ j ⊂ A j , �̂ j (ξ) = �̂0(2
− jξ) or � j (x) = 2 jd�0(2

j x),

and

∞∑

j=−∞
�̂ j (ξ) =

{
1 , if ξ ∈ R

d\{0},
0 , if ξ = 0.

Therefore, for a general function ψ ∈ S, we have
∞∑

j=−∞
�̂ j (ξ)ψ̂(ξ) = ψ̂(ξ) for ξ ∈ R

d\{0}.

We now choose � ∈ S such that

�̂(ξ) = 1 −
∞∑

j=0

�̂ j (ξ), ξ ∈ R

d .

Then, for any ψ ∈ S,

� ∗ ψ +
∞∑

j=0

� j ∗ ψ = ψ

and hence

� ∗ f +
∞∑

j=0

� j ∗ f = f (2.3)
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Global regularity for 2D fractional magneto-micropolar equations 781

in S ′ for any f ∈ S ′. To define the inhomogeneous Besov space, we set

� j f =
⎧
⎨

⎩

0, if j ≤ −2,
� ∗ f , if j = −1,
� j ∗ f , if j = 0, 1, 2, . . . .

(2.4)

Besides the Fourier localization operators � j , the partial sum S j is also a useful notation.
For an integer j ,

S j ≡
j−1∑

k=−1

�k,

For any f ∈ S ′, the Fourier transform of S j f is supported on the ball of radius 2 j . It is clear
from (2.3) that S j → I d as j → ∞ in the distributional sense. In addition, the notation �̃k ,
defined by

�̃k = �k−1 + �k + �k+1,

is also useful and has been used in the previous sections.

Definition 2.5 The inhomogeneous Besov space Bs
p,q with s ∈ R and p, q ∈ [1,∞] consists

of f ∈ S ′ satisfying

‖ f ‖Bs
p,q

≡ ‖2 js‖� j f ‖L p ‖lq < ∞,

where � j f is as defined in (2.4).

Many frequently used function spaces are special cases of Besov spaces. The following
proposition lists some useful equivalence and embedding relations. For any s ∈ R,

Hs ∼ Bs
2,2.

For any s ∈ R and 1 < q < ∞,

Bs
q,min{q,2} ↪→ W s

q ↪→ Bs
q,max{q,2}.

For any non-integer s > 0, the Hölder space Cs is equivalent to Bs∞,∞.
Bernstein’s inequalities are very useful in dealing with Fourier localized functions. These

inequalities trade integrability for derivatives. The following provides Bernstein type inequal-
ities for fractional derivatives. The upper bounds also hold when the fractional operators are
replaced by partial derivatives.

Lemma 2.6 Let α ≥ 0. Let 1 ≤ p ≤ q ≤ ∞.

1. If f satisfies

supp f̂ ⊂ {ξ ∈ R

d : |ξ | ≤ K2 j },
for some integer j and a constant K > 0, then

‖(−�)α f ‖Lq (Rd ) ≤ C1 2
2α j+ jd( 1

p − 1
q )‖ f ‖L p(Rd ).

2. If f satisfies
supp f̂ ⊂ {ξ ∈ R

d : K12
j ≤ |ξ | ≤ K22

j }
for some integer j and constants 0 < K1 ≤ K2, then

C1 2
2α j‖ f ‖Lq (Rd ) ≤ ‖(−�)α f ‖Lq (Rd ) ≤ C2 2

2α j+ jd( 1
p − 1

q )‖ f ‖L p(Rd ),
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782 H. Shang, J. Wu

where C1 and C2 are constants depending on α, p and q only.

We are now ready to prove Lemma 2.4.

Proof of Lemma 2.4 For an integer N > 0 to be determined later, we write

‖∇u‖L∞ ≤ ‖�−1∇u‖L∞ +
∑

0≤m≤N

‖�m∇u‖L∞ +
∑

m≥N+1

‖�m∇u‖L∞ .

It then follows from Bernstein’s inequality that

‖∇u‖L∞ ≤ C ‖u‖L2 +
∑

0≤m≤N

2
2m
q ‖∇�mu‖Lq +

∑

m≥N+1

22m‖�mu‖L2

≤ C ‖u‖L2 +
∑

0≤m≤N

‖� 2
q ∇�mu‖Lq + C

∑

m≥N+1

2m(2−s)‖�s�mu‖L2

≤ C ‖u‖L2 + C N sup
0≤m≤N

‖� 2
q ∇�mu‖Lq + C 2N (2−s)‖�su‖L2 . (2.5)

Since s > 2, we can take N such that 2N (2−s)‖�su‖L2 ≤ C , namely

N = 1 + INT

[
1

(s − 2) ln 2
log(e + ‖�su‖L2)

]

,

where INT denotes the integer part of a real number. Inserting N in (2.5) and noticing that

sup
0≤m≤N

‖� 2
q ∇�mu‖Lq ≤ ‖� 2

q ∇u‖B0
q,∞ ,

we obtain (2.1). (2.2) is obtained by setting q = 2 in (2.1). This completes the proof of
Lemma 2.4. ��

2.2 Global L2-bound for (u,Ä, b) and global bound for ‖3�b‖L2
This subsection provides the global L2-bound and a global bound for ‖�σ b‖L2 for any
0 < σ < α − 1. To obtain the global L2-bound, we dot (1.2) with (u,�, b) to obtain

1

2

d

dt
‖(u,�, b)‖2L2 + (ν + κ)‖�αu‖2L2 + η‖�βb‖2L2

= 2κ
∫

(∇ × �) · u + 2κ
∫

(∇ × u) · � = 4κ
∫

(∇ × u) · �

≤ 4κ‖∇u‖L2‖�‖L2 ≤ 4κ‖u‖1−
1
α

L2 ‖�αu‖
1
α

L2‖�‖L2

≤ ν + κ

2
‖�αu‖2L2 + C

(‖u‖2L2 + ‖�‖2L2

)
.

Gronwall’s inequality then leads to

‖(u(t),�(t), b(t))‖2L2 + (ν + κ)

∫ t

0
‖�αu‖2L2dτ

+ η

∫ t

0
‖�βb‖2L2dτ ≤ C

(‖u0,�0, b0)‖L2 , t
)

< ∞. (2.6)

A better regularity can be further obtained for b by estimates involving the equation of b
only. This improved regularity for b is crucial for the global time integrability obtained in
the following subsection.

123



Global regularity for 2D fractional magneto-micropolar equations 783

Lemma 2.7 Assume that (u,�, b) solves (1.2). Assume α and β satisfy

1 < α < 2, 0 < β < 1, α + β ≥ 2.

Then b obeys the following global bound, for any t > 0,

‖�σ b(t)‖2L2 + η

∫ t

0
‖�β+σ b(τ )‖2L2 dτ ≤ C(t, u0, b0,�0) < ∞ for any 0 < σ < α − 1.

Proof of Lemma 2.7 We focus on the case when α + β = 2 since the case α + β > 2 is even
simpler. Assume 0 < σ < α − 1. Applying �σ to the equation of b in (1.2) and dotting the
resulting equation with �σ b, we have

1

2

d

dt
‖�σ b‖2L2 + η‖�β+σ b‖2L2 = J1 + J2, (2.7)

where

J1 = −
∫

�σ (u · ∇b) · �σ b, J2 =
∫

�σ (b · ∇u) · �σ b.

Due to ∇ · u = 0, we write J1 in the commutator form

J1 = −
∫

(�σ (u · ∇b) − u · ∇�σ b) · �σ b.

By Lemma 2.2, Sobolev’s inequality and Young’s inequality,

|J1| ≤ C ‖�σ b‖L2
(‖�σ ∇u‖L p1 ‖b‖L p2 + ‖∇u‖L p3 ‖�σ b‖L p4

)

≤ C ‖�σ b‖L2 ‖�αu‖L2 ‖�β+σ b‖L2

≤ η

4
‖�β+σ b‖2L2 + C ‖�αu‖2L2 ‖�σ b‖2L2 ,

where 2 < p1, p2, p3, p4 < ∞ have been chosen to fit the Sobolev inequalities used above,

1

p1
+ 1

p2
= 1

2
,

1

p1
− 1 + σ

2
= 1 − α

2
,

1

p2
= 1 − (β + σ)

2
,

1

p3
+ 1

p4
= 1

2
,

1

p3
= 2 − α

2
,

1

p4
= 1 − β

2
.

J2 obeys exactly the same bound as J1. Inserting these bounds in (2.7) and applying Gron-
wall’s inequality, we obtain the desired global bound after invoking the global L2 bound for
u in (2.6). This completes the proof of Lemma 2.7. ��

2.3 Global time integrability of ‖3
2
q !‖Lq

The major result of this subsection is the global bound stated in the following proposition.

Proposition 2.8 Assume that (u,�, b) solves (1.2). Assume α and β satisfy

1 < α < 2, 0 < β < 1, α + β ≥ 2.
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784 H. Shang, J. Wu

Then, (u,�, b) obeys the following global a priori bounds,

‖ω(t)‖L2 ≤ C(t, u0,�0, b0) < ∞;
‖�(t)‖Lr ≤ C(t, u0,�0, b0) < ∞ for any 2 ≤ r < ∞;
∫ t

0
‖�2α−2ω(τ)‖Lq dτ ≤ C(t, u0,�0, b0) < ∞ for any 2 ≤ q ≤ 2

α − 1
. (2.8)

As a special consequence, there is 1 < q < ∞ such that
∫ t

0
‖� 2

q ω(τ)‖Lq dτ ≤ C(t, u0,�0, b0) < ∞.

Proof of Proposition 2.8 To obtain the global H1-bound and the time integrability of

‖� 2
q ω‖Lq , we make use of the equations of ω = ∇ × u and of j = ∇ × b,

{
∂tω + u · ∇ω + (ν + κ)(−�)αω = b · ∇ j − 2κ ��,

∂t j + u · ∇ j + η(−�)β j = b · ∇ω + Q(∇u,∇b),
(2.9)

where Q(∇u,∇b) = 2∂1b1(∂2u1 + ∂1u2) − 2∂1u1(∂2b1 + ∂1b2). We will just focus on the
case when 1 < α ≤ 3

2 . The case
3
2 < α < 2 can be treated similarly. It appears that direct

energy estimates on (2.9) would not lead to the desired global bound, due to the presence of
the bad term −��. The idea here is to hide this term by working with a combined quantity.
More precisely, we set

Rα = (−�)−α�, G = ω + 2κ

ν + κ
Rα�.

The vorticity equation becomes

∂tω + u · ∇ω + (ν + κ)(−�)α G = b · ∇ j .

To obtain an equation for G, we apply 2κ
ν+κ

Rα to the second equation in (1.2) to get

∂t

(
2κ

ν + κ
Rα�

)

+ u · ∇
(

2κ

ν + κ
Rα�

)

+ 4κ2

ν + κ
Rα� = − 2κ

ν + κ
[Rα, u · ∇]� + 4κ2

ν + κ
Rαω.

Adding them up yields

∂t G + u · ∇G + (ν + κ)(−�)αG

= 4κ2

ν + κ
Rαω − 2κ

ν + κ
[Rα, u · ∇]� + b · ∇ j − 4κ2

ν + κ
Rα�. (2.10)

We estimate ‖G‖L2 and ‖ j‖L2 . Taking the inner product of (2.10) with G and the equation
of j with j , we obtain

1

2

d

dt
‖G‖2L2 + (ν + κ)‖�αG‖2L2 = 4κ2

ν + κ

∫

Rαω G − 2κ

ν + κ

∫

[Rα, u · ∇]� G

+
∫

b · ∇ j(ω + 2κ

ν + κ
Rα�) − 4κ2

ν + κ

∫

Rα� G,

1

2

d

dt
‖ j‖2L2 + η‖�β j‖2L2 =

∫

b · ∇ω j +
∫

Q(∇u,∇b) j .

Adding them up yields

1

2

d

dt
‖(G, j)‖2L2 + (ν + κ)‖�αG‖2L2 + η‖�β j‖2L2 = L1 + L2 + L3 + L4 + L5, (2.11)
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where

L1 = 4κ2

ν + κ

∫

Rαω G, L2 = − 4κ2

ν + κ

∫

Rα� G, L3 = 2κ

ν + κ

∫

b · ∇ j Rα�,

L4 = − 2κ

ν + κ

∫

[Rα, u · ∇]� G, L5 = −
∫

Q(∇u,∇b) j .

The terms on the right can be estimated as follows. For α ≤ 3
2 ,

|L1| ≤ 4κ2

ν + κ
‖Rαω‖L2‖G‖L2 = 4κ2

ν + κ
‖�3−2αu‖L2‖G‖L2

≤ C ‖u‖
3α−3

α

L2 ‖�αu‖
3−2α

α

L2 ‖G‖L2 ,

where we note that 3−2α
α

< 1. Recalling G = ω + 2κ
ν+κ

Rα�, we have

|L2| ≤ 2κ ‖G‖2L2 + 2κ ‖u‖L2 ‖∇G‖L2

≤ 2κ ‖G‖2L2 + 2κ ‖u‖L2 ‖G‖1−
1
α

L2 ‖�αG‖
1
α

L2

≤ 1

2
(ν + κ)‖�αG‖2L2 + C

(

1 + ‖u‖
2α

α−1

L2

)

‖G‖
2α−2
2α−1

L2 .

For α ≤ 3
2 and α + β = 2, by Sobolev’s inequality,

|L3| ≤ 2κ

ν + κ

∣
∣
∣
∣

∫

�3−2α(bj)�

∣
∣
∣
∣ ≤ 2κ

ν + κ
‖�3−2α(bj)‖L2‖�‖L2

≤ C ‖�3−2αb‖
L

2
2−α

‖ j‖
L

2
1−β

‖�‖L2 + C ‖b‖
L

2
1−β

‖�3−2α j‖ 2
2−α

‖�‖L2

≤ C ‖�βb‖L2‖�β j‖L2 ‖�‖L2

≤ η

4
‖�β j‖2L2 + C ‖�βb‖2L2 ‖�‖2L2 .

L4 can be controlled without appealing to the commutator structure. We split L4 into two
terms,

L4 = 2κ

ν + κ

∫

Rα∇ · (u�) G − 2κ

ν + κ

∫

u · ∇Rα� G.

After shifting all derivatives from � and applying Lemma 2.2, we obtain

|L4| ≤ 2κ

ν + κ
‖�‖L2 ‖u‖Lq1 ‖�3−2αG‖Lq2 + 2κ

ν + κ
‖�‖L2 ‖�3−2αu‖Lq2 ‖G‖Lq1 , (2.12)

where q1, q2 ∈ [2,∞] and 1
q1

+ 1
q2

= 1
2 . The terms on the right of (2.12) can be bounded via

the dissipation term ‖�αG‖L2 and the time integral of ‖�αu‖L2 . Intuitively, for 1 < α ≤ 3
2 ,

‖u‖Lq1 can be bounded by ‖�αu‖L2 and ‖�3−2αu‖Lq2 by ‖�αG‖L2 . More careful estimates
are given below. Due to 3 − 2α < α, by Sobolev’s inequality,

‖u‖Lq1 ≤ C ‖u‖σ1
L2 ‖�αu‖1−σ1

L2 , ‖�3−2αG‖Lq2 ≤ C ‖G‖σ2
L2 ‖�αG‖1−σ2

L2 ,
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where σ1, σ2 ∈ [0, 1] and
1

q1
= 1

2
σ1 + (1 − σ1)

(
1

2
− α

2

)

= 1

2
− (1 − σ1)

α

2
,

1

q2
− 3 − 2α

2
= 1

2
σ2 + (1 − σ2)

(
1

2
− α

2

)

= 1

2
− (1 − σ2)

α

2
,

3 − 2α ≤ α(1 − σ2).

Therefore, the first term in (2.12) is bounded by

2κ

ν + κ
‖�‖L2 ‖u‖Lq1 ‖�3−2αG‖Lq2

≤ ν + κ

4
‖�αG‖2L2 + C ‖�‖

2
1+σ2
L2 ‖u‖

2σ1
1+σ2
L2 ‖�αu‖

2(1−σ1)

1+σ2
L2 ‖G‖

2σ2
1+σ2
L2 .

It is not hard to check that, for 1 < α ≤ 3
2 , the indices q1, q2, σ1, σ2 can be selected. The

second term in (2.12) can be similarly bounded. Finally we turn to L5, which can be bounded
by

|L5| ≤ C ‖∇u‖
L

2
β
‖∇b‖

L
2

1−β
‖ j‖L2

≤ C‖u‖
α+β−2

α

L2 ‖�αu‖
2−β
α

L2 ‖�β j‖L2‖ j‖L2

≤ η

4
‖�β j‖2L2 + C‖u‖

2(α+β−2)
α

L2 ‖�αu‖
2(2−β)

α

L2 ‖ j‖2L2 .

Here we note that 2(2−β)
α

≤ 2 due to α +β ≥ 2. Inserting the bounds for L1, L2, L3, L4 and
L5 in (2.11) and applying Gronwall’s inequality yields the following global bound,

‖(G, j)(t)‖2L2 + (ν + κ)

∫ t

0
‖�αG‖2L2 dτ + η

∫ t

0
‖�β j‖2L2 dτ ≤ C . (2.13)

Due to the relation G = ω+ 2κ
ν+κ

Rα�, we would like to obtain a global bound on ‖ω‖L2 . We
need to boundRα�, but we have difficulty bounding it directly. Insteadwe bound ‖Rα�‖H−1

first. Applying �−1 to the �-equation in (1.2) and dotting by �−1� yields

1

2

d

dt
‖�−1�‖2L2 + 2κ‖�−1�‖2L2 = −

∫

�−1(u · ∇�)�−1� + 2κ
∫

�−1��−1ω

≤‖u �‖L2 ‖�−1�‖L2 + 2κ ‖u‖L2 ‖�−1�‖L2

≤ (‖u‖L∞ ‖�‖L2 + 2κ‖u‖L2
) ‖�−1�‖L2 .

Due to the Sobolev inequality

‖u‖L∞ ≤ C ‖u‖1−
1
α

L2 ‖�αu‖
1
α

L2 ,

‖u‖L∞ is time integrable. We then obtain a global bound for ‖�−1�‖L2 . As a consequence,
for 1 < α ≤ 3

2 ,
‖Rα�‖L2 ≤ ‖�‖3−2α

L2 ‖�−1�‖2α−2
L2 < ∞ (2.14)

for any t > 0. Combining (2.13) and (2.14) yields a global bound on ω,

‖ω(t)‖L2 < ∞. (2.15)
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We further show the following global time integrability,
∫ t

0
‖�2α−2ω(τ)‖Lq dτ < ∞ for any 2 ≤ q ≤ 2

α−1 . (2.16)

To do so, we first show that

‖�(t)‖Lr < ∞ for any 2 ≤ r < ∞. (2.17)

(2.16) and (2.17) are obtained via an iterative process. First, we use the facts
∫ t

0
‖�αG(τ )‖2L2 dτ < ∞, G = ω + 2κ

ν + κ
Rα�, ‖�‖L2 < ∞,

to obtain, for α ≤ 3
2 ,

‖�2α−2ω‖L2 ≤ ‖�2α−2G‖L2 + ‖�‖L2 ≤ C ‖G‖L2 + C ‖�αG‖L2 + ‖�‖L2 .

Consequently,
∫ t

0
‖�2α−2ω‖2L2 dτ < ∞.

This information allows to show that, for r1 = 2
3−2α

‖�‖Lr1 < ∞. (2.18)

Taking Lr1 norm yields

d

dt
‖�‖r1

Lr1 + 2κ‖�‖r1
Lr1 = 2κ

∫

ω �|�|r1−2 ≤ 2κ‖ω‖Lr1 ‖�‖r1−1
Lr1 .

Since ‖ω‖Lr1 ≤ C ‖�2α−2ω‖L2 , we then obtain (2.18). We can then use (2.18) to further
show that

∫ t

0
‖�2α−2ω‖Lr1 dτ ≤

∫ t

0
‖�2α−2G‖Lr1 dτ + 2κ

ν + κ

∫ t

0
‖�‖Lr1 dτ < ∞.

This information can then be further used to show that, if α < 5
4 ,

‖�‖Lr2 < ∞, r2 = 2

5 − 4α
.

This process can be repeated until q is sufficiently large as long as
∫ t

0
‖�2α−2G‖2Lq dt < ∞.

This is exactly how q in (2.16) is restricted. This completes the proof for (2.15) and (2.16),
and thus the proof of Proposition 2.8. ��

2.4 Global Hs bound

This subsection completes the proof of Proposition 2.1 by establishing the global Hs bound.

123



788 H. Shang, J. Wu

Proof of Proposition 2.1 We first note the global bound, for any q ∈ (1,∞) and for any fixed
t > 0,

‖�(t)‖Lq < ∞, (2.19)

according to (2.8). Applying �s to the equations in (1.2) and dotting the resulting equations
with (�su,�s�,�sb) yields

1

2

d

dt
‖(�su,�s�,�sb)‖2L2 + (ν + κ)‖�s+αu‖2L2 + η‖�s+βb‖2L2 + 4κ‖�s�‖2L2

= K1 + K2 + K3 + K4 + K5 + K6 + K7, (2.20)

where

K1 = −
∫

�su · [�s, u · ∇]u, K2 = 2κ
∫

�s∇ × � · �su,

K3 =
∫

�su · �s(b · ∇b), K4 = −
∫

�s� · [�s, u · ∇]�,

K5 = 2κ
∫

�sω �s�, K6 = −
∫

�sb · [�s, u · ∇]b,

K7 =
∫

�sb · �s(b · ∇u).

The terms on the right-hand side can be estimated as follows. By Lemma 2.2,

|K1| ≤ C ‖∇u‖L∞ ‖�su‖2L2 .

By Hölder’s inequality and the relation ω = ∇ × u,

|K2|, |K5| ≤ C ‖�s�‖L2‖�s+1u‖L2 .

Using the divergence-free condition ∇ · b = 0 to shift one derivative to u, we have

|K3| ≤ C ‖�s+1u‖
L

2
2−α

‖�sb‖L2 ‖b‖
L

2
1−β

≤ C ‖�s+αu‖L2 ‖�sb‖L2 ‖�βb‖L2

≤ ν + κ

8
‖�s+αu‖2L2 + C ‖�βb‖2L2 ‖�sb‖2L2 .

By Lemma 2.2,

|K4| ≤ C ‖∇u‖L∞ ‖�s�‖2L2 + C ‖�s�‖L2 ‖�1+su‖
L

2
2−α

‖�‖
L

2
α−1

≤ C ‖∇u‖L∞ ‖�s�‖2L2 + C ‖�s�‖L2 ‖�s+αu‖L2 ‖�‖
L

2
α−1

≤ ν + κ

8
‖�s+αu‖2L2 + C ‖∇u‖L∞ ‖�s�‖2L2 + C ‖�‖2

L
2

α−1
‖�s�‖2L2 .

As in the estimate for |K3|, by Lemma 2.2, K6 and K7 are bounded by

|K6|, |K7| ≤ C ‖∇u‖L∞ ‖�sb‖2L2 + C ‖�sb‖L2 ‖�s+1u‖
L

2
2−α

‖b‖
L

2
1−β

≤ ν + κ

8
‖�s+αu‖2L2 + C ‖∇u‖L∞ ‖�sb‖2L2 + C ‖�βb‖2L2 ‖�sb‖2L2 .
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Inserting the bounds above in (2.20), we have

d

dt
‖(�su,�s�,�sb)‖2L2 + (ν + κ)‖�s+αu‖2L2 + η‖�s+βb‖2L2 + 4κ‖�s�‖2L2

≤ C ‖∇u‖L∞ ‖(�su,�s�,�sb)‖2L2 + C ‖�s�‖L2‖�s+1u‖L2

+ C ‖�βb‖2L2 ‖�sb‖2L2 + C ‖�‖2
L

2
α−1

‖�s�‖2L2 .

We bound ‖∇u‖L∞ by Lemma 2.4,

‖∇u‖L∞ ≤ C1(1 + ‖u‖L2) + C2 ‖� 2
q ω‖B0

q,∞ log(e + ‖�su‖L2).

By Proposition 2.8,
∫ t

0
‖� 2

q ω(τ)‖B0
q,∞ dτ < ∞.

In addition, due to the global bounds in (2.6) and (2.19), or
∫ t

0
‖�βb‖2L2 dτ < ∞,

∫ t

0
‖�‖2

L
2

α−1
dτ < ∞,

We obtain the desired global Hs-bound after applying Osgood’s inequality, which states that
a differential inequality on a nonnegative function f ,

d f

dt
≤ a(t) f (t) log(e + f )

implies that f = f (t) is bounded on [0, T ] if the nonnegative function a = a(t) is integrable
on [0, T ]. This completes the proof of Proposition 2.1. ��

3 Proof of Theorem 1.2

This section proves Theorem 1.2. As we know, it suffices to establish the global a priori
estimates on the Hs-norm of the solution (u,�, b) to (1.6), which is obtained in the following
proposition.

Proposition 3.1 Consider (1.6) with ν > 0, κ > 0 and α = 2. Assume the initial data
(u0,�0, b0) ∈ Hs(R2) with s > 2, ∇ · u0 = 0 and ∇ · b0 = 0. Then, the corresponding
solution (u,�, b) are globally bounded in Hs.

The proof of (3.1) is achieved via three lemmas, which consecutively establish the L2,
H1 and Hs global bounds. The first one is the global L2-bound.

Lemma 3.2 (u,�, b) obeys the following global L2 bound, for any t > 0,

‖(u,�, b)(t)‖2L2 + (ν + κ)

∫ t

0
‖�u(τ )‖2L2 dτ ≤ C

(‖(u0,�0, b0)‖L2 , t
)
, (3.1)

where C depends on the initial L2-norm and t.
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Proof Dotting (1.1) by (u,�, b) and using ∇ · u = ∇ · b = 0, we have

1

2

d

dt
‖(u,�, b)‖2L2 + (ν + κ)‖�u‖2L2

= 2κ
∫

(∇ × �) · u + 2κ
∫

(∇ × u) · � = 4κ
∫

(∇ × u) · �

≤ 4κ‖∇u‖L2‖�‖L2 ≤ 4κ‖u‖
1
2
L2‖�u‖

1
2
L2‖�‖L2

≤ ν + κ

2
‖�u‖2L2 + C(‖u‖2L2 + ‖�‖2L2),

where we have used Ladyzhenskaya’s inequality. Gronwall’s inequality then implies (3.1).
��

To prove the global H1-bound, we need a lemma generalizing the standard Osgood type
lemma. Li and Titi has previously stated an inequality of the Gronwall type with double
logarithms [21].

Lemma 3.3 Assume that Y , Z , A and B are non-negative functions satisfying

d

dt
Y (t) + Z(t) ≤ A(t) Y (t) + B(t) Y (t) ln(1 + Z(t)), (3.2)

Let T > 0. Assume A ∈ L1(0, T ) and B ∈ L2(0, T ). Then, for any t ∈ [0, T ],

Y (t) ≤ (1 + Y (0))e
∫ t
0 B(τ ) dτ

e
∫ t
0 e

∫ t
s B(τ ) dτ (A(s)+B2(s)) ds (3.3)

and ∫ t

0
Z(τ ) dτ ≤ Y (t)

∫ t

0
A(τ ) dτ + Y 2(t)

∫ t

0
B2(τ ) dτ < ∞. (3.4)

Proof of Lemma 3.3 Setting

Y1(t) = ln(1 + Y (t)), Z1(t) = Z(t)/(1 + Y (t)),

we have

d

dt
Y1(t) + Z1(t) ≤A(t) + B(t) ln(1 + Z(t))

≤A(t) + B(t) ln(1 + (1 + Y (t)) Z1(t))

≤A(t) + B(t) ln(1 + Y (t))(1 + Z1(t))

≤A(t) + B(t) Y1(t) + B(t) ln(1 + Z1(t)).

Using the simple fact that, for f ≥ 0,

ln(1 + f (t)) ≤ f
1
2 (t), (3.5)

we obtain

d

dt
Y1(t) + Z1(t) ≤ A(t) + B(t) Y1(t) + B2(t) + 1

4
Z1(t).

Gronwall’s inequality then implies

Y1(t) ≤ Y1(0) e
∫ t
0 B(τ ) dτ +

∫ t

0
e
∫ t

s B(τ ) dτ (A(s) + B2(s)) ds,
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which yields (3.3). In addition, (3.3) allows us to obtain (3.4) by using the inequality (3.5)
in (3.2) and integrating in time. This completes the proof of Lemma 3.3. ��

We now state and prove the global H1 bound.

Lemma 3.4 (u,�, b) obeys the following global H1 bound, for any t > 0,

‖(ω,∇�, j)‖2L2 + (ν + κ)

∫ t

0
‖�ω‖2L2dτ ≤ C(‖(u0,�0, b0)‖H1 , t), (3.6)

where C depends on the H1-norm of the initial data and t.

Proof To prove (3.6), we make use of the equations of the vorticity ω = ∇ × u and the
current density j = ∇ × b,

⎧
⎪⎨

⎪⎩

∂tω + u · ∇ω + (ν + κ)(−�)2ω = b · ∇ j − 2κ��,

∂t∇� + u · ∇(∇�) + 4κ(∇�) = −(∇u)T ∇� + 2κ∇ω,

∂t j + u · ∇ j = b · ∇ω + Q(∇u,∇b),

(3.7)

where (∇u)T denotes the transpose of ∇u and

Q(∇u,∇b) = 2∂1b1(∂2u1 + ∂1u2) − 2∂1u1(∂2b1 + ∂1b2).

Dotting (3.7) with (ω,∇�, j) yields

1

2

d

dt

(‖ω‖2L2 + ‖∇�‖2L2 + ‖ j‖2L2

) + 4κ‖∇�‖2L2 + (ν + κ)‖�ω‖2L2

= −2κ
∫

��ω −
∫

(∇u)T ∇� · ∇� + 2κ
∫

∇ω · ∇� +
∫

j Q(∇u,∇b)

:= I1 + I2 + I3 + I4.

where, due to ∇ · b = 0, we have used the fact
∫

b · ∇ j ω +
∫

b · ∇ω j = 0.

I1, I2, I3 and I4 can be bounded as follows.

I1 = I3 ≤ 2κ‖�ω‖L2‖�‖L2 ≤ ν + κ

2
‖�ω‖2L2 + C ‖�‖2L2 ,

I2 ≤ ‖∇u‖L∞‖∇�‖2L2 , I4 ≤ 2 ‖∇u‖L∞‖ j‖2L2 .

By Lemma 2.4, we have

‖∇u‖L∞ ≤ C1(1 + ‖u‖L2) + C ‖ω‖H1 log(e + ‖�ω‖L2).

Therefore,

d

dt
‖(ω,∇�, j)‖2L2 + (ν + κ)‖�ω‖2L2

≤ C + C ‖ω‖H1 log(e + ‖�ω‖L2)(‖ω‖2L2 + ‖∇�‖2L2 + ‖ j‖2L2).

Lemma 3.3 and the fact that
∫ t
0 ‖�(τ)‖2

L2 dτ < ∞ then implies (3.6). ��

With the global H1-bound at our disposal, we now prove the global Hs bound.
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Lemma 3.5 (u,�, b) obeys the following global bound in Hs, for any t > 0,

‖(u,�, b)(t)‖2Hs + (ν + κ)

∫ t

0
‖�u(τ )‖H2 dτ ≤ C(‖(u0,�0, b0)‖Hs , t).

Proof Applying �s to the equations of ω and j in (3.7) and �s+1 to the equation of � in
(1.6) and then dotting the resulting equations with �sω,�s j and �s+1w, respectively, we
obtain

1

2

d

dt
‖(�sω,�s+1�,�s j)‖2L2 + 4κ‖�s+1�‖2L2 + (ν + κ)‖�s+2ω‖2L2

= K1 + K2 + K3 + K4 + K5 + K6,

where

K1 = −
∫

�sω [�s, u · ∇]ω,

K2 = −
∫

�s j [�s, u · ∇] j,

K3 =
∫

�sω �s(b · ∇ j) + �s j �s(b · ∇ω),

K4 =
∫

�s j �s Q(∇u,∇b),

K5 = −2κ
∫

�s���sω + 2κ
∫

�s+1ω �s+1�,

K6 = −
∫

[�s+1, u · ∇]��s+1�.

These terms can be bounded as follows. By Lemma 2.2,

|K1| ≤ C ‖∇u‖L∞ ‖�sω‖2L2 .

By Hölder’s inequality and the standard commutator estimates,

|K2| ≤ C ‖�s j‖L2
(‖∇u‖L∞‖�s j‖L2 + ‖�s∇u‖L∞‖ j‖L2

)
.

By the Gagliardo–Nirenberg inequality and the Calderon–Zygmund inequality,

‖�s∇u‖L∞ ≤ C ‖�s∇u‖
1
2
L2 ‖�s+2∇u‖

1
2
L2

≤ C ‖�sω‖
1
2
L2 ‖�s+2ω‖

1
2
L2 .

Therefore,

|K2| ≤ C ‖∇u‖L∞‖�s j‖2L2 + C ‖ j‖L2 ‖�s j‖L2‖�sω‖
1
2
L2 ‖�s+2ω‖

1
2
L2

≤ C ‖∇u‖L∞‖�s j‖2L2 + ν + κ

8
‖�s+2ω‖2L2 + C ‖ j‖

4
3
L2 ‖�s j‖

4
3
L2 ‖�sω‖

2
3
L2

≤ C ‖∇u‖L∞‖�s j‖2L2 + ν + κ

8
‖�s+2ω‖2L2 + C ‖ j‖

4
3
L2

(‖�s j‖2L2 + ‖�sω‖2L2

)
.

Thanks to ∇ · b = 0, we can write K3 as

K3 =
∫

�sω [�s, b · ∇] j + �s j [�s, b · ∇]ω.
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Without loss of generality, we can assume s ≤ 2. Since higher regularity bounds for s > 2
follow easily once the bound for s ≤ 2 is obtained. By the commutator estimate and the
Sobolev embedding,

∣
∣
∣
∣

∫

�sω [�s, b · ∇] j

∣
∣
∣
∣ ≤ ‖�sω‖L2 ‖[�s, b · ∇] j‖L2

≤ C (‖ω‖L2 + ‖�ω‖L2) ‖∇b‖L∞ ‖�s j‖L2

≤ C (‖ω‖L2 + ‖�ω‖L2) ‖�s j‖2L2 .

Similarly, for s ≤ 2,
∣
∣
∣
∣

∫

�s j [�s, b · ∇]ω
∣
∣
∣
∣ ≤ ‖�s j‖L2 ‖[�s, b · ∇]ω‖L2

≤ C ‖�s j‖L2
(‖�s j‖L2‖ω‖L∞ + ‖∇b‖L∞‖�sω‖L2

)

≤ C ‖∇u‖L∞ ‖�s j‖2L2 + C
(‖ω‖L2 + ‖�ω‖L2

) ‖�s j‖2L2 .

To bound K4, it suffices to consider the typical term
∣
∣
∣
∣

∫

�s j �s(∂1b1 ∂2u1)

∣
∣
∣
∣ ≤ C ‖�s j‖L2

(‖�s∂1b1‖L2 ‖∇u‖L∞ + ‖�s∂2u1‖L2 ‖∇b‖L∞
)

≤ C ‖∇u‖L∞ ‖�s j‖2L2 + C ‖∇b‖L∞ ‖�sω‖L2 ‖�s j‖L2

≤ C ‖∇u‖L∞ ‖�s j‖2L2 + C (‖ω‖L2 + ‖�ω‖L2) ‖�s j‖2L2 .

Now we turn to the estimates of K5 and K6.

|K5| ≤ ‖�s+1ω‖L2 ‖�s+1�‖L2

≤ C‖ω‖
1

s+2

L2 ‖�s+2ω‖
s+1
s+2

L2 ‖�s+1�‖L2

≤ ν + κ

8
‖�s+2ω‖2L2 + C ‖ω‖

2
s+3

L2 ‖�s+1�‖
2(s+2)

s+3

L2

and

|K6| ≤ ‖[�s+1, u · ∇]�‖L2 ‖�s+1�‖L2

≤ C
(
‖�s+2u‖L4‖�‖L4 + ‖∇u‖L∞‖�s+1�‖L2

)
‖�s+1�‖L2

≤ C

(

‖�sω‖
1
4
L2‖�s+2ω‖

3
4
L2‖�‖

1
2
L2‖∇�‖

1
2
L2 + ‖∇u‖L∞‖�s+1�‖L2

)

‖�s+1�‖L2

≤ ν + κ

8
‖�s+2ω‖2

L2 + C ‖�sω‖
2
5
L2‖�‖

4
5
L2‖∇�‖

4
5
L2‖�s+1�‖L2 + C‖∇u‖L∞‖�s+1�‖2

L2

≤ ν + κ

8
‖�s+2ω‖2

L2 + C

(

‖�‖
4
5
L2‖∇�‖

4
5
L2 + ‖∇u‖L∞

) (
‖�s+1ω‖2

L2 + ‖�s+1�‖2
L2

)
,

wherewe have used the classical commutator estimates, Young’s inequality and the following
Gagliardo–Nirenberg inequality

‖�s+1ω‖L2 ≤ C‖ω‖
1

s+2

L2 ‖�s+2ω‖
s+1
s+2

L2

‖�s+2u‖L4 ≤ ‖�s+1ω‖L4 ≤ C‖�sω‖
1
4
L2‖�s+2ω‖

3
4
L2

and

‖�‖L4 ≤ C‖�‖
1
2
L2‖∇�‖

1
2
L2 .
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Therefore, if we invoke the embedding inequality

‖∇u‖L∞ ≤ ‖�ω‖L2 ,

we obtain

d

dt
‖ (

�sω,�s+1�,�s j
) ‖2L2 + ‖�s+2ω‖2L2

≤ C

(

‖ j‖
4
3
L2 + ‖�ω‖L2 + ‖�‖

4
5
L2‖∇�‖

4
5
L2

)

‖ (
�sω,�s+1�,�s j

) ‖2L2

+ C
(‖ω‖L2 + ‖�ω‖L2

) ‖�s j‖2L2 + C ‖ω‖
2

s+3

L2 ‖�s+1�‖
2(s+2)

s+3

L2 .

Thedesired global Hs bound then follows from the inequality above viaGronwall’s inequality
combined with the global H1 bound in Lemma 3.4. ��

4 Proof of Theorem 1.3

This section proves Theorem 1.3. Again we prove the global a priori bounds in Hs . More
precisely, we prove the following proposition.

Proposition 4.1 Consider (1.7) with α > 0, ν > 0, κ > 0, μ > 0 and η > 0. Assume
(u0,�0, b0) ∈ Hs(R2) with s > 2, ∇ · u0 = 0 and ∇ · b0 = 0. Then, the corresponding
solution (u,�, b) are globally bounded in Hs.

In order to prove Proposition 4.1, we make use of the maximal regularity and related
properties of the heat operator,

e�t f = K (·, t) ∗ f , K (x, t) = (4π t)−
d
2 e− |x |2

4t , x ∈ R

d , t > 0.

We recall the following simple facts.

Lemma 4.2 Let 1 ≤ p ≤ q ≤ ∞. Let β be a multi-index. For any t > 0, the heat operator
e�t and ∂

β
x e�t are bounded from L p to Lq . Furthermore, for any f ∈ L p(Rd),

‖∂β
x e�t f ‖Lq (Rd ) ≤ C1 t−

|β|
2 − d

2 ( 1
p − 1

q ) ‖ f ‖L p(Rd ),

where C1 = C1(β, p, q) are constants.

The following maximal regularity property for the heat kernel can be found in many
references (see, e.g., [20, p. 64]).

Lemma 4.3 The operator A defined by

A f (t) ≡
∫ t

0
� e�(t−τ) f (τ ) dτ

maps L p(0, T ; Lq(Rd)) to L p(0, T ; Lq(Rd)) for any T ∈ (0,∞] and p, q ∈ (1,∞).

We are now ready to prove Proposition 4.1.
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Proof of Proposition 4.1 We start with the global L2 bound. Dotting (1.7) by (u,�, b) yields

1

2

d

dt
‖(u,�, b)‖2L2 + 4κ‖�‖2L2 + (ν + κ)‖�αu‖2L2 + μ‖��‖2L2 + η‖�b‖2L2

= 2κ
∫

(∇ × �) · u + 2κ
∫

(∇ × u) · � = 4κ
∫

(∇ × �) · u

≤ 4κ‖u‖L2‖��‖L2 ≤ μ

2
‖��‖2L2 + C‖u‖2L2 .

Gronwall’s inequality then implies

‖(u,�, b)‖2L2 + (ν + κ)

∫ t

0
‖�αu‖2L2 dτ + μ

∫ t

0
‖��‖2L2 dτ

+ η

∫ t

0
‖�b‖2L2 dτ ≤ C

(‖(u0,�0, b0)‖L2 , t
)
.

To estimate the H1-norm, we start with the equations of ω, ∇� and j ,
⎧
⎪⎨

⎪⎩

∂tω + u · ∇ω + (ν + κ)(−�)αω = b · ∇ j − 2κ��,

∂t∇� + u · ∇(∇�) + 4κ(∇�) − μ�∇� = −(∇u)T ∇� + 2κ∇ω,

∂t j + u · ∇ j − η� j = b · ∇ω + Q(∇u,∇b).

(4.1)

Dotting (4.1) with (ω,∇�, j) and using ∇ · u = 0 and ∇ · b = 0, we have

1

2

d

dt
(‖(ω,∇�, j)‖2L2 + 4κ‖∇�‖2L2 + (ν + κ)‖�αω‖2L2 + μ‖��‖2L2 + η‖∇ j‖2L2

= −2κ
∫

��ω +
∫

(∇u)T ∇� · ∇� +
∫

∇ω · ∇� +
∫

j Q(∇u,∇b)

:= J1 + J2 + J3 + J4. (4.2)

The terms on the right of (4.2) can be bounded by Hölder’s inequality, Young’s inequality
and the Gagliardo–Nirenberg inequality as follows,

J1, J3 ≤ 2κ

∣
∣
∣
∣

∫

ω��

∣
∣
∣
∣ ≤ μ

4
‖��‖2L2 + C ‖ω‖2L2 ,

J2 ≤ ‖∇u‖L2‖∇�‖2L4 ≤ C ‖∇u‖L2‖�‖L2‖��‖L2

≤ μ

4
‖��‖2L2 + C‖�‖2L2‖∇u‖2L2 ,

J4 ≤ ‖∇u‖L2‖ j‖2L4 ≤ C ‖∇u‖L2‖ j‖L2‖∇ j‖L2

≤ η

2
‖∇ j‖2L2 + C‖ j‖2L2‖∇u‖2L2 .

Combining these estimates, we obtain

d

dt
‖(ω,∇�, j)‖2L2 + 2(ν + κ)‖�αω‖2L2 + μ

2
‖��‖2L2 + η‖∇ j‖2L2

≤ C (1 + ‖�‖2L2 + ‖ j‖2L2)‖ω‖2L2 .
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Gronwall’s inequality then implies the global H1 bound,

‖(ω,∇�, j)‖2L2 + (ν + κ)

∫ t

0
‖�αω‖2L2 dτ + μ

∫ t

0
‖��‖2L2 dτ

+ η

∫ t

0
‖∇ j‖2L2 dτ ≤ C(‖(u0,�0, b0)‖H1 , t).

We now prove the global H2 bounds. Writing the equation of b in the integral form and
applying Lemmas 4.2 and 4.3, we have, for any p ∈ (1, 2) and 1

p + 1
q = 1, and for any

T > 0,

‖b‖L∞(0,T ;L∞) ≤‖b0‖L∞ +
∥
∥
∥
∥

∫ t

0
e�(t−τ) (b · ∇u − u · ∇b)(τ ) dτ

∥
∥
∥
∥

L∞(0,T ;L∞)

≤‖b0‖L∞ + C ‖∇K‖L1(0,T ;L p) ‖u‖L∞(0,T ;L2q ) ‖b‖L∞(0,T ;L2q )

≤‖b0‖L∞ + C(T ) ‖(u, b)‖L∞(0,T ;H1) < ∞.

By Lemma 4.3, for any p, q ∈ (1,∞) and for any T > 0,

‖∇b‖Lq (0,T ;L p(R2)) ≤ ‖K‖Lq (0,T ;L1) ‖∇b0‖L p + C(T ) ‖(u, b)‖L∞(0,T ;H1) < ∞.

Similar estimates involving the equation of � lead to

‖�‖L∞(0,T ;L∞(R2)), ‖�‖Lq (0,T ;L p(R2)), ‖∇�‖Lq (0,T ;L p(R2)) < ∞.

Furthermore, due to Lemmas 4.2 and 4.3,

‖�b‖Lq
t L p ≤ C

(
‖�b0‖L p + ‖b · ∇u − u · ∇b‖Lq

t L p

)

≤ C

(

‖�b0‖L p + ‖b‖L∞
t L∞‖ω‖Lq

t L p +
(∫ t

0
‖u‖q

L∞
x

‖∇b‖q
L p

x

) 1
q
)

≤ C

⎛

⎝‖�b0‖L p + ‖b‖L∞
t L∞‖ω‖Lq

t L p +
(∫ t

0
‖u‖

(p−2)q
2(p−1)

L2
x

‖ω‖
pq

2(p−1)

L p
x

‖∇b‖q
L p

x

) 1
q

⎞

⎠

≤ C

(

‖�b0‖L p + ‖ω‖Lq
t L p +

(∫ t

0
(1 + ‖ω‖q

L p
x
)‖∇b‖q

L p
x

) 1
q
)

, (4.3)

where we have used Hölder’s inequality and Sobolev’s inequality. Similarly,

‖��‖Lq
t L p ≤ C

(

1 + ‖��0‖L p + ‖ω‖Lq
t L p +

(∫ t

0
(1 + ‖ω‖q

L p
x
)‖∇�‖q

L p
x

) 1
q
)

. (4.4)

Multiplying the vorticity equation by ω|ω|p−2 with p ∈ [2,∞), and integrating in space, we
obtain

1

p

d

dt
‖ω‖p

L p ≤
∣
∣
∣
∣

∫

b · ∇ j · ω|ω|p−2
∣
∣
∣
∣ +

∣
∣
∣
∣

∫

�� · ω|ω|p−2
∣
∣
∣
∣

≤ ‖b‖L∞‖∇ j‖L p ‖ω‖p−1
L p + ‖��‖L p ‖ω‖p−1

L p .
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Therefore,

‖ω‖L p ≤ ‖ω0‖L p +
∫ t

0
‖b(τ )‖L∞‖∇ j(τ )‖L p dτ +

∫ t

0
‖��(τ)‖L p dτ

≤ ‖ω0‖L p + C

(

‖b‖
L

q−1
q

t L∞
‖∇ j‖Lq

t L p + ‖��‖Lq
t L p

)

≤ ‖ω0‖L p + C
(
‖∇ j‖Lq

t L p + ‖��‖Lq
t L p

)
.

Invoking (4.3) and (4.4), and applying Gronwall’s inequality, we obtain

‖ω‖L∞
t L p < ∞, ‖∇ j‖Lq

t L p < ∞, ‖��‖Lq
t L p < ∞.

With these global bounds at our disposal, we now prove the global H2- bound. Multiplying
the equations of ω, j and � by −�ω, −� j and (−�)2�, respectively, we have

1

2

d

dt
(‖(∇ω,��,∇ j)‖2L2 + 4κ‖��‖2L2 + (ν + κ)‖�α∇ω‖2L2 + μ‖�∇�‖2L2 + ν‖� j‖2L2

= −
∫

∇(u · ∇ω) · ∇ω +
∫

∇(b · ∇ j) · ∇ω + 2κ
∫

�� · �ω + 2κ
∫

ω · (−�)2�

−
∫

u · ∇�(−�)2� −
∫

∇(u · ∇ j) · ∇ j +
∫

∇(b · ∇ω) · ∇ j −
∫

Q(∇u,∇b)� j

:= K1 + K2 + K3 + K4 + K5 + K6 + K7 + K8. (4.5)

We estimate the terms on the right as follows.

|K1| ≤ ‖∇u‖L p ‖∇ω‖2
L

2p
p−1

≤ ‖ω‖1+
2(pα−1)
2+pα

L p ‖�α∇ω‖
6

2+pα

L2

≤ ν + κ

2
‖�α∇ω‖2L2 + C‖ω‖2+

2+pα
pα−1

L p ,

where we have used the Gagliardo–Nirenberg inequality, for pα > 1,

‖∇ω‖
L

2p
p−1

≤ C‖ω‖
pα−1
2+pα

L p ‖�α∇ω‖
3

2+pα

L2 .

By Hölder’s and Sobolev’s inequalities,

|K2 + K7| ≤ ‖∇b‖L∞‖∇ω‖L2‖∇ j‖L2

≤ ‖∇b‖
2p−2
3p−2

L2 ‖�b‖
p

3p−2
L p

(‖∇ω‖2L2 + ‖∇ j‖2L2

)
.

|K3 + K4| ≤ 4κ

∣
∣
∣
∣

∫

�∇� · ∇ω

∣
∣
∣
∣ ≤ μ

4
‖�∇�‖2L2 + C‖∇ω‖2L2 .

|K5| =
∣
∣
∣
∣

∫

u · ∇�(−�)2�

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

∇u · ∇� · �∇� +
∫

u · ∇2� · �∇�

∣
∣
∣
∣

≤ ‖∇u‖L4‖∇�‖L4‖�∇�‖L2 + ‖u‖L∞‖∇2�‖L2‖�∇�‖L2

≤ C‖ω‖
1
2
L2‖∇ω‖

1
2
L2‖∇�‖

1
2
L2‖��‖

1
2
L2‖�∇�‖L2
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+ C‖u‖
p−2

2(p−1)

L2 ‖ω‖
p

2(p−1)

L2 ‖∇2�‖L2‖�∇�‖L2

≤ μ

4
‖�∇�‖2L2 + C‖ω‖L2‖∇ω‖L2‖∇�‖L2‖��‖L2

+ C‖u‖
p−2
p−1

L2 ‖ω‖
p

p−1

L2 ‖∇2�‖2L2 .

|K6| ≤ ‖∇u‖L2‖∇ j‖2L4

≤ C‖ω‖L2‖∇ j‖L2‖� j‖L2

≤ ν

4
‖� j‖2L2 + C‖ω‖2L2‖∇ j‖2L2 .

By the inequalities of Hölder, Sobolev and Ladyzhenskaya,

|K8| =
∣
∣
∣
∣

∫

Q(∇∇u,∇b) · ∇ j +
∫

Q(∇u,∇∇b) · ∇ j

∣
∣
∣
∣

≤ C
(‖∇b‖L∞‖∇ω‖L2‖∇ j‖L2 + ‖∇u‖L2‖∇ j‖2L4

)

≤ C(‖∇b‖
2p−2
3p−2

L2 ‖�b‖
p

3p−2
L p (‖∇ω‖2L2 + ‖∇ j‖2L2) + ‖ω‖L2‖∇ j‖L2‖� j‖L2)

≤ 1

8
‖� j‖2L2 + C

(

‖ω‖L2 + ‖∇b‖
2p−2
3p−2

L2 ‖�b‖
p

3p−2
L p

)
(‖∇ω‖2L2 + ‖∇ j‖2L2

)
.

Inserting these estimates into (4.5), we obtain

d

dt
‖(∇ω,��,∇ j)‖2L2 + (ν + κ)‖�α∇ω‖2L2 + μ‖�∇�‖2L2 + η‖� j‖2L2

≤ C‖ω‖2+
2+pα
pα−1

L p + C

(

1 + ‖ω‖2L2 + ‖ω‖2L2‖∇ω‖2L2‖∇�‖2L2 + ‖u‖
p−2
p−1

L2 ‖ω‖
p

p−1

L2

+‖∇b‖
2p−2
3p−2

L2 ‖�b‖
p

3p−2
L p

)
(‖∇ω‖2L2 + ‖��‖2L2 + ‖∇ j‖2L2

)
.

Then Gronwall’s inequality implies

‖(∇ω,��,∇ j)‖2L2 + (ν + κ)

∫ t

0
‖�α∇ω(τ)‖2L2 dτ

+ μ

∫ t

0
‖�∇�(τ)‖2L2 dτ + η

∫ t

0
‖� j‖2L2 dτ ≤ C .

This establishes the global H2-bound. The global Hs-bound then follows via standard esti-
mates. This completes the proof of Proposition 4.1. ��
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Appendix A: An alternative approach to the global H1-bound for (1.2)

A crucial component in the proof of the global bounds for Theorem 1.1 is the global (in

time) H1-bound and the global integrability of ‖� 2
q ω(τ)‖Lq . Sect. 2 provided one way to
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get these bounds. The purpose of this appendix is to provide an alternative approach to these
bounds. More precisely, we prove the following result.

Proposition A.1 Assume that (u,�, b) solves (1.2). Assume α and β satisfy

1 < α < 2, 0 < β < 1, α + β ≥ 2.

Then, for any 1 < q < ∞ and for any t > 0,

sup
l≥−1

2(2α−2) l
∫ t

0
‖�lω(τ)‖Lq dτ ≤ C(t, u0,�0, b0) < ∞. (A.1)

As a special consequence, for any 1 < q < ∞ and ρ < 2α − 2,
∫ t

0
‖ω(τ)‖Bρ

q,1
dτ < ∞. (A.2)

Especially, for ρ < 2α − 2 and q = 2
ρ

,

∫ t

0

(
‖ω(τ)‖Lq + ‖� 2

q ω‖Lq

)
dτ < ∞. (A.3)

Proof of Proposition A.1 We start with the following fact about �, for any r ∈ [1,∞],

‖�(t)‖Lr ≤ ‖�0‖Lr + 2κ
∫ t

0
‖ω(τ)‖Lr dτ, (A.4)

which can be obtained by performing the standard Lebesgue norm estimate on the equation
of �. Next, we write the equation of ω given by (1.5) in the integral form

ω(t) = e−(ν+κ)(−�)α tω0 +
∫ t

0
e−(ν+κ)(−�)α(t−τ)(−��(τ)) dτ

+
∫ t

0
e−(ν+κ)(−�)α(t−τ)∇ × ∇ · ((u ⊗ u)(τ ) + ∇ × ∇ · (b ⊗ b)(τ )) dτ.

We further localize it by applying �l with l ∈ Z and l ≥ −1,

�lω(t) = �l e
−(ν+κ)(−�)α tω0 +

∫ t

0
�l e

−(ν+κ)(−�)α(t−τ)(−��(τ)) dτ

+
∫ t

0
�l e

−(ν+κ)(−�)α(t−τ)∇ × ∇ · ((u ⊗ u)(τ ) + (b ⊗ b)(τ )) dτ.

For q ∈ (1,∞), taking the Lq -norm and applying Lemma 2.3 and Bernstein’s inequality, we
have

‖�lω(t)‖Lq ≤ C e−c0(ν+κ)t 22αl ‖�lω0‖Lq + C
∫ t

0
22l e−c0(ν+κ)(t−τ) 22αl ‖�l�‖Lq dτ

+ C
∫ t

0
22l e−c0(ν+κ)(t−τ) 22αl

(‖�l(u ⊗ u)(τ )‖Lq + ‖�l(b ⊗ b)(τ )‖Lq ) dτ. (A.5)

To further improve the estimates, we invoke (A.4) to obtain

‖�l�(t)‖Lq ≤ ‖�(t)‖Lq ≤ ‖�0‖Lq +
∫ t

0
‖ω(τ)‖Lq dτ.
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To bound ‖�l(b ⊗ b)(τ )‖Lq , noticing α + β = 2, we choose σ satisfying

0 < σ < α − 1, σ + β = 1 − 1

q
.

By Sobolev’s inequality,

‖�l(b ⊗ b)(τ )‖Lq ≤ ‖b ⊗ b(τ )‖Lq ≤ ‖b‖2L2q ≤ C‖�σ+βb‖2L2 .

Similarly, we can also estimate ‖�l(u ⊗ u)(τ )‖Lq ,

‖�l(u ⊗ u)(τ )‖Lq ≤ C
(‖u‖2L2 + ‖�αu‖2L2

) = C ‖u‖2Hα .

Integrating (A.5) in time and applyingYoung’s inequality for the time convolution, we obtain
∫ t

0
‖�lω(τ)‖Lq dτ ≤ C 2−2αl ‖�lω0‖Lq

+ C 2(2−2α)l
∫ t

0

(

‖�0‖Lq +
∫ τ

0
‖ω‖Lq ds

)

dτ

+ C 2(2−2α)l
∫ t

0

(‖u‖2Hα + ‖�σ+βb‖2L2

)
dτ,

or

2(2α−2)l
∫ t

0
‖�lω(τ)‖Lq dτ ≤ A(t) + C

∫ t

0

∫ τ

0
‖ω‖Lq ds dτ, (A.6)

where, due to Lemma 2.7,

A(t) = C 2−2l ‖�lω0‖Lq + C ‖�0‖Lq t + C
∫ t

0

(‖u‖2Hα + ‖�σ+βb‖2L2

)
dτ < ∞.

Noting that

‖ω‖Lq ≤
∑

m≥−1

‖�mω‖Lq ≤
∑

m≥−1

2(2−2α)m 2(2α−2)m ‖�mω‖Lq ,

we obtain, due to α > 1,
∫ t

0

∫ τ

0
‖ω‖Lq ds dτ =

∫ t

0

∑

m≥−1

2(2−2α)m 2(2α−2)m
∫ τ

0
‖�mω‖Lq ds dτ

≤ C
∫ t

0
sup

m≥−1
2(2α−2)m

∫ τ

0
‖�mω‖Lq ds dτ.

Inserting this bound in (A.6) yields, for Y (t) ≡ supl≥−1 2(2α−2)l
∫ t
0 ‖�lω(τ)‖Lq dτ ,

Y (t) ≤ A(t) + C
∫ t

0
Y (τ ) dτ.

Gronwall’s inequality then leads to the global bound in (A.1). It is easy to see that (A.2) is a
special consequence of (A.1). In fact, for any ρ < 2α − 2,

∫ t

0
‖ω(τ)‖Bρ

q,1
dτ =

∫ t

0

∑

l≥−1

2ρl‖�lω‖Lq dτ

≤
∫ t

0

∑

l≥−1

2(ρ−(2α−2))l 2(2α−2)l‖�lω‖Lq dτ
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=
∑

l≥−1

2(ρ−(2α−2))l 2(2α−2)l
∫ t

0
‖�lω‖Lq dτ

≤ sup
l≥−1

2(2α−2)l
∫ t

0
‖�lω‖Lq dτ

∑

l≥−1

2(ρ−(2α−2))l

= C sup
l≥−1

2(2α−2)l
∫ t

0
‖�lω‖Lq dτ < ∞,

which is (A.2). Finally (A.3) follows from (A.2) by taking q = 2
ρ
. This completes the proof

of Proposition A.1. ��
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