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Abstract

This paper concerns itself with Besov space solutions of the 2-D quasi-geostrophic (QG) equation with dissipation induced by
a fractional Laplacian (—A)*. The goal is threefold: first, to extend a previous result on solutions in the inhomogeneous Besov
space B;,q [J. Wu, Global solutions of the 2D dissipative quasi-geostrophic equation in Besov spaces, SIAM J. Math. Anal.
36 (2004-2005) 1014-1030] to cover the case when r = 2 — 2a; second, to establish the global existence of solutions in the

homogeneous Besov space é;y ¢ With general indices p and ¢; and third, to determine the uniqueness of solutions in any one of
2a 20

. 2 r 2
the four spaces: B3, B, . L9((0, T): By, * ) and LI((0, T); By * ), where s > 2 — 2arand r = 1 — 20 + 2.

© 2006 Elsevier Ltd. All rights reserved.
MSC: 35Q35; 76B03

Keywords: 2-D quasi-geostrophic equation; Besov space; Existence and uniqueness

1. Introduction

The 2-D dissipative quasi-geostrophic (QG) equation concerned here assumes the form
00 +u-VO +rk(—A)*0 =0, (1.1)

where ¥k > 0 and o > 0 are parameters, 6 = 6(x, ¢) is a scalar function of x € R2and7 > 0, and u is a 2-D velocity
field determined by 6 through the relations

u= (1) = (<3, 8y ¥) and (—A)3y =0. (1.2)

The fractional Laplacian operator (—A)# for a real number 8 is defined through the Fourier transform, namely

(AP fE) = QrlED* [ (&)
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where the Fourier transform fis given by
Fer= [ rmeian
R2

For notational convenience, we write A for (—A)2 and combine the relations in (1.2) into
u=vitale,

where V+ = (—0x,, Ox,). Physically, (1.1) models the temperature evolution on the 2-D boundary of a 3-D quasi-
geostrophic flow and is sometimes referred to as the surface QG equation [8,13].

Fundamental mathematical issues concerning the 2-D dissipative QG equation (1.1) include the global existence
of classical solutions and the uniqueness of solutions in weaker senses. In the subcritical case o > %, these issues
have been more or less resolved [9,14]. When o < %, the issue on the global existence of classical solutions becomes
extremely difficult. For the critical case o = %, this issue was first dealt with by Constantin et al. [7] and later studied
in [3,6,10,11,17] and other works. A recent work of Kiselev et al. [12] appears to have resolved this issue (in the
periodic case) by removing the L°-smallness condition of [7]. Another recent progress on the critical dissipative QG
equation was given in the work by Caffarelli and Vasseur [1]. We also mention other interesting investigations on

related issues (see cf. [2,15,16]). The supercritical case o < % remains a big challenge. This paper is mainly devoted
to understanding the behavior of solutions of (1.1) with o < % Although our attention is mainly focused on the case

when o < %, the results presented here also hold for o« > % We attempt to accomplish three major goals that we now
describe.

In [17], we established the global existence of solutions of (1.1) in the inhomogeneous Besov space B;ﬁ q with
1 < g <ooandr > 2 — 2« when the corresponding initial data 9y satisfies

I6olls;, = Cre
for some suitable constant C. Our first goal is to extend this result to cover the case when » = 2 — 2. For this purpose,
we derive a new a priori bound on solutions of (1.1) in 822;20‘. When combined with a procedure detailed in [17], this
new bound yields the global existence of solutions in 322:]2“. As a special consequence of this result, the 2-D critical

QG equation ((1.1) with ¢ = %) possesses a global H I_solution if the initial datum is comparable to «.

Our second goal is to explore solutions of (1.1) in the homogeneous Besov space é;,q with general indices
2 < p<ooandl < g < oo. This study was partially motivated by the lower bound

/Rd FIP72F - (=) f dx = €2 £, (1.3)

valid for any function f that decays sufficiently fast at infinity and satisfies
suppf C {& e RY: K12/ < |g| < Ka2/),

where 0 < K| < K are constants and j is an integer. This inequality, recently established in [5,18], provides a lower
bound for the integral generated by the dissipative term when we estimate solutions of (1.1) in Bg;, 4+ Combining this
lower bound with suitable upper bounds for the nonlinear term, we are able to derive a priori estimates for solutions
of (1.1) in é;’ ¢- Applying the method of successive approximation, we then establish the existence and uniqueness of
solutions emanating from initial data 6y satisfying

llsr < Ck,
16015, , <

where2 < p<oo,1 <g<ocandr =1—-20+ %. Setting g = p, we obtain as a special consequence the global

solutions in the homogeneous Sobolev space wer ,where2 < p <ocoandr =1 — 2« + %.
The third goal is to determine the uniqueness of solutions of (1.1) in the spaces

s o q s+2q—“ q °r+27°‘
B3, B . L7((0,T); B, and LY((0,T); By, (1.4)
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wheres > 2 —2aandr =1 — 2o + % For two solutions in any one of these spaces, we establish suitable bounds

for their difference which yield as a special consequence the uniqueness. We conclude that two solutions 6 and ]
emanating from the same initial datum must coincide if they satisfy

16115, < Ck and [6llz;, < Ck (15)

for some constant C. A parallel result holds for solutions in B,’, 4~ In addition, we prove that any two solutions in
2
the space L9((0, T); B, q ?) must be identical if they satisfy the same initial condition. The same conclusion can be
or 2 o
drawn for solutions in L9((0, T); B, ;" ). A special consequence is the uniqueness of H ! (or H') solutions of the

critical QG equation if their norms are comparable to k. A more significant corollary is the uniqueness of solutions
of the critical QG equation in L?((0, T); H%) (or L%((0, T); IfI%)). Since H! (or H') solutions of the critical QG
equation are in general also in L?((0,T); H %) (or L%((0, T); H %)), this corollary indicates the uniqueness of H ! (or
H 1) solutions that do not necessarily satisfy (1.5).

The rest of this paper is divided into four sections and an Appendix A. Section 2 is further divided into three
subsections. Section 2.1 recalls the definitions of Besov spaces, Section 2.2 presents the definitions of two spaces
involving time and the relations between them, and Section 2.3 provides the lower bound (1.3). Section 3 focuses on
solutions in BE’ while Section 4 is devoted to solutions in B” - Section 5 deals with the uniqueness of solutions
in the spaces in (1.4). The Appendix A proves a Bernstein inequality involving fractional Laplacians and derives a
commutator estimate that is used in Sections 3 through 5.

We finally remark that after the completion of this manuscript, we learned that a result related to Theorem 4.2 in
Section 4 was obtained by Chen et al. [5].

2. Function spaces and a lower bound

This section makes necessary preparations for the subsequent sections. It is divided into three subsections.
Section 2.1 provides the definition of Besov spaces. Section 2.2 presents two spaces involving time and their relations.
The last subsection recalls a lower bound for an integral involving fractional Laplacians.

2.1. Besov spaces

We start with several notations. S denotes the usual Schwarz class and S’ its dual, the space of tempered
distributions. Sy denotes a subspace of S defined by

Sp = {q’) es :/ ¢ (x)xVdx =0, |y| =0, 1,2,...}
Rd
and S|, denotes its dual. S, can be identified as

Sy=8/Sy =S'/P

where P denotes the space of multinomials.
To introduce the Littlewood—Paley decomposition, we write for each j € Z

Aj={geR!: 277 < g <2/} (2.1
The Littlewood—Paley decomposition asserts the existence of a sequence of functions {®;} ;c7 € S such that
supp®; C Aj. Bi(€) = B277E) or P;(x) =24 dp(2/ ),

and

N = o [1,ifE e R\ {0},
2 gZsf(‘f’:)_{o, if & =0.

j=—o00
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Therefore, for a general function ¢ € S, we have
oo —_~ -~ -
> D)) =) fore e R\ {0}

j=—o0

In addition, if ¢ € Sp, then

o0

Y BiE)pE) = P(E) forany £ e R
j=—00
That is, for v € Sp,
Y bixy =1y
j=—00
and hence

Yo dixf=f [feS

j=—00
in the sense of weak-* topology of S). For notational convenience, we define
Ajf=%;xf, jel. 2.2)
Fors e Rand 1 < p, g < oo, the homogeneous Besov space é;’ q consists of f € S(’) satisfying
1115y, = 12708, f e o < 0o,
We now choose ¥ € S such that

UE =1-) %), &eR”.
j=0

J
Then, for any ¢ € S,

W*l/f—i—Z@j*l/f:l/f

j=0
and hence
o0
Urf+Y Oixf=Ff 2.3)
j=0

inS forany f € §'.
To define the inhomogeneous Besov space, we set

0, ifj<-2
ANif=10xf ifj=-1, (2.4)
Gix f, ifj=0,12,....

The inhomogeneous Besov space B, , with 1 < p, g < oo and s € R consists of functions f € &’ satisfying

1118y, = 127 1A% £ llze o < 0.

For notational convenience, we will write A; for A’.. There will be no confusion if we keep in mind that A;’s
associated with the homogeneous Besov spaces is defined in (2.2) while those associated with the inhomogeneous
Besov spaces are defined in (2.4).
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We will need the following characteristic properties of the A ;’s defined in (2.2) or in (2.4)

AjAj, =0 if|j; — 2 =2,

k—1
Sy = Z Aj— 1 ask— oo,
Jj>—00
Aj(Sef A f)=0 if|j—k|l>3. (2.5)

In addition, the following embedding relations of Besov spaces will be useful.

Proposition 2.1. Lets € R, 1 < p <ooand1 < q < oc.
(1) If s > 0, then Bls,’q - é‘;’q and
I8y, = I llee + 1 M s -

(2) If s1 < 52, then Bf,z,q C B‘;,],q. This inclusion relation is false for the homogeneous Besov spaces.

() If1<qi <qy<oo, then B, CBS  and B, C B .

@D If1<pm §p2§ooands1:sz—l—d(%—%),then

K d K d DS d D' d
By gR) C By (R, B, (RY) C By, (RY).

Finally, we remark that many frequently used function spaces are special cases of Besov spaces. The Sobolev
spaces H* and H® defined by

H ={feS EFIfE|el?, H ={feS:0+EPIFE)eLl?
can be identified as
H' =B,  H'=Bj,

For0 < s < 1, By, , and Bgooo are the same as the usual Holder spaces C* and C*, respectively, where C* is a

subspace of continuous functions with a seminorm. B;o’ o 18 bigger than the space of Lipschitz functions and can be
identified with the Zygmund class Zyg characterized by the inequality

|[f(x —h) —2f(x)+ f(x +h)|] <c|h] forsome constant ¢ and all x.
2.2. Two types of spaces involving time and their relations

In this subsection, we analyze the relationship between two types of function spaces that map time to Besov spaces.
For1l < p < 00, —00 < a < b < 0o and a real Banach space X, the space L”(a, b; X) consists of measurable
functions f : (a, b) — X with

1

b ;
1 flleapy;x) = W flixliLe@p = (/ IfE, t)||§(df) < 00.
a

We are mainly interested in the cases when X = B) _ or By, .

In [4], Chemin introduced the space LP ((a, b); B;’ q), which consists of functions f for which the norm
”f”LA;’((a,b);B;,’q) = ||2]S||Ajf ”Ll’((a,h);Lf) ll74

in finite. The space ﬁ((a, b); B;, q) is similarly defined. For notational convenience, we sometimes write IZ’ (B‘;,’ q)
for LP((0,1); BS ). LY (B3 ) for LP((0,1); BS, ), etc.

~We investigate how L”((a, b); B‘f,,q) is related to L°((a,b); B;,’q) and how L*((a,b); B;,’q) is related to
L?((a, b); B;',, q)- We start with some elementary facts.
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Lemma 2.2. Let { f;} be a sequence of measurable functions on an interval (a, b). Assume f; > 0 on (a, b) for each
j. Then

b b
> / fi(r)ydr = f > fi(odr, (2.6)
j v a

b b
sup / fi(mdr < / sup fj(7)dr. 2.7
Jj a a Jj

Proof. (2.6) can be obtained by applying the Monotone Convergence theorem to the sequence {gy}, where

=y fi

<k
(2.7) also follows from the Monotone Convergence theorem. In fact,

b b b b
sup/ fi(r)dr = lim max/ fijdr < lim max f;dt :/ sup fj(r)dr. O
i Ja k—oo j<k J4 k i ' a j

—00 Jg J<k
The following proposition is a consequence of (2.6).

Proposition 2.3. Let s € Rand p, p,q € [1,00]. If p = q, then
L((a.b); B} ) = LP((a.b): B} ). L°((a.b): B} ) = L?((a.b); B} ).

Proof. In the case when 1 < p =g < oo,

1
b q
— ~ - E : js s
“f”Ll’((a,b);é;',_q) = ”f”L/’((a,b);B;',’q) = (/a j 2]3‘I||Ajf||Lpd‘L'>
according to (2.6). In the case when p = g = oo,

||f||L°C((g’h);é; o) ||f||f5/0((a,h);é;) o) — SUp sup 2jS”Ajf”LW O
’ ’ j te€(a,b)

The inclusion relation in the following proposition follows from (2.7).

Proposition 2.4. Forany s € R and p € [1, oo],

L'((a,b); B} o) C L'((a,b); B} o), L'((a,b); B}, ) C L1((a, b); B}, ).

p,00

Proof. By (2.7),

b
LA ey oy = S0P 2 / 1A fllzede
w2

IA

b
/ Sup 27 1A FlLrdt = 1/ W1y
a J

,00)”

The proof for L ((a, b); B‘[‘,’OO) - ZI((a, b); B‘;,,oo) is the same. [
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2.3. A lower bound for an integral of fractional Laplacians

When we estimate solutions to partial differential equations with fractional Laplacian dissipation in L”-related
spaces, we often encounter an integral of the form

DyH = [ 1A s d,

For o = 1, lower bounds for this integral can be derived through integration by parts. For a general fraction o« > 0,
(—A)* is a nonlocal operator and lower bounds no longer follow from integration by parts. The following lower bound
was recently established in [5,18].

Proposition 2.5. Assume either o > 0 and p =20r0 < a < land2 < p < 0o. Assume [ decays sufficiently fast
at infinity and f satisfies

suppf C {§ e RY : K120 < |g]| < K22/}
for some integer j and real numbers 0 < K1 < Kj. Then we have the lower bound
Dy(f) = C2*| £1I7,

for some constant C depending on d, o, K1 and K.
3. Solutions in B; q forr > 2 -2«

This section is concerned with solutions of the initial-value problem (IVP) for the 2-D dissipative QG equation

30 +u-VO+k(—AN*0 =0, xeR> >0,
u=vtale, xeR? t>0, (3.1
0(x,0) = 6p(x), xeR?

in the inhomogeneous Besov space B g The major results are presented in Theorem 3.2, which asserts the global
existence and uniqueness of solutions in B} . The proof of this theorem relies on several a priori estimates, which are
stated in Theorem 3.1.

Theorem 3.1. Let o > 0. Let 0 solve the IVP (3.1). Then 0 satisfies the following a priori estimates.

(1) In the case whenr = 2 — 2o and q = 00, we have

16N 5322+ CRIBI g = Woll -2 + CON e 3oy 161 7 g (32)
(2) In the case whenr > 2 — 20 and q = 00, we have for any s € R,

161l By +CK||9||L g2y = =< l16olls; , + ClIOlLso(Bs )||9||L (B2 (3.3)

In particular, we have by setting s =r,

1655, + CRIONE oy < Wllng  + CONzzw 5 ION Y gy,
(3) In the case whenr > 2 —2ua and 1 < g < 0o, we have

||9(t)||q» + Cqre|10117_ 2 = ||90||qr +CqllfllLe sy )||9||q 2 (3.4)

LB, ") L{(B,, ")

~ 2a Za

+
Remark. Because of Proposition 2.3, the norm L?(B 7} in (3.4) can be replaced by Lq (B .
Proof of Theorem 3.1. For j € Z, we apply A; to the first equation in (3.1) to obtain

HAO+u-VA+1(—A)AO =[u-V,AH, (3.5)
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where the brackets [ | represent the commutator operator, namely
[u-V,Aj10 =u-V(A;0) — Aju-V0).
Multiplying both sides by 2A ;0 and integrating over R?, we obtain
d
—||A,~9||iz + ZK/ AjO(=AN)*A;0dx = 2/ AjOlu-V,A;]0dx. (3.6)
dr ™ - R2 R2
By Bernstein’s inequality (Theorem A.1),
/ AjO(—A)* A6 dx = / |AYA 01> dx > 2% ||A;0]3 . (3.7)
R2 R2
By Holder’s inequality,
2/ Aiblu-V,Aj10dx < C|A;O]2llu-V,Aj10| 2. (3.8)
R ' '
Inserting (3.7) and (3.8) in (3.6), we find
LN 2 A .
5 1A ;012 + Cx27 A2 < Clllu-V,Aj10| 2.

Applying Proposition A.2 to the right-hand side yields

d . . .
3185002 + Ci2% | A0 2 < C <2zf||A,~9||i2 A0 Y 2K A2 +2% Y IIAk9||§z> :
k=<j—1 kzj—1
(3.9)
We now prove (1). Multiplying (3.9) by 2=2%)J integrating over [0, ¢] and taking supremum over j > —1, we obtain
1O p2-2 + CK”Q”a(B;_m) = lI6oll pz2e + 11 + L2 + I3, (3.10)

where /1 and I, are given by

t
L = sup/ @297 27| A ;017 d,
Jj J0

t
Izzsup/ 20720 A2 Y 2| Akb 2 dT,
i JO

j k<j—1
t
I3 :sup/ 2220j22] Z ||Ak9||iz dr.
i 7o k=j—1
Clearly,
t
I < sup sup {2(2_2"‘)J||A,9||L2}/ 22| A6l 2 de
j O<t=<t ' 0
t
< sup sup2@72 A6,z supzzf/ IA;6]l,2 dT
O<t<t j j 0 '
= ”9”1‘?0(322;%&)”9”2?(3%00) 3.11)
t
I < sup / 22N|Aj0N 2 Y 220D 2020k AL de
Y k<j—1
t
< sup sup Z 22“(1‘_1)2(2_2“)"||Ak9||Lz sup/ 22/||Aj0||Lz dr
i JO

J Ost=tp<j— J
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< C sup sup2@ 29| A ;02101 ~

O<t<t j

= C||9||Loo(32 “2a) 1011 71

L(B2 )

T (3.12)

I < sup Z 2@=20k | A, 2% | Ak 22472000 g
0 k>j—1

IA

t
sup sup 22K Ag6 2 sup Y / 22K AgB|| 2 dr2@ 200 R,
O<t<t k j k=1 0

By Young’s inequality for the convolution of sequences,

I3

IA

t
CUB g2y s [ 22100 3264720
' Jj=0

= ClI0l (5220 101 5 (3.13)

L] (32 )

Combining (3.10)—(3.13) yields the estimate (3.2).
To prove (2), we multiply both sides of (3.9) by 2%/, integrate with respect to ¢ and take the supremum over all
j = —1 to obtain

16 as  + CElON T geoe) < W60ll53  + s+ 15 + I (3.14)

where

t

Iy = sup/ 25722 ||Aj9||iz dr,
j J0

15 :Sup/ 2‘/”A 9||L2 Z 22k |Ak9”L2dT
J k<j—1

t
Is = sup / 2922 N || Ar6]7,
j 0

J k>j—1

We bound /4 and I5 as follows

t
I4 < sup sup {2Sf||Aj9||Lz}/ 2% 1A ;6,2 dt
j 0<t=<t 0
t
< sup sup2% A0z sup2(’+2°‘)1/ A0z dT
0<t<t j
= ||9||L1‘OC(B%OO)”9”ZE(B£-Z§Q) for any r > 2 —2a. (3.15)
t
Is < sup/ 27118002 Y 2K A0 2 dr
Jj Y0 k<j—1
< sup sup 2J||A 0|12 sup Z ZZk/ |AEl 2 dT
Jj 0=<t=<t J k=1
' Jj—1
< sup sup2% 1A ;6] 2 sup max 2(’+2")kf |AkO] 2 dT Z 22— 2=k
O<t<t j —l=k=j-1 0 k=1
= C|10|l e (Bzoo)||9||L gyt for any r > 2 — 2a. (3.16)

I can be similarly bounded. Putting these bounds together gives the estimate (3.3).
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To prove (3), we multiply both sides of (3.9) by g274/ | A0 |7, integrate over [0, ¢] and sum over j to obtain

L2’

||9(t)||qr + Cqie |67 o2 §||90||q£q+17+18+19, (3.17)

L{(B,, ")

where

L=gq 2/ 219427 A 0197 dr,

18=q2/0 29A01, D 2K A0 d,
J

k<j—1

t
Ih=gq Z/O 274) 92 Z 1A0]12, d.
j

k>j—1

We bound /7 and Ig as follows
t X 2—r .
I = quO 27711401227 A 0)1, dr
J

. ! 2=ry, i
< qZ sup 2”||Aj9||L2/O 20+ )q'l||Aj9||(Zz dz

j 0<t<t

IA

. 2—ry ¢ t
gsup sup 2"7||A;0]|,2 ZZ<r+7)w/ 1a;61%, de
- 0
j

j 0<t<t

IA

. P . t
Cq sup sup2/|[A;6] ;2 ZZ<r+7)qJ/() ||Aj9||’£2d7:
J

O<t<t j

1/q
Cq sup (ZWHA euq) (IS

=
0<t=<t L?(qu Ty
= Callfllezag 017 a
' L(B,,
t
Iy=qY fo 220l Ao, Yy 22 DBk A6 2 de
J k<j-1

. t 2u .
< gsup sup Y 207D 2COKIAG)], N / R VNT
JoOst<ti<j—1 — JO

< Cq sup sup2@ 2 A 0020017,

O<t=<t j L?(B;qq
j q
< Cq sup sup27 (180021017,
0<t<t j Lq(B )

q
C61||9||L;>°(Bqu)||9||~q

r+27a ’

B2.q ! )
Iy is similarly bounded. After inserting these estimates in (3.17), we obtain (3.4). [
As in the proof of Theorem 3.1 of [17], we can establish the following theorem concerning solutions of the IVP

(3.1) in the inhomogeneous Besov space B; . The proof combines the a priori estimates of Theorem 3.1 and the
method of successive approximation. We 0m1t the details of the proof.
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Theorem 3.2. Let k > Oand a > 0. Let 1 < g < oo and r > 2 — 2a. Consider the IVP (3.1) with 6y € B) q(R2).
There exists a constant Cqy depending on «, r and q only such that if

l6ollB; = Cox.,
-q

then the IVP (3.1) has a unique solution 6 € Bj q (R?) satisfying
10C¢, Dllp; = Cik
-q

for any t > 0 and some constant C| depending on o, r and q. In addition, 8 € L1((0, 00); B;tg“) in the case when
2a

g =00and 6 € L1((0, 00); B; q7) in the case when q < oo.

Setting g = 2 and o = % in Theorem 3.2, we obtain the following corollary on H !-solutions of the 2-D critical
QG equation.

Corollary 3.3. Consider the IVP (3.1) witha = % and 6y € H'(R?). There exists a constant Cy such that if
6ol g1 = Coxk,

then the IVP (3.1) has a unique solution 0 satisfying
6 € C([0, 00); H') N L2((0, 00); H?)

and, for some constant Cs,

16C, D)l g1 < C3k foranyt > 0.

4. Solutions in B ;’ 7

o 1-2a+2
In this section we study solutions of the IVP (3.1) in the homogeneous Besov space B, 4 T

q € [1, oo]. We start with the following a priori estimates.

for p € [2, 00) and

Theorem 4.1. Assume either o > 0and p =20or0<a <land2 < p <oo. Let1 < g <00, and —00 <r < 00.
Consider the IVP (3.1) with 6y € B[’,’q(Rz). Then the corresponding solution 0 of (3.1) obeys the following a priori
estimates.

(1) In the case when g < 00, we have

q q q
OO0, + Cixllol|l 2w = 00ll%,

Blg q.8" g Blg
’ Li(Bpg" ) '

q
+ 2001 g 1017

T Bpg ) LB, T)
(2) In the case when g = 00, we have

5 ~ < 5 ~ .
10N 5, _ + CLlON] groze) < 6oLy + CalI_ 1oy 1007
t P00

Proof. We first consider the case when 1 < g < oo. Multiplying (3.5) by p|A j9|P—2A ;0 and integrating over R2,
we obtain

d
E”AjQHZp +kpJi = pha, 4.1)
where J; and J; are given by

Ji = fRz |A;01P72A;0(—A)* A ;6 dx,

S = / |A;01P2A;0[u -V, A;16 dx.
]RZ
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Applying the lower bound in Proposition 2.5, we have

Ji = C2 ) A017,. 4.2)
By Holder’s inequality,

-1

T2 = ClIAOIL, Il -V, Aj10lLe 4.3)
Inserting (4.2) and (4.3) in (4.1), we get

d .

5 14401lLr + Ck2* A0y < Clllu-V, Aj10] L.
Applying Proposition A.2 to the right-hand side yields

d ; 2yi 2
S 180l1Lr + k2T 1 8;011Lr < c(2<1+v)f||A,-9||%p 1400 Y 2(1+”)k||Ak9||L1’>- 4.4

—oo<k<j—1

For the sake of brevity, we have intentionally omitted the interaction term of high—high frequencies. As we have

seen in the previous section, this term can be similarly dealt with. Multiplying this inequality by ¢2"%/ ||A j9||‘£;1 ,
integrating over [0, ¢] and summing over j € Z, we obtain

Io@OI%, +Crqllol” o <ll6ollf, + I3+ Ja,
P9 L;I(ép,qq ) P.q

where J3 and J4 are given by

t . N
B=cqy /0 2ain M0 a4t dr,
J

t . 3
=k
Ih=Cq) /Z’qanjeu‘zp > 2T AL dr.
: 0
J

—oo<k<j-1

To bound J3, we first rewrite it as

t 2y P
J3=Cq Z/ 22D A0 Lp 27 2 A 6114, dr.
~ Jo
J
According to Lemma 2.2,

t 2y
Js < Cq / DO oz 27720117, dr
0 F Bp g

IA

t PN

Ca swp WOy [ 3279801, ar
B .
J

7€[0,7] P.q

= Cqllol 12 lON

20
o2
L¥Bpg ) LIB,,T)

To bound J4, we start by writing it as

d 2y N )
J4=Cq2/ 20T A0, ST 22D 202 A g dr
: 0
J

k<j—1
Since
1
N (l—2a+2 Coat2 K
Z 220!(](—]) 2(1 20{+p)k”Ak9“Lp S C ( Z [2(1 ZOH_”)k”AkQ”L”]q)
k<j—1 k<j—1
< CHON a3

pr.q
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we have

Jae=Cqlloll gz 1017 o

t (Bpg ) Ll (ép.q 7

This completes the proof for (1). _
In the case when ¢ = oo, we multiply (4.4) by 2"/, integrate over [0, ] and take the supremum over j € Z. This
results in the inequality

16, .+ CelON oz < Ibollz, _+CJs +Cs,

where Js and Jg are given by

t i AW
J5:sup/ 2”2<1+">]||A,/9||%p dr,
i Jo

ro 2
Jo = sup / 278000 Y 20T AL dr.
j 0

k<j—1
Js is bounded by
(1-2a+2)j
Js <sup sup 2 PENAGO@ N Le 101177, gra2e, = 191l a2 NO175 arroa, -
j 'L’E[O,t] Lr (Bp,oo ) L?O(é;,oi +l7) Lr (Bp,oo )

Je can be bounded as follows

¢ . : 2
Jo = sup / 20207 A0 Y 220K D 202K Ao dr

jJ0 k<j—1
t . 5 )
< sup/ 20207 | A6 o sup 2 2T DK) A6 Lo Z 22a(k=)) 4r
i Jo K e
=C|6 O~ oring.-
[ ||L?O °:,,_;a+%)” ||L}(B;7f0%a)

This completes the proof for the case ¢ = oo and thus the proof of Theorem 4.1. [

Combining these a priori estimates with the method of successive approximation allows us to prove the following
existence and uniqueness result.
Theorem 4.2. Assume eithera > Qand p =20r0 <o <land2 < p <oo.Let1 <g <ocoandr =1 —Za—i—%.
Consider the IVP (3.1) with 6y € é;)q. Then there exists a constant Cy such that if

Ol g =< Cok,
160l 5, < Cox
then the IVP (3.1) has a unique solution 0 satisfying

o1 ., g HCikllolN? w = Caid
L ([O’OO)’Bp.q) Lq((0,00),é;-;q)

in the case when 1 < q < 0o, and
”9”[‘00([(),00);@;).00) + Cix ”9”21((0’00))5222001) < Ck
in the case when q = 0o, where Cy and C; are constants depending on o, p and q only.

Remark. Although Theorem 4.2 does not cover the case when 1 < p < 2, the global existence of solutions for
6o € B[’,’ g With 1 < p < 2 can be established by combining this theorem with the Besov embedding stated in
Proposition 2.1. In fact, forany 1 < p;y <2andr; =1 -2+ %, we can choose pp > 2andr, =1 — 20 + % such
that ri — % =ry — %. By the Besov embedding,

b € B ,(R?) C B2 (R?).



3026 J. Wu / Nonlinear Analysis 67 (2007) 3013-3036

Theorem 4.2 then concludes that 6y leads to a global solution.

Proof of Theorem 4.2. We sketch the proof of this theorem very briefly. It consists of two major steps. The first step
is to consider a successive approximation sequence {9(")}20:1 satisfying

oM =8, 69,
u® = vl
3[0(”4—1) +u™ . yprth K(_A)Dtg(’l-H) =0,
00D (x,0) = 65"V () = Sp260(x)
and show that {0(”)};’,":1 is bounded uniformly in L*°([0, c0); é; q). More precisely, we show that if [|6p]l 5, < Cox,
’ p.q
then

”9(70”’200([0 o) B )+C1K||9(n)||q r+ 2 = Coxct
*p.g Lq((0,00),ép.qq )

in the case when 1 < g < oo, and
(n) . (n)
167N 220 10,00: 1, o) T CENO™ N (0 00, y20) = C2K

in the case when g = 0o, where C and C, are constants independent of x and n.
The second step proves that {#™} is a Cauchy sequence in L ([0, 00); B ) That is, we show the sequence

(n™} with n® = 9™ — g1=D gatisfies

() o1, < C 6ol 5 27"
lIm ”LOO([O,OO)in,ql) <Cl| 0”3;7.‘1

For this purpose, we consider the equations that {n"} satisfies

) = $260 — 90,
aln(n+1) + l/i vn(n+1) +K( A)O{ (l’l+1) — w V@(n)
1
0 (x, 0) = 55"V (x) = Aus16o

and prove that

()49 (n)4 q y—qn
171 0 aeyry + Creln® y <C2k12

L9((0,00), By ©)

in the case when 1 < g < oo, and

110 o 0,001 50y + CRNTP T (0 oy gty < C2x27"
in the case when g = oo. Therefore, there exists

6 € L([0, 00); Bl ) N LI ((0 ), Bpf;a>
for 1 < g < oo and

6 € L™([0, 00); B} o) N LI ((o, ). é;ﬁf‘)

for g = oo such that
1+2a
0™ — 0 in L®([0, 00); B, ) NL ((0 00), qu > for 1 < g < 0o,

6™ — 6 in L™([0, 00); B, )N LI ((0 00), Bl ‘+2“) for g = 00
One can then easily verify that 6 satisfies the 2-D QG equation
90 +u-Vo+k(—A)*0 =0

in B; ql, where u = VX A~1 0. We omit further details. [
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5. Uniqueness

3027

This section addresses the issue of the uniqueness of solutions to the IVP (3.1) in Besov spaces. The major results

are presented in four theorems.

Theorem 5.1. Let o > 0. Letr > 2 —2aand 1 < q < o00. Let T > 0 and let
6 € L™(10.T); B5 ,(R?) and 6 € L™([0,T); B ,(R?))

be the solutions of the IVP (3.1) corresponding to the initial data
6o € By (R?) and 6 € B (R,

respectively. Let s < 1 — 270‘. If no = go — 6y isin stq, then the difference
n= 6—6

satisfies for 1 < q < 0o

q ‘ q < q e 5 e q
100 gy ) +Colinl? oy < lmollfy +C (uenmwquz )+ 10 o g )) TR

LBy, ") Li(B!
and for g = o0
Imlzgecss oy + C oI gprae, < Inollsg  +C (10132 + 18 e 320y ) N5 oz

foranyt < T. In particular, if 6y = 50 and

— < g — <
1000 g2y < CHs N0 o gz-ey < C

for some suitable constant C, then 6 = 6.

5.1

(5.2)

In the special case when o = % and r = 1, this theorem reduces to a corollary on the uniqueness of H'! solutions

of the 2-D critical QG equation.

Corollary 5.2. Let o« = % and T > 0. Assume that

0 e L0, T); H'(R?) and 6 e L°°([0, T); H' (R?))

are solutions of the IVP (3.1) corresponding to the initial data 0y € H L(R2) and 50 e HI(R?), respectively. Then

there exists a constant C such that if
101l 201y < Cre and 0] 20 m) < C i,

then 6y = 50 implies 0 = 6.

Proof of Theorem 5.1. Let u and ¥ be the corresponding velocities, namely
u=viA7'o and @=viAT'o.

The difference n = 6 — 0 satisfies the equation
In+u-Vn4+w-VO+k(—=A)*n =0,

where w = u — u. Applying A to this equation, we have

FAN+TU- VAN +Kk(=A)*Am=1[a-V,A;ln— Ajw - V6).

Multiplying by A jn, integrating over R?, bounding the dissipative term from below and applying the Holder inequality

to the terms on the right, we find

d ; ~
EIIAmIIy + Ck2 A2 < CIE -V, Ajlnli2 + ClA;jw - VOl 2.

(5.3)
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For 1 < ¢ < oo, we multiply this inequality by 2577 || A jn||’£;1, integrate over [0, ¢] and sum over j to obtain

IO +Crlinl? 5 < Ki+Ka,
2.q L?(Bz,qq)

where K and K are given by

t
| L
K1=CZ/O 20 A5 I - 9, Al 2 d,
J

t
; ~1
K,=C Z/O 279 A% 1A (w - VO)| 2 dr.
J
To estimate K, we first change the order of summation and time integration and then apply Proposition A.2 to obtain

t
K S/ (K11 + K12+ Ky3)de
0

with K11, K12 and K3 being given by

Kin=C Y 294 aml?, Y 22| A,

Kip=C Y 2 A i 1Al lez'”nAmmm,
J m<j—

. I
Kiz=C Y 2741 AmI% 7 1Al 2 2 1A nll 2.
J

For K1, we have

2y — A A ~
Kip=C Y 20 5 0agmid, Y 2200 202 0m AL

J m<j—1
1—-1
q
s+22y; 2 —j -1 ~
<C Zz(v 7 )jq”Ajn”{zz ( Z y2a(m—j)q/(q )) ”“”35*2‘1
j k=j-1 B
=Cnl? Ul 220 5.4
g Vil 22 (5.4)
2.9

Fors <2 — %"‘, K> can be bounded as follows

s+2)j(g—1 —1 5 (2=20)] ~ 2—5—22)(m—j) A(s+22
Kip=C Y 20T @D a 951 20200 a2 Y0 20700 200 AL

J m<j—1
1—1 1
q q
=1 |~ Q—s—22)(m—j)q/(q—1) (s+%)mq q
= Clnl", o 17l g3 ( D 2 2 2 Al
2,9 kSJ_l kS]—l
q ~
< _
= Clnl? o 722
2,9
s+2) jq d AQ=2a)j A ~ q ~
K13=Zz( ) 18017, 2272071 A il 2 < C il o ] 220
- q q

J 2.9

To bound K>, we obtain after applying Proposition A.2

t
K, <C / (K21 + K22 + K»23) dr,
0
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where K71, K22 and K73 are given by

i —1
Kot =Y 2901 aml%  1Sjm 1wl VA6 2.,
J
i —1
Ko =Y 2901 A% 1A wll 2 1VS)-10 ] .
i —1
Ko =Y 290 amI% " 1Al 2 VA6 .

Fors < 1— 27‘* K> is bounded by

Kar < Y 29 A0 27014002 Y 2" I Anwll2
j m<j—1
1 1 _ . 1os—22Y(m— 20
_ 22(5+ ) j(g— )”A/n”q 2(2 2a) j ”AJGHLZ Z 2( S=% )(m—j) 2(S+ 7 )m”Amw”Lz
j m<j—1

g—1
= Clnll* 2 I|9||Bz 2wl 2

2q Zq

For K»; and K>3, we have

+2 1 1H(s42
Ko = 3 20O a 7000 A jw) o Y 220 D0@20m A,

J m<j—1
< Clnll* Ly Il 2 191 g2,
2q 2‘7 .
Ky < 2(H— 2)j(g—1) A (H— “)j A 2(2 2a) j A ya)
% 1A jnll> 1A jwil;2 120112
J

g—1
= Clnll™ o llwl S I|9||32 2.

2.4 B, -4
Combining the estimates for K| and K>, we obtain

s 2%

t
In@Ng; +Crlinl’ 5 < lInoll +C/ Il 20 1idll g2-2e de
Lq(B T 2.9 0 g 2.9

2.9

+C/ IInIIq +2a IIWII S ||9||Bz 2 dt. (5.5)

Since # = VX A~'0 and w = V-4~ n are Riesz transforms of 5 and 7, respectively,

17220 < 1) gz 20 and Jwll Lz <l Loz

2,9 B 2.4

according to the boundedness of Riesz transforms on L. Inserting these estimates in (5.5), we establish (5.1).

In the case when ¢ = oo, we integrate (5.3) with respect to ¢, multiply by 2*/ and take the supremum over j to
obtain

@l +Cxlinll Bs+2a)_K3+K4a

where K3 and K4 are given by

t t
K; = supZSJ/ I[@- V., Ajlnll,2dr,  K4=C sup2‘”/ IA;(w - VO)| 2 dr.
j 0 j 0
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As in the estimates for K; and K7, we split each of K3 and K4 into three terms. For the sake of brevity, we shall only
provide the details for K31, a term in K3.

t
K3 = C supZS// lajmliz Y 22" Apitll2 dr
j 0

m<j—1

t
= C sup28 2V /0 Al Y 220D 2C20m A, T, de
J

m<j—1

1
< C sup sup2(2_2"‘)m||Amﬁ||Lz sup2(5+2"‘)// A ;]2 de
O<t<t m j 0

=C “u”LtOO(Bg;ZJ”) ”n”ZE(Bévtgoc)
(5.2) is then established after combining the estimates for K3 and K4. [

Theorem 5.3. Let o > 0. Letr > 2 —2aand 1 < q < 0o. Let T > 0 and let

6L ((0, T): B;;Z;(RZ)> and 8 e L9 ((0, T): Béﬁ(R%)
be the solutions of the IVP (3.1) corresponding to the initial data 6y and 50, respectively. Let s < 2. If no = 50 — 6o
is in Bg, . then the difference

n= 6—6

satisfies, forany t < T,

t
q q q 7 q q
IOl < lInollyy +C/0 10O 2 IO, 2 | I @I dr. (5.6)

2,9 24

In particular, if 6y = 50, then
0=0. (5.7)

For the sake of brevity, we did not include the case when ¢ = oo in this theorem. We now state as a corollary a
special consequence of this theorem.

Corollary 5.4. Let a = % and T > 0. Let 6 and 6 satisfying

0 € L2(0,T); H>(R?) and § e L2((0,T): H?)

be two solutions of the IVP for the 2-D critical QG equation (3.1) corresponding to the initial data 6y and 50,
respectively. If 6y = 0o, then 0 = 6.

Proof of Theorem 5.3. We estimate the difference n = 6—6in B3 4 We start with the inequality
d ; ~
g 1Az + Ck2*||Ajnl 2 < CIE -V, AjInllg2 + CIAj(w - VO)| 2.

Integrating with respect to ¢, we obtain

t t
1Al < Ej O m0ll 2 + c/o Ej(t— o)l V. Aj]n||der+c/0 Ej(t — )llA;(w- Vo)l dr,

where E;(t) = exp(—C k2% ¢). Multiplying both sides by 2%/, raising them to the gth power and summing over j,
we obtain

In@N%s < llnoll%s + L1+ Lo, (5.8)
2.9 2.4
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where

. t q
=C ) 2 (fo Ej<t—r)ll[E~V,A,»]n||def) ,
J
. t q
Ly=C ) 2 (/ Ej(t—r)llA,,(w-ve)uder) .
i 0
J

Applying Proposition A.2, we have
Ly =Ly + L+ L,

where
q
Liy=C) 27 (/ Ejt—=olAmle ) 2m||Amu||der> :
J m=<j—1
q
Lip=C ) 2/ (/ Ej(t —Dllajillz ) 2"’||Amn||der> :
J m<j—1

Liz=C) 2 </ Ej(t—r)||Aju||L2221||Ajn||Lzdr) .
: 0
J

We now provide the estimate for L. By Holder’s inequality,

) t q qg—1 t q
C Dy 2 (fo E/” (t—r)ds) / (||A]n||L2 > 22m||Amu||Lz>
j

m<j—1

q
J

m<j—1

t . 2a . 2a 1
= c/ > 2% A ), < > 2<2°’q><mf>2(““+q>m||Amﬁ||Lz) dt
0 N
J

m<j—1

Ly

IA

IA

t
C/ In(o)I%s @@ dr.
0 2.4

(2-2a+22)
B q
2,9

For L3 and L3, we have

q
he 2 €2 Z_Zaj(q_l)/ (”A 2D 22’"||Amn||Lz) d
J W
t Q20+ 22) | ,
= C/ 22 o+ jq”AJﬁ“z) Z 2(2—S)(m—])25m”Amn”LZ &
’ ! m<j—1
t . q
<cf IO o g, IO
2.9
t
o ~ . )
Lz < CZZW‘]Q 2aj(q 1)/O (IlAjM||L222]||Aj77||L2> dr
= / 22(2 20422 )/QHA u”q 2qu||A]T]||q dr
<C fuu(r)n" s, IO,
q

3031
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L, can be similarly estimated and is bounded by

q
oy I dr.

249

t
LzSC/ 19
0 B

Combining (5.8) with the estimates for L1 and L, and using the fact that

~oad < 19\ 11¢ 9 q
TN, ) <IN o, and I < IOl |

2,q9 2,q9

we establish (5.6). (5.7) is obtained by applying Gronwall’s inequality to (5.6). U

The following two theorems assert the uniqueness of solutions of the 2-D QG equation in homogeneous Besov
spaces. We omit their proofs since they are similar to those of Theorems 5.1 and 5.3.

Theorem 5.5. Assume either ¢ > 0Oand p =20or0<a <land2 < p <oo.Let1 <gq gooandrzl—Za—}—%.
Let T > 0. Let

6 € L=((0,T); B, ,(R?) and § e L™((0,T); B, ,(R?)

be the solutions of the IVP (3.1) corresponding to the initial data
0o € By ,RY) and 6 € B, ,(R?),

respectively. Let s < 1 — %". If no = 50 — 6y isin éls,’q(Rz), then the difference
n= 606

satisfies for 1 < q < oo

q q q . 5 , q
e+ Coll? o <m0l +C (100 + 1y ) I (5.9)
Bgq LIB,, ") : LB, , ")
and for g = o0
103y + € NI T ey = Mol +C (1610 _y + 18030y ) ) WY vy (5.10)

foranyt < T. In particular, if 6y = 50 and
||9||L1;0(1§£q) <Ck, ”0”[1%0(1"35,4) <Cxk
for some suitable constant C, then
6=0.

Theorem 5.6. Assume either« > 0and p =20or0 <o <land2 <p <oo.Let1 <gq <ooandr:1—2a—|—%.
Let T > 0. Let

o r+2—"‘ 2 ~ o r+2ﬁ 5
6 eL!((0,T); Bygq* (R%) and 6 € LY((0,T); B, " (RY)
be the solutions of the IVP (3.1) corresponding to the initial data 6y and 50, respectively. Let s < 2. If no = 50 — 6
isin B;’q (R?), then the difference
n= 6—06

satisfies, foranyt < T,

t
1%, =< lInoll%, +C/O (IIG(I)IILIMZKI‘, +||9(f)||‘{,+za>IIH(T)II%J dr.

P4 P4 q P4
Bpq Bpq
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In particular, if 6y = 6y, then
0=20.
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Appendix A

This appendix proves a Bernstein type inequality for fractional derivatives and a commutator estimate that has been
used in the previous sections.

Theorem A.1. Leto > 0. Let 1 < p < g < o0.
() If f satisfies
supp f C {& e RY : || < K27),
for some integer j and a constant K > 0, then
2aj+id(Lt—1
=) fllgagay < CL 2™ £l ray.
(2) If f satisfies
supp f C {& e RY : K127 < |g] < K227} (A1)
for some integer j and constants 0 < Ky < K», then
. 2aj+id(Lt—1
Ci 22a]||f||Lq(Rd) = ||(—A)“f||L,,(R,1) <2 G q)”f”Lp(Rd),
where C1 and C, are constants depending on o, p and q only.

Proof. We prove (2) and the proof of (1) is similar. To prove (2), it suffices to show

1fllze < €272 £l (A2)
and

C2¥| fllLr < I(=D)*fllLr < C2*|| f 1o (A3)
Because of (A.1), there exists a @; such that

F=9;7. (A4)
where @; is as defined in Section 2. That is, f = &; * f. By Young’s inequality

I flle < I @jllell fllze,

where % =1+ é - %. Noticing that @;(x) = 2/¢ $y(2/x), we have

id(l—1
1Djlm =2/~ @) 1o

and this proves (A.2).
To prove (A.3), we choose @; such that

(CAf(E) = QrlEN &) = B;(E)2n|EN F(E). (A.5)
That is,
(A f =K f, (A.6)
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where
Ky = [ D6 rlel) d.
Since ®;(§) = By(27/£), we have
Kj(x) = 2224 ) /R eI d (6)| 6 d.
By repeated integration by parts, we obtain
|Kj(x)| < € 224924 27 x|~
for any s > 0. Therefore,

1Kl < €22 (A7)

Applying Young’s inequality to (A.6) and using (A.7), we prove the right half of (A.3). To prove the left half of (A.3),
we have from (A.5) that

F&) = (@;EQrIEN ) N (CAf(E), £€A,

where A is defined in (2.1). This, in turn, implies

f=Ljx (A [ with Lj(x) = / T8 @mlg ) ! ds.

J

The rest is then similar to the proof for the right half of (A.3). This completes the proof of Theorem A.1. [J

We now state and prove the commutator estimate.

Proposition A.2. Let j be an integer. Let 1 < p < ocoand 1 <r < oo. Let u be a divergence free vector field. Then

dy; d
IV, A1l < C <2<1+,>, Al 1800+ 1800r Y 20K Agul

k<j—1
d d -
+ ol Aule Y 20K A + 20 ||Aku||u||Ak9||Lp>, (A.8)
k<j—1 k>j—1

where the brackets [ ]| represent the commutator operator, namely
[u-V,A;10 =u-V(A;0) = Aj(u-V0).
In particular, if d = 2,2 < p < 0o and u = V+A710, then

1+2); 1+2)k
Il - V. A0 e < c(z( ONAOIT, 1800 Y 2P AL
k<j—1

+ 20 3 ||Ak9||%p) : (A9)
k>j—1
Proof. Splitting [u - V, A;]60 into paraproducts, we have
[u-V,Aj10 =1L+ DL+ 13+ 14+ Is,
where

I = Zsk,lu SVA;AD — Aj(Sk—1u - VAD),
k

L= Au-VA;S_16.
k
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=Y Aj(Agu-VS10),
k

L= Y Awu-VAjASD,
k k—I<1

Is=Y" > Aj(Awu-VAW).

k k=<1

We bound the L”-norms of these terms. According to (2.5), the summation in /; is only over k satisfying |k — j| < 2.
Using the definition of A ;, we can write

L= > / Pj(x — Y)(Sk—1u(x) — Sk—1u(y)) - VARG (y) dy.
k—j1<2 /R
We integrate by parts and use the fact that V - u = 0 to obtain
== 3 [ V80— (Seau) = S B46)dy.
k—jl<2 /R

By Young’s inequality,

Il <€) IVSiullze ||Ak9||m/ x|V @ (x)| dx
- R4
lk—jl1=<2
=C Y IAOlLr VSioullze.
lk—jl=<2

Similarly, the summation in /5, I3 and I4 are also only over k satisfying |k — j| < 2. The estimates for these terms are
simple and their L?”-norms are both bounded by

Malee I3le <C ) IAulLr | VS8,
lk—jl=<2

Mallr <C >0 lAkullLrIVAD|Lo.
lk—j1=2,lk—=1|<1

The estimates for I5 are slightly different. The summation is over all k > j — 1, namely

Is = Z Aj(Agu - VAB).
k>j—1,lk=1|<1
Since u is divergence free, we obtain after applying Bernstein’s inequality
dy
sl < C2OFDT 3" A (AuAD)]| Lo,
k>j—1,lk—I|<1

where g satisfies % + % = qi. By Holder’s inequality

4 .
[Is| < 200 N Al | A6 Lo
k>j—1,k=I<1

Since the summations in the bounds for /1 through /4 are only over a finite number of k’s, it suffices to consider the
typical term with k = j in our further estimates. It follows from Bernstein’s inequalities that

Q .
IVA;B| e < C2UFDT A0 1,

d
IVS; 10l < Y IVAWDILe < C Y 2005 A0
k<j-1 k=<j-1

(A.9) is a consequence of (A.8) since [|Ajullrr < C||A;0]r. O
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