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GLOBAL REGULARITY RESULTS FOR FOUR SYSTEMS OF 2D
MHD EQUATIONS WITH PARTIAL DISSIPATION

JINGNA LI, BO-QING DONG, JIAHONG WU

Abstract. This article examines the global well-posedness problem on four

closely related systems of the 2D magnetohydrodynamic (MHD) equations

with partial dissipation. They all share the same partial dissipation in the
equation of the magnetic field b, only the vertical magnetic diffusion in the

horizontal component and the horizontal magnetic diffusion in the vertical
component. When the velocity equation has no fluid viscosity, the global

regularity problem is an outstanding open problem. We prove a weak-sensed

small data global existence result for the case when there is no fluid viscosity.
When the velocity equation involves partial dissipation of the same structure as

in the equation of b, we show that any L2 initial datum leads to a unique global

solution, which becomes smooth instantaneously. When the partial dissipation
in the velocity equation is either in the horizontal or vertical direction, we prove

that any H1 initial datum generates a unique global solution.

1. Introduction

This article concerns the global regularity problem on four closely related systems
of the 2D magnetohydrodynamic (MHD) equations with partial dissipation. The
first one is the following MHD equation without fluid viscosity

∂tu + u · ∇u = −∇p+ b · ∇b,

∂tb1 + u · ∇b1 = η∂22b1 + b · ∇u1,

∂tb2 + u · ∇b2 = η∂11b2 + b · ∇u2,

∇ · u = 0, ∇ · b = 0,

(1.1)

where u = (u1, u2) denotes the velocity field, b = (b1, b2) the magnetic field, p the
pressure and η > 0 the magnetic diffusivity. Here we have used ∂22 and ∂11 to
denote the second order partial derivatives in the vertical and horizontal directions,
respectively. The model equation in (1.1) is rooted in the standard 2D MHD
equations with only magnetic resistivity, namely

∂tu + u · ∇u = −∇p+ b · ∇b,

∂tb + u · ∇b = η∆b + b · ∇u,

∇ · u = 0, ∇ · b = 0.
(1.2)
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Equation (1.1) differs from (1.2) in that the resistivity term in (1.1) is only partial
η(∂22b1, ∂11b2), as opposed to the full resistivity η∆b in (1.2).

Equation (1.2) is applicable when the fluid viscosity can be ignored while the role
of resistivity is important such as in magnetic reconnection and magnetic turbu-
lence. Magnetic reconnection refers to the breaking and reconnecting of oppositely
directed magnetic field lines in a plasma and is at the heart of many spectacu-
lar events in our solar system such as solar flares and northern lights (see, e.g.,
[1, 5, 9, 10]). The mathematical study of (1.2) may help understand the Sweet-
Parker model arising in magnetic reconnection theory [9, 10]. The global regularity
problem on (1.2) is not completely solved at this moment, although recent efforts
on this problem have significantly advanced our understanding (see, e.g., [7, 14]).
Global a priori bounds in very regular functional settings have been obtained. What
is lacking is a bound for the vorticity ω in L∞(0, T ; L∞). More details can be found
in [7] or a very recent review paper by one of the authors [13].

One goal here is to reduce the resistivity (dissipation) as much as possible and
still establish the global existence and regularity of solutions. Resistivity regularizes
solutions and helps facilitate the proof of global regularity. As aforementioned, the
global regularity problem on (1.2) and (1.1) remains outstandingly open. Our first
result shows that (1.1) does possess global small solutions in a weak sense. More
precisely, we prove the following theorem.

Theorem 1.1. Let η > 0. Consider (1.1) supplemented with the initial data
(u0,b0) satisfying (u0,b0) ∈ Hs with s > 2 and ∇ · u0 = 0 and ∇ · b0 = 0.
Then, for any T > 0, there exists δ = δ(η, T ) > 0 such that, if

‖b0‖Hs ≤ δ,

then (1.1) has a unique solution (u,b) on [0, T ]. In addition, (u,b) satisfies u ∈
L∞([0, T ];Hs) and

‖b‖L∞([0,T ];Hs) + η
(∫ T

0

‖∇b(τ)‖2Hs dτ
)1/2

≤ C δ

for a pure constant C.

Here we have written (u0,b0) ∈ Hs × Hs simply as (u0,b0) ∈ Hs for the
conciseness of notation. We remark that the smallness condition depends on T and
is only imposed on b0 (not on u0). A similar result was shown in [7] for the 2D
MHD equation with full resistivity, namely (1.2). In order to prove Theorem 1.1
with only partial resistivity, we make use of the special structure of (1.1). A full
proof is given in Section 2.

It is currently unknown that (1.1) with a general initial data always possesses a
unique global solution. This is an extremely difficult problem. To help understand
this intriguing problem, we explore the existence and regularity of three systems
that are closely related to (1.1),

∂tu1 + u · ∇u1 = −∂1p+ ν∂22u1 + b · ∇b1,
∂tu2 + u · ∇u2 = −∂2p+ ν∂11u2 + b · ∇b2,

∂tb1 + u · ∇b1 = η∂22b1 + b · ∇u1,

∂tb2 + u · ∇b2 = η∂11b2 + b · ∇u2,

∇ · u = 0, ∇ · b = 0;

(1.3)
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∂tu + u · ∇u = −∇p+ ν∂11u + b · ∇b,

∂tb1 + u · ∇b1 = η∂22b1 + b · ∇u1,

∂tb2 + u · ∇b2 = η∂11b2 + b · ∇u2,

∇ · u = 0, ∇ · b = 0

(1.4)

and
∂tu + u · ∇u = −∇p+ ν∂22u + b · ∇b,

∂tb1 + u · ∇b1 = η ∂22b1 + b · ∇u1,

∂tb2 + u · ∇b2 = η∂11b2 + b · ∇u2,

∇ · u = 0, ∇ · b = 0,

(1.5)

where ν > 0 is a real parameter. We show that (1.3) supplemented with any
L2-initial data (u0,b0) always possesses a unique global strong solution.

Theorem 1.2. Let ν > 0 and η > 0. Consider (1.3) with the initial data (u0,b0) ∈
L2, and ∇ · u0 = 0 and ∇ · b0 = 0. Then, (1.3) has a unique global strong solution
(u,b) satisfying

(u,b) ∈ L∞(0,∞;L2), ∂2u1, ∂1u2, ∂2b1, ∂1b2 ∈ L2(0,∞;L2). (1.6)

In addition, for any t0 > 0, the solution (u,b) becomes infinitely smooth on [t0,∞),
namely

(u,b) ∈ C∞(R2 × [t0,∞)). (1.7)

The key point of Theorem 1.2 is that (u0,b0) is merely required to be in L2

and the solution of (1.3) emanating from this data is unique and becomes infinitely
smooth instantaneously.

We are also able to establish the global existence and regularity for both (1.4)
and (1.5) when the initial data (u0,b0) ∈ H1. In addition, the H1-level solutions
are unique.

Theorem 1.3. Let ν > 0 and η > 0. Consider (1.4) or (1.5) with the initial data
(u0,b0) ∈ H1, and ∇ · u0 = 0 and ∇ · b0 = 0. Then, (1.4) has a unique global
strong solution (u, b) satisfying

(u,b) ∈ L∞(0,∞; H1), ∂1∇u, ∆b ∈ L2(0,∞; L2) (1.8)

and (1.5) has a unique global strong solution (u,b) satisfying

(u,b) ∈ L∞(0,∞; H1), ∂2∇u, ∆b ∈ L2(0,∞; L2).

Theorems 1.2 and 1.3 contribute to the global well-posedness theory on the MHD
equations with partial dissipation. In the last few years there have been substantial
developments on the global regularity problem concerning the hydrodynamic equa-
tions with partial dissipation. These partially dissipative systems are physically
relevant and mathematically important. The MHD equations with partial dissipa-
tion have attracted considerable interests and significant progress has been made
(see, e.g., [2, 3, 4, 6, 7, 11, 13, 14, 15, 16, 17]). We apologize for not being able to
cite all related references simply due to the sheer number of papers available. A
more complete list of references can be found in the review paper [13]. Several pre-
vious results are especially relevant to what we obtain in this paper. Cao and Wu
in [4] established the global regularity for the 2D MHD equations with the mixed
partial dissipation given by ∂11u and ∂22b (or ∂22u and ∂11b). Cao, Regmi, Wu
and Zheng ([2, 3]) examined the case when the partial dissipation in the 2D MHD
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equations is in the same direction, namely ∂11u and ∂11b (or ∂22u and ∂22b) and
obtained global bounds for high regularity of the solutions, even though a complete
solution to the same directional partial dissipation case is lacking. Later Du and
Zhou obtained global well-posedness and blowup criteria results for some other par-
tial dissipation cases [6]. Theorem 1.3 proves the global existence and uniqueness at
the H1-level for the partial dissipation case when the dissipation in one component
of b is in one direction while the rest is in the other direction.

The rest of this paper is divided into three sections. Section 2 proves Theorem
1.1, Section 3 proves Theorem 1.2 while Section 4 proves Theorem 1.3.

2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. We make several prepara-
tions. First we state the bootstrap argument (see, e.g., Tao [12]).

Lemma 2.1. Let T > 0 and I = [0, T ]. Let H(t) and C(t) with t ∈ I be two
statements satisfying the following conditions:

(a) C(t) holds for at least some t0 ∈ I;
(b) If C(t) holds for some t1 ∈ I, then H(t) also holds for t1;
(c) If C(t) holds for tm ∈ I and tm → t, then C(t) holds;
(d) If H(t) holds for t ∈ I, then C(t) also holds for t ∈ I.

Then C(t) holds for all t ∈ I.

The continuity argument is a special consequence of Lemma 2.1.

Corollary 2.2. Let T > 0 and I = [0, T ]. Let f0 ≥ 0. Assume f = f(t) is a
nonnegative continuous function on I satisfying, for some C0 > 0 and β > 1,

f(t) ≤ f0 + C0 (f(t))β .

Then, there exists A = A(C0, β) such that, if f0 < A, then f(t) ≤ 2A for all t ∈ I.

The following simple Osgood type inequality is used in the proof of Theorem 1.1.

Lemma 2.3. Let T > 0. Let ρ1 and ρ2 be non-negative integrable functions on
[0, T ]. Let f be a non-negative measurable function on [0, T ] satisfying, for a.e.
t ∈ [0, T ],

f(t) ≤
∫ t

0

ρ1(τ) f(τ) ln(1 + f(τ)) dτ + ρ2(t).

Then, for a.e. t ∈ [0, T ],

f(t) ≤ (1 + f(0))e
G1(t)

eG2(t) e
G1(t)

,

where

G1(t) =
∫ t

0

ρ1(τ) dτ and G2(t) =
∫ t

0

ρ2(τ) dτ.

Let J = (I−∆)1/2 denote the inhomogeneous differentiation operator. We recall
two well-known calculus inequalities. (see, e.g., [8, p.334]).

Lemma 2.4. Let s > 0. Let p, p1, p3 ∈ (1,∞) and p2, p4 ∈ [1,∞] satisfying

1
p

=
1
p1

+
1
p2

=
1
p3

+
1
p4
.
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Then, for two constants C1 and C2,

‖Js(f g)‖Lp ≤ C1 (‖Jsf‖Lp1‖g‖Lp2 + ‖Jsg‖Lp3‖f‖Lp4 ) ,

‖Js(f g)− fJsg‖Lp ≤ C2

(
‖Jsf‖Lp1 ‖g‖Lp2 + ‖Js−1g‖Lp3 ‖∇f‖Lp4

)
.

Proof of Theorem 1.1. As we know, the local-in-time existence and uniqueness of
solutions follows from a standard approximation process and local energy estimates.
Our focus here is on the global existence and regularity and we use the bootstrap
argument in Lemma 2.1. Let T > 0 be fixed. Let γ > 0 be suitably chosen (to be
specified later). For t ∈ [0, T ], let H(t) and C(t) denote the following statements

‖b‖L∞(0,t;Hs) + η‖b‖L2(0,t;Hs+1) ≤ γ, (2.1)

‖b‖L∞(0,t;Hs) + η‖b‖L2(0,t;Hs+1) ≤
γ

2
. (2.2)

It is clear that (a), (b) and (c) in Lemma 2.1 hold. It remains to verify (d), that is,
to prove (2.2) under the assumption (2.1). When (2.1) holds, we show that ω and
u are regular on [0, T ]. It follows from the equation of ω, namely

∂tω + u · ∇ω = b · ∇j

that, for s > 2,

‖ω(·, t)‖L∞ ≤ ‖ω0‖L∞ +
∫ t

0

‖b · ∇j‖L∞ dτ

≤ ‖u0‖Hs + ‖b‖L∞(0,t);Hs)

∫ t

0

‖∇j‖L∞ dτ

≤ ‖u0‖Hs + ‖b‖L∞(0,t);Hs)

√
t
(∫ t

0

‖∇b‖2Hs dτ
)1/2

≤ ‖u0‖Hs +
1
η

√
t γ2 ≡ C0(u0, t, γ),

where we have invoked (2.1) to obtain the last inequality. As a consequence, ‖u‖Hs
is also globally bounded. It follows from the velocity equation that

d

dt
‖u‖Hs ≤ C‖∇u‖L∞‖u‖Hs + ‖b · ∇b‖Hs . (2.3)

We bound ‖∇u‖L∞ in terms of the logarithmic Sobolev inequality

‖∇u‖L∞ ≤ C(1 + ‖u‖L2 + ‖ω‖L∞ ln(1 + ‖u‖Hs)).

Clearly, ‖b · ∇b‖Hs is locally time integrable,∫ t

0

‖b · ∇b‖Hs dτ ≤
1
η

√
t γ2.

Applying Lemma 2.3 yields a global bound on ‖u‖Hs ,

‖u(t)‖Hs ≤ (1 + ‖u0‖Hs)e
tC0
e(Ct(1+‖u0‖L2 )+ 1

η t
√
t γ2)etC0

. (2.4)

Taking the curl of the equation of b, we find that j = ∇× b obeys

∂tj + u · ∇j = η ∂111b2 − η ∂222b1 + b · ∇ω +Q(∇u,∇b), (2.5)

where
Q(∇u,∇b) = 2∂1b1(∂2u1 + ∂1u2)− 2∂1u1(∂2b1 + ∂1b2).
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Applying the differential operator Js−1 to (2.5) and then dotting with Js−1j, we
have

1
2
d

dt
‖j‖2Hs−1 = K1 +K2 +K3 +K4,

where

K1 = η

∫
Js−1(∂111b2 − ∂222b1) Js−1j, K2 = −

∫
Js−1(u · ∇j) Js−1j,

K3 =
∫
Js−1(b · ∇ω) Js−1j, K4 =

∫
Js−1Q(∇u,∇b) Js−1j.

Writing j = ∂1b2 − ∂2b1 and integrating by parts lead to

K1 = −η
∫ (

(∂11J
s−1b1)2 + (∂22J

s−1b1)2 + (∂11J
s−1b2)2 + (∂22J

s−1b2)2
)

≡ −η H(Js−1b).

Because ∇ · u = 0, we have

K2 = −
∫ (

Js−1(u · ∇j)− u · ∇Js−1j
)
Js−1j.

By Lemma 2.4,
|K2| ≤ C‖u‖Hs‖j‖2Hs−1 .

Integrating by parts and Hölder’s inequality,

|K3| ≤ ‖Js−1(bω)‖L2‖j‖Ḣs ≤ C‖u‖Hs‖b‖Hs−1‖j‖Hs ,
|K4| ≤ C‖j‖Hs−1‖u‖Hs‖b‖Hs = C‖u‖Hs‖j‖2Hs−1 .

Furthermore, by Young’s inequality,

|K3| ≤
η

64
‖j‖2Hs + C‖u‖2Hs‖b‖2Hs−1 .

Noticing that, due to ∇ · b = 0,

∇j =
(

∆b2
−∆b1

)
,

we have
‖j‖2Hs = ‖∇j‖2Hs−1 = ‖∆b‖2Hs−1 ≤ 2H(Js−1b).

Therefore,
|K3| ≤

η

32
H(Js−1b) + C‖u‖2Hs‖b‖2Hs−1 .

Combining the estimates above and noticing that ‖j‖Ḣs−1 = ‖b‖Hs , we obtain

d

dt
‖b‖2Hs + η H(Js−1b) ≤ C(1 + ‖u‖2Hs)‖b‖2Hs .

Therefore,

‖b‖2Hs + η

∫ t

0

H(Js−1b) dτ ≤ ‖b0‖2Hse
R t
0 (1+‖u‖2Hs ) dτ .

Recalling the global bound for ‖u‖Hs in (2.4), we can certainly choose δ = δ(T, η) >
0 sufficiently small such that

sup
0≤τ≤t

‖b(τ)‖2Hs ≤
γ2

16
and η

∫ t

0

H(Js−1b) dτ ≤ γ2

32η
.
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when γ is sufficiently large, say γ > 10‖b0‖Hs . Therefore,

sup
0≤τ≤t

‖b(τ)‖Hs + η
(∫ t

0

‖b‖2Hs+1 dτ
)1/2

≤ γ

2
.

Therefore, we have verified all conditions of Lemma 2.1. It then follows that, for
any t ∈ [0, T ],

sup
0≤τ≤t

‖b(τ)‖Hs + η

(∫ t

0

‖b‖2Hs+1 dτ

)1/2

≤ γ

2
,

which is the desired global bound that ensures the global existence and regularity.
This completes the proof. �

3. Proof of Theorem 1.2

Proof. The proof for the global L2-bound is easy. Taking the inner product of (u,b)
with (1.3), we obtain, after integration by parts and applying the divergence-free
condition,

1
2
d

dt
‖(u,b)‖2L2 + ν‖(∂2u1, ∂1u2)‖2L2 + 2η‖(∂2b1, ∂1b2)‖2L2 = 0

or

‖(u,b)(t)‖2L2 + 2ν
∫ t

0

‖(∂2u1, ∂1u2)‖2L2 dτ + 2η
∫ t

0

‖(∂2b1, ∂1b2)‖2L2 dτ

= ‖(u0,b0)‖2L2 .

The uniqueness part is more delicate. Let (u(1),b(1)) and (u(2),b(2)) be two solu-
tions of (1.3) satisfying (1.6). Because of ∇ · u(1) = 0,

‖∇u(1)‖2L2 = ‖∇ × u(1)‖2L2 ≤ 2‖(∂2u
(1)
1 , ∂1u

(1)
2 )‖2L2 . (3.1)

Similarly,

‖∇u(2)‖2L2 ≤ 2‖(∂2u
(2)
1 , ∂1u

(2)
2 )‖2L2 , (3.2)

‖∇b(1)‖2L2 ≤ 2‖(∂2b
(1)
1 , ∂1b

(1)
2 )‖2L2 , (3.3)

‖∇b(2)‖2L2 ≤ 2‖(∂2b
(2)
1 , ∂1b

(2)
2 )‖2L2 . (3.4)

Consider the difference (u,b) between (u(1),b(1)) and (u(2),b(2)),

u = u(1) − u(2), b = b(1) − b(2),

which satisfies

∂tu1 + u(1) · ∇u1 + u · ∇u(2)
1 = −∂1p+ ν∂22u1 + b(1) · ∇b1 + b · ∇b(2)1 ,

∂tu2 + u(1) · ∇u2 + u · ∇u(2)
2 = −∂2p+ ν∂11u2 + b(1) · ∇b2 + b · ∇b(2)2 ,

∂tb1 + u(1) · ∇b1 + u · ∇b(2)1 = η∂22b1 + b(1) · ∇u1 + b · ∇u(2)
1 ,

∂tb2 + u(1) · ∇b2 + u · ∇b(2)2 = η∂11b2 + b(1) · ∇u2 + b · ∇u(2)
2 ,

u(x, 0) = 0, b(x, 0) = 0,

(3.5)

where p represents the difference between the associated pressures. Taking the
inner products of (u,b) with (3.5) and integrating by parts, we have

1
2
d

dt
‖(u,b)‖2L2 + ν‖(∂2u1, ∂1u2)‖2L2 + η‖(∂2b1, ∂1b2)‖2L2 = I1 + I2 + I3 + I4,
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where

I1 = −
∫

(u · ∇)u(2) · u, I2 =
∫

(b · ∇)b(2) · u,

I3 = −
∫

(u · ∇)b(2) · b, I4 =
∫

(b · ∇)u(2) · b.

These terms can be bounded as follows. By Hölder’s inequality and Sobolev’s
inequality,

|I1| ≤ ‖∇u(2)‖L2‖u‖2L4 ≤ C‖∇u(2)‖L2‖u‖L2‖∇u‖L2

≤ ν

64
‖∇u‖2L2 + C‖∇u(2)‖2L2‖u‖2L2 .

The other three terms can be bound similarly, for example,

|I2| ≤
ν

64
‖∇u‖2L2 +

η

64
‖∇b‖2L2 + C‖∇b(2)‖2L2‖(u,b)‖2L2 .

Invoking (3.1) through (3.4), we obtain
d

dt
‖(u,b)‖2L2 + ν‖(∂2u1, ∂1u2)‖2L2 + η‖(∂2b1, ∂1b2)‖2L2

≤ C(‖∇u(2)‖2L2 + ‖∇b(2)‖2L2)‖(u,b)‖2L2 .

Gronwall’s inequality then implies the desired uniqueness.
Finally we show that, for any t0 > 0, any solution (u,b) of (1.3) satisfying (1.6)

is infinitely smooth. As we explained above,

‖∇u‖2L2 ≤ 2‖(∂2u1, ∂1u2)‖2L2 , ‖∇b‖2L2 ≤ 2‖(∂2b1, ∂1b2)‖2L2 ,

or (u,b) ∈ L2(0,∞; Ḣ1). Then (u,b) is in Ḣ1 for almost every t ∈ (0,∞). For any
t0 > 0, there is 0 < t1 < t0 such that (u(x, t1), b(x, t1)) ∈ H1(R2). Starting with
(u(x, t1), b(x, t1)), we then solve (1.3). The solution (u, b) satisfies

(u, b) ∈ L∞(t1,∞;H1) ∩ L2(t1,∞; Ḣ2), (3.6)

which can be easily verified via energy estimates. (3.6) allows us to further choose
t2 ∈ (t1, t0) such that

(u(x, t2), b(x, t2)) ∈ H2(R2).
We then solve (1.3) with this H2 initial datum and repeating the process leads to
the desired smoothness. This completes the proof of Theorem 1.2. �

4. Proof of Theorem 1.3

We need the following anisotropic Sobolev inequality for a triple product (see
[4]).

Lemma 4.1. There exists a constant C such that, for any f, g, ∂2g, h and ∂1h in
L2(R2), ∫

|f g h| dx ≤ C‖f‖L2‖g‖1/2L2 ‖∂2g‖1/2L2 ‖h‖1/2L2 ‖∂1h‖1/2L2 .

Proof of Theorem 1.3. We shall only provide the proof for (1.4) since the proof for
(1.5) is very similar. The global H1 bound follows from energy estimates. The
global L2-bound reads, for any t > 0,

‖(u(t),b(t))‖2L2 + 2ν
∫ t

0

‖∂1u‖2L2 dτ + 2η
∫ t

0

‖(∂2b1, ∂1b2)‖2L2 dτ = ‖(u0,b0)‖2L2 .



EJDE-2017/CONF/24 2D MHD EQUATIONS 43

As a special consequence, due to ∇ · b = 0, we have the global uniform bound∫ t

0

‖∇b‖2L2 dτ =
∫ t

0

‖j‖2L2 dτ ≤ 2
∫ t

0

‖(∂2b1, ∂1b2)‖2L2 dτ ≤ C‖(u0,b0)‖2L2 . (4.1)

To prove the global Ḣ1-bound, we invoke the equations of ω and j,

∂tω + u · ∇ω = ν∂11ω + b · ∇j,
∂tj + u · ∇j = η ∂111b2 − η ∂222b1 + b · ∇ω +Q(∇u,∇b).

Dotting with (ω, j) and integrating by parts yields

1
2
d

dt
‖(ω, j)‖2L2 + ν‖∂1ω‖2L2 = η

∫
j (∂111b2 − ∂222b1) +

∫
jQ(∇u,∇b).

Writing j = ∂1b2 − ∂2b1 and integrating by parts, we have∫
j(∂111b2 − ∂222b1) = −

∫ (
(∂11b1)2 + (∂22b1)2 + (∂11b2)2 + (∂22b2)2

)
≡ −H(b).

The nonlinear term
∫
jQ contains similar terms and we bound a typical one.∣∣ ∫ j∂1b1∂2u1

∣∣ ≤ ‖j‖L4‖∂1b1‖L4‖∂2u1‖L2

≤ C‖j‖L2‖∇j‖L2‖ω‖L2

≤ η

64
‖∇j‖2L2 + C‖j‖2L2‖ω‖2L2

Noticing that, due to ∇ · b = 0,

∇j =
(

∆b2
−∆b1

)
,

we have ‖∇j‖L2 ≤ 2H(b). Combining the estimates above yields

d

dt
‖(ω, j)‖2L2 + ν‖∂1ω‖2L2 + ηH(b) ≤ C‖j‖2L2‖ω‖2L2 .

Gronwall’s inequality, together with (4.1), then yields the desired global uniform
bound.

We now prove the uniqueness. Assume (u(1),b(1)) and (u(2),b(2)) are two so-
lutions of (1.4) satisfying (1.8). Consider the difference (u,b) between (u(1),b(1))
and (u(2),b(2)),

u = u(1) − u(2), b = b(1) − b(2),

which satisfies

∂tu + u(1) · ∇u + u · ∇u(2) = −∇p+ ν ∂11u + b(1) · ∇b + b · ∇b(2),

∂tb1 + u(1) · ∇b1 + u · ∇b(2)1 = η ∂22b1 + b(1) · ∇u1 + b · ∇u(2)
1 ,

∂tb2 + u(1) · ∇b2 + u · ∇b(2)2 = η ∂11b2 + b(1) · ∇u2 + b · ∇u(2)
2 ,

u(x, 0) = u0 = 0, b(x, 0) = b0 = 0,

(4.2)

where p represents the difference between the associated pressures. Taking the
inner products of (u,b) with (4.2) and integrating by parts, we find

1
2
d

dt
‖(u,b)‖2L2 + ν‖∂1u‖2L2 + η‖(∂2b1, ∂1b2)‖2L2 = I1 + I2 + I3 + I4, (4.3)
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where I1 through I4 are as before, namely

I1 = −
∫

(u · ∇)u(2) · u, I2 =
∫

(b · ∇)b(2) · u,

I3 = −
∫

(u · ∇)b(2) · b, I4 =
∫

(b · ∇)u(2) · b.

I1 is of a quadratic form and contains four terms

I1 =
∫ (

∂1u
(2)
1 u1u1 + ∂1u

(2)
2 u1u2 + ∂2u

(2)
1 u1u2 + ∂2u

(2)
2 u2u2

)
dx.

When we estimate the terms in I1, we keep in mind that the dissipation is only in
the horizontal direction. By Lemma 4.1 and Young’s inequality,∣∣ ∫ ∂1u

(2)
1 u1 u1 dx

∣∣ ≤ C‖u1‖L2‖u1‖1/2L2 ‖∂1u1‖1/2L2 ‖∂1u
(2)
1 ‖

1/2
L2 ‖∂2∂1u

(2)
1 ‖

1/2
L2

≤ ν

64
‖∂1u1‖2L2 + C‖u1‖2L2‖∂1u

(2)
1 ‖

2/3
L2 ‖∂2∂1u

(2)
1 ‖

2/3
L2 ,

∣∣ ∫ ∂1u
(2)
2 u1 u2 dx

∣∣ ≤ C‖u2‖L2‖u1‖1/2L2 ‖∂1u1‖1/2L2 ‖∂1u
(2)
2 ‖

1/2
L2 ‖∂2∂1u

(2)
2 ‖

1/2
L2

≤ ν

64
‖∂1u1‖2L2 + C‖u‖2L2‖∂1u

(2)
2 ‖

2/3
L2 ‖∂2∂1u

(2)
2 ‖

2/3
L2 ,

By Lemma 4.1, ∇ · u = 0 and ∇ · u(2) = 0,∣∣ ∫ ∂2u
(2)
1 u1 u2 dx

∣∣ ≤ C‖u1‖L2‖u2‖1/2L2 ‖∂2u2‖1/2L2 ‖∂2u
(2)
1 ‖

1/2
L2 ‖∂1∂2u

(2)
1 ‖

1/2
L2

≤ ν

64
‖∂1u1‖2L2 + C‖u‖2L2‖∂2u

(2)
1 ‖

2/3
L2 ‖∂1∂2u

(2)
1 ‖

2/3
L2

≤ ν

64
‖∂1u1‖2L2 + C‖u‖2L2‖∂1u

(2)
2 − ω(2)‖2/3L2 ‖∂1∂2u

(2)
1 ‖

2/3
L2 ,

∣∣ ∫ ∂2u
(2)
2 u2 u2 dx

∣∣ ≤ C‖u2‖L2‖u2‖1/2L2 ‖∂1u2‖1/2L2 ‖∂1u
(2)
1 ‖

1/2
L2 ‖∂2∂1u

(2)
1 ‖

1/2
L2

≤ ν

64
‖∂1u2‖2L2 + C‖u2‖2L2‖∂1u

(2)
1 ‖

2/3
L2 ‖∂2∂1u

(2)
1 ‖

2/3
L2 .

We now turn to I2. Since the dissipation in the equation of b is effectively in both
directions, there is no need to split I2 into four terms, as we did in I1. By Hölder’s
and Sobolev’s inequalities,

|I2| ≤ ‖u‖L2‖b‖L4‖∇b(2)‖L4

≤ C‖u‖L2‖b‖1/2L2 ‖∇b‖1/2L2 ‖∇b(2)‖1/2L2 ‖∇∇b(2)‖1/2L2

≤ η

64
‖∇b‖2L2 + C‖(u,b)‖2L2‖∇b(2)‖2/3L2 ‖∇∇b(2)‖2/3L2 .

I3 admits exactly the same bound. I4 can be bounded in a similar fashion.

|I4| ≤ ‖b‖2L4‖∇u(2)‖L2 ≤ η

64
‖∇b‖2L2 + C‖b‖2L2‖∇u(2)‖2L2 .

Inserting the estimates above in (4.3) and noticing the fact

‖(∂2b1, ∂1b2)‖2L2 ≥
1
2
‖j‖2L2 =

1
2
‖∇b‖2L2 ,
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we obtain
d

dt
‖(u,b)‖2L2 + ν‖∂1u‖2L2 +

1
2
η‖∇b‖2L2

≤ C‖u‖2L2

(
‖∂1u(2)‖L2 + ‖ω(2)‖L2

)2/3

‖∂1∇u(2)‖2/3L2

+ C‖(u,b)‖2L2‖∇b(2)‖2/3L2 ‖∇∇b(2)‖2/3L2 + C‖b‖2L2‖∇u(2)‖2L2 .

Since (u(2),b(2)) is in the regularity class (1.8),

(u(2),b(2)) ∈ L∞(0,∞; H1), ∂1∇u(2), ∇∇b(2) ∈ L2(0,∞; L2),

Gronwall’s inequality then implies the desired uniqueness. This completes the proof.
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