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STABILIZING PHENOMENON FOR 2D ANISOTROPIC
MAGNETOHYDRODYNAMIC SYSTEM NEAR A BACKGROUND
MAGNETIC FIELD*

SUHUA LAIf, JIAHONG WU?#, AND JIANWEN ZHANGS

Abstract. This paper intends to study an experimentally observed stabilizing phenomenon and
to prove a mathematically rigorous stability result on the perturbations near a background magnetic
field. Physical experiments and numerical simulations have observed a remarkable phenomenon that
a background magnetic field can smooth and stabilize the electrically conducting turbulent fluids.
To understand the mechanism of this phenomenon, we focus on a special 2D magnetohydrodynamic
(MHD) system with anisotropic dissipation and partial damping and examine the stability near a
background magnetic field. Due to the lack of full dissipation and damping, this stability problem
is not trivial. Without the presence of a magnetic field, the fluid velocity is governed by the 2D
Navier-Stokes equations in the whole space R? with only vertical dissipation, and its stability (near
the trivial solution) is still an open problem. However, when coupled to the magnetic field in such an
MHD system, we are able to show that any perturbation near a background magnetic field is globally
stable in Sobolev space H2. This result reflects the observed stabilizing effect of the magnetic field.
Mathematically, the MHD system obeyed by the perturbations can be converted to a system of wave
equations which exhibits extra smoothing and stabilizing properties. These properties allow us to
control the nonlinearity in the anisotropic Navier—Stokes equations and thus establish the desired
stability result.
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1. Introduction. An important issue in magnetohydrodynamic (MHD) turbu-
lence is to understand the influence of magnetic field on the bulk turbulence involving
various electrically conducting fluids such as liquid metals. Physical experiments and
numerical simulations have observed a remarkable phenomenon that a background
magnetic field can smooth and stabilize electrically conducting turbulent fluids (see,
e.g., [2,3,7, 11, 12, 13, 16, 17]).

Our goal is to understand the mechanism and to establish the mathematically
rigorous stability results for these observations in incompressible MHD flows. At-
tention here is focused on the following 2D MHD system with only vertical velocity
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dissipation,

WU +U-VU+VP=v03U+B-VB, zcR?t>0,
(L.1) B+ U -VB+n(0,By)" = B-VU,
V.U=V-B=0,

where U = (Uy,Us)" denotes the velocity field, and B = (B, Bs)' the magnetic
field, and P the total pressure and ¥ > 0 and 1 > 0 are the viscosity and damping
coefficients, respectively. Here AT denotes the transpose of a matrix A.

The MHD system governs the motion of electrically conducting fluids such as
plasmas, liquid, metals and electrolytes and have a very wide range of applications in
astrophysics, geophysics, cosmology, and engineering (see, e.g., [5, 13, 28]). The MHD
system is also mathematically important. It not only shares many crucial features
with the Euler or the Navier—Stokes equations but also exhibits many more fascinating
properties resulting from the coupling and interaction between the velocity and the
magnetic field. In fact, the main result of this paper is about the smoothing and
stabilizing effect of the magnetic field on the fluid motion. Without the coupling and
interaction with the magnetic field, the wave structure and the stabilizing phenomenon
associated with (1.1) seem not possible.

To understand the precise mechanism of the observed stabilizing phenomenon,
we study the evolution of the perturbation near a background magnetic field. More
precisely, we consider the perturbation near the steady-state solution (U ), B(O)
associated with a background magnetic field in the x;-direction, namely,

U9 =0, BO=¢ :=(1,0).
The perturbation of (U, B) around (U®, B(®)) is given by
wi=U—-UO, b:=B— B,
Clearly,
Owu+u-Vu+ VP =vdsu+b-Vb+01b, xR t>0,
(1.2) b+ u-Vb+n(0,by) " =b-Vu+ du
V-u=V-b=0.

Our attention will be focused on the initial-value problem of (1.2) supplemented with
the Cauchy data:

(1.3) u(xz,0) = up(x), blx,0) = bo(x).

Compared with the original MHD system (1.1), the perturbation near the background
magnetic field generates two extra terms in (1.2), 61b and 9;u in the equations of u and
b, respectively. These two terms play a crucial role in the stability theory considered
in the present paper.

Due to the lack of full velocity dissipation and the lack of full damping of the
magnetic field, the stability problem seems not trivial. Indeed, if there is an absence
of a magnetic field, then (1.1) becomes the 2D anisotropic Navier—Stokes system,

Ou+u-Vu+ VP =vdsu, z€R?t>0,
V-u=0,
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which can also be reformulated in terms of the vorticity w := V X u as

14
(14) u= VA~ w = (=0, 01) A w.

{atw+u~Vw vo2w, x€R? t>0,

The vorticity w of (1.4) is bounded a priori for all time, and Yudovich’s approach
for the 2D incompressible Euler equation can be applied to (1.4) to show the global
regularity of the solutions. However, the vorticity may potentially grow rather rapidly
in time since the one-directional dissipation is not sufficient to control the nonlinearity.
The difficulty is essential when we attempt to estimate ||Vw]||p2. Indeed,

d
$||Vw(t)||2L2 + 20|02 Vw(t)||2: = —2/Vw -Vu - Vwdz,

where the nonlinear part contains four component terms:

Hard := — Vw-Vu-Vwdzx
R2
(1.5) = — 81’&1 (81w)2 dx — 81’LL2 81&} 820.} dxr
R2 R2
- 82u1 81&) 82(4) dx — 82’&2 (820.))2 dx.
R2 R2

The first two terms in (1.5) do not admit a time-integrable upper bound. It appears
that the best upper bound for ||[Vw(t)||z« with 1 < ¢ < oo is double exponential in

time,
eCllwolipoot

IVw®)l[za < (Ve za) ;

where wq is the initial vorticity. The double exponential growth of the gradient of
vorticity to the 2D incompressible Euler equation was confirmed by Kiselev and Sverak
[22] for the unit disk domain. This particularly explains why we could not expect the
solutions of the anisotropic 2D Navier—Stokes equations to be stable near the trivial
solution. Since the classical approaches used to study the MHD well-posedness and
stability problems generally treat the Lorentz forcing term as a bad term, the stability
problem concerned here then appears to be nontrivial.

The new idea of the present paper is to treat the terms associated with the
magnetic field as good terms and exploit the smoothing and stabilizing effects of the
background magnetic field on the fluid motion. Due to the two extra terms generated
by the background magnetic field and the coupling in (1.2), we are able to convert
(1.2) into a system of wave equations,

Oy — V@%@tul - 812u1 =N

Oprusg + (n — V@%) Opug — (Vn(“)%ug + afu2) = No,
Dby — v9309;by — 03by = N3,

Ouba + (n — v03) dyby — (vnd3ba + O7ba) = Ny,

(1.6)
where N; through Ny are nonlinear terms. In fact, by eliminating the pressure term

and separating the linear and nonlinear parts in (1.2), we have

Oy — vd2u — 01b = P(—u-Vu+b-Vb
(1.7) {t 2= 0ub =B )

O + ’f](O7 bg)T —Oiu=—u-Vb+b-Vu.
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One can easily obtain (1.6) from (1.7) after differentiating it in time and making
several substitutions. The wave system (1.6) exhibits much more smoothing and
stabilizing properties than (1.2). In particular, the velocity equation in (1.6) contains
the term —0?u, which generates a weak dissipative effect in the horizontal direction.
This is one of the main reasons that we can handle the Navier—Stokes nonlinearity in
the MHD system (1.2), which cannot be bounded suitably without the coupling with
the magnetic field.

We have to construct a suitable energy functional to incorporate the regularizing
properties revealed by the wave structure in (1.6). The energy function consists of
two layers. The first one is the natural H?-energy functional, and the second one
incorporates the extra regularization indicated by the wave structure. More precisely,
we define

(1.8) E(t) :== Ei(t) + Ea(t),

where

(19 B0)= s (@bl +2 [ (1) + ol )ar

0
(1L10)  Bs(t) : /O||alu(7)u§{1d7.

We shall show that F(t) satisfies a suitable energy inequality, from which we can derive
a uniform global bound under the condition that the initial data are sufficiently small.
This enables us to establish the following stability result.

THEOREM 1.1. Assume initial data (ug,bo) € H* with V-ug = V-by = 0. Then
there exists a constant € > 0, depending only on v and n, such that if

[ (w0, bo) | 2 < e,

then the problem (1.2)—(1.3) has a unique global solution (u,b)(x,t) on R? x [0, 00),
satisfying

t
I B)(8) %2 + / (B2, bo) ()%= + 10ru(r) 3 )dr < C> ¥ ¢ >0,

where C' is an absolute positive constant.

Remark 1.1. The stability result stated in Theorem 1.1 depends mathematically
on the anisotropic dissipation, the vertical damping, and the background magnetic
field. It is easy to check that if (1.1) is with the horizontal dissipation, the horizontal
damping, and a background magnetic field in the xzo-direction, then the same stability
result still holds.

Remark 1.2. It is an interesting problem to study the explicit decay rates of the
solutions obtained in Theorem 1.1. Mathematically, this is not a trivial problem. A
natural idea is to convert (1.2) into a system of wave equations and understand the
spectral properties of the linearized system. Indeed, if we apply the Leray projection
operator P =T — VA~V to the equations in (1.2), then

Ou=vd3u+01b+P(b-Vb—u-Vu),
(1.11) 0= —nBZA0+ Ou+P(b-Vu—u-Vb),
Viu=V-b=0.
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Differentiating (1.11) in ¢ and making several substitutions, we have

Oppu — (103 — N2 A~V Ou — O3u — VOO A~ u = My,

(1.12) b — (v03 — nOFAT1)0,b — 020 — VOIS A~ = Moy,
V-u=V-b=0,

where M7 and M, are the nonlinear terms. The large-time behavior of the solutions

depends actually on the eigenvalues of the linear parts of (1.12), which are determined
through the following characteristic polynomial:

né%))\ vnéies
€2) "t e

A+ <u§§+ + &2 =0.

Its roots A1 and Ay are given by

2 2
~(vg+ ) - vr . ~ (veg+15) + VT
5 2 = ’
2 2

2\ 2 242
- (o) ().

One can also obtain the corresponding eigenvectors and the kernel functions. In view
of the definitions of A1, A2, and I', we see that A may be degenerate and vanish for
some of the frequencies ¢ with & = 0. In order to understand the large-time behavior,
we need to decompose the frequency space into suitable subdomains to deal with the
degeneracy and the anisotropicity encountered here. This is in our future research
plan.

)\1 =

where

Theorem 1.1 asserts the H2-stability of the perturbation near a background mag-
netic field and rigorously confirms the experimentally observed stabilizing phenom-
enon. Mathematically, the approach used herein may provide some hints for the
stability problem of other anisotropic PDEs systems with partial damping since the
classical methods usually require full dissipation or full damping (see, e.g., [31, 32]).

Next, we briefly recall some of the closely related works to place our result in a
suitable context. The stability problem and related issues on the MHD system near a
background magnetic field have recently attracted considerable interest. [4, 8, 18] stud-
ied the stability problem near a background magnetic field of either the ideal MHD
system or the fully dissipative MHD system with identical viscosity and magnetic dif-
fusivity, based on the use of the Elséisser variables. [35] allows these two coefficients to
be slightly different. The stability problem of the nonresistive MHD system was pio-
neered by [23] by using the Lagrangian approach. [29] revisited this stability problem
by resorting to Eulerian energy estimates in the anisotropic Besov setting and obtained
the large-time behavior of the solutions. [38] established the stability of the nonre-
sistive MHD system with velocity damping (without dissipation) via the approach of
wave equations. The stability and large-time behavior of the solutions of the 2D/3D
MHD system with anisotropic dissipation and magnetic diffusion was considered in
[6, 15, 25, 39]. There is a very large literature on the global regularity of the MHD sys-
tem and related issues; see, e.g., [1, 10, 14, 19, 20, 21, 23, 27, 30, 33, 36, 37, 40, 41, 42].
This list is by no means exhaustive.

We now comment on the proof of Theorem 1.1. Since the local (in time) existence
theorem can be shown by following a standard approach (see, e.g., [26]), our attention
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will be focused on the global (in time) bounds of the H2-norm. The bootstrapping
argument serves this strategy well (see, e.g., [34, p. 21]). Let E(t) be the energy
functional defined in (1.8). We aim to show that

(1.13)  E(t) < C1(E(0) + E(0)? 4+ E(0)%) + CLE(t)? 4+ C3E(t)* + C4E(t)3,

where C; (i = 1,...,4) are generic positive constants, depending only on v and 7.
Once (1.13) is established, the bootstrapping argument implies that if

[(uo,bo)[ 2 <& or E(0) <&,
then there exists a generic positive constant C' > 0 such that
E(t) < Ce®* Yt>0,

which leads to the desired uniformly global bounds.

Due to the anisotropic dissipation and partial damping, the verification of (1.13)
is not trivial. For the sake of clarity, we divide the proof of (1.13) into two parts,
which concern the estimates of F1(t) and Es(t), respectively.

PROPOSITION 1.1. Let E(t) and Ex(t) be the ones as in (1.9) and (1.10). Then
there exists a generic positive constant C' > 0, depending only on v and n, such that

Ei(t) < CE1(0) + CE(0)2 + CE1(0)2 4+ CEy(t)? + CEy(t)?
+ CE(t)? + CEy(t)> + CE ()% + CEy(1)3.

PROPOSITION 1.2. Let Ey(t) and Ex(t) be the ones as in (1.9) and (1.10). Then
there exists a generic positive constant C' > 0, depending only on v and 7, such that

Ey(t) < CEy(0) + CEy(t) + CEy(t)? 4+ CEy(t)?.

The proofs of Propositions 1.1 and 1.2 involve the estimates of many terms. Some
of the terms cannot be bounded directly in terms of F;(t) and Fy(t), and new ideas
have to be developed. As mentioned, the first two terms in (1.5) simply do not
admit any suitable upper bound when the velocity equation is not coupled to the
magnetic field. But they can now be bounded suitably due to the inclusion of the
energy functional Es(t) (see section 3 for details). However, there are also some of
the nonlinear terms that cannot be bounded by F;(¢) and Fs(t) directly. Two of the
most difficult ones are

/81u1|822b1|2 dx and /b181u1|822b1|2 dx.

The strategy here is to replace dyu; by using the equation of the magnetic field:
(1.14) Ohup = Oiby +u - Vb —b-Vuy.

For example, by (1.14), we have
/61u1\8§b1|2 de = /(8tb1 +u-Vby —b-Vuy)|03bi|* do
_ %/b1|8§b1|2 da — 2/b18§b16228tb1 du

+/qu1|8§b1|2 dx—/qu1|8§b1|2 dz.
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We have to replace 9;b; by using (1.14) again. This process generates many more
terms. Fortunately, all the terms can be bounded by F;(¢) and E5(t). This idea
comes from the work of Lin and Zhang [24]. Collecting these estimates together, we
are able to establish the energy inequality in Proposition 1.1. To prove Proposition
1.2, we also need to make use of the connection between u and b via the equation of
the magnetic field:

Oru =0 +u-Vb+n0,b2)" —b- Vu.

This strategy allows us to convert the time integral of ||0;u|| g1 into other terms which
potentially have better time integrability:

t t t
/ H81u||§{1d7:/ /81u~8tb d:vdTJr/ /u'Vb~81u dxdr
0 0 0
t t
—|—77/ /b281U2 dxdT—/ /b-Vu~81u dxdr
0 0

t t
+ / /V@lu -0, Vb dzdr + / /V(u -Vb) - Voru dxdr
0 0

t t
+ 77/ /Vf)m -Vby dxdr — / /V(b -Vu) - Voyu dxdr.
0 0

By further shifting the two terms associated with time derivative 9;b and 0; Vb to d1u
and VO u, respectively, and replacing 0;u by other terms in the velocity equation, we
are able to establish the desired energy inequality in Proposition 1.2. More technical
details are left to section 4.

The rest of this paper is organized as follows. Theorem 1.1 is shown in section 2
by assuming Propositions 1.1 and 1.2 hold. Sections 3 and 4 are devoted to the proofs
of Propositions 1.1 and 1.2, respectively.

2. Proof of Theorem 1.1. This section aims to prove Theorem 1.1, based on
Propositions 1.1 and 1.2. We show that an application of the bootstrapping argument
to the energy inequalities in Propositions 1.1 and 1.2 will lead to the desired global
well-posedness and stability result of Theorem 1.1.

Proof of Theorem 1.1. Since the local well-posedness on (1.2) can be established
by the standard approach (see, e.g., [26]), we omit the details for the conciseness of
the proof. Attention here is focused on the global H?-bound of (u,b). Adding the
energy inequality in Propositions 1.1 to the inequality in Proposition 1.2 multiplied
by a suitable number yields

By(t) + %Egm < C(E(0) + Ex(0)} + E1(0)2) + C (Ba(t)? + Ba(t)})

- %El(t) O (Bt + Ba(0)?) + O (Br()F + Ea(1)? )

Thus, writing E(t) := E1 (t)+ E>(t) and noting that E1(0) = E(0) = ||(uo, bo)||3;2+
we have

(1) E(t) < C (B + E(0)F + E(0)*) + C2 B} +C3 E(t)? + Cy E(1)}

where C;(1 = 1,2, 3,4) are positive constants depending only on v and 7.
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Now an application of the bootstrapping argument to (2.1) leads to the desired
upper bound in Theorem 1.1. In fact, if we take the initial H2-norm ||(uo,bo)| z> to
be sufficiently small such that F(0) satisfies

[N

and make the ansatz that, for ¢ > 0,

23) B <mn{ L L (L)
’ - 36022’ 603, 6Cy ’
then we infer from (2.1) that

E(t) < Cy (E(O) + B(0)% + E(0)2) + %E(t)

or

3
2

E(t) < 2C, (El(O) +E(0)F + E1(0)2) :

which, combined with (2.2), gives

1 1 1 1\3
2.4 EM) < -mind —, — [— ) \.
(24) (>_2mm{36022’ 6C5 (604) }

Since the upper bound in (2.4) is just half of the bound in the ansatz (2.3),
the bootstrapping argument then asserts that (2.4) indeed holds for all time ¢ > 0,
provided the initial data satisfy (2.2). Thus, we obtain the desired global H?-bound,
which, together with the local well-posedness theory on (1.2), leads to the global well-
posedness and stability theory stated in Theorem 1.1. This completes the proof of
Theorem 1.1. O

3. Proof of Proposition 1.1. This section is devoted to the proof of Propo-
sition 1.1. We will use several anisotropic inequalities extensively. They are listed
in the following two lemmas. Lemma 3.1 can be found in [9], while Lemma 3.2 was
established in [25].

LEMMA 3.1. Assume that f, g, h, Oag, and O1h are all in L?>(R?). Then there
exists a generic constant C > 0 such that

1 1 1 1
/ |fghldz < C Hf||L2(R2)||g||z2(]R2)”829”22(]1{{2)”hH[Z,Z(R?)||athz2(1R2)'
R2
LEMMA 3.2. The following estimates hold when the right-hand sides are all bounded:

1l e ey < O g 10012 oy 1921 e 1912 1 e

Consequently,

[l < ClFIZ 10N 71
£l < CUf 11 Zr 102 f 117

Here C in the bounds are all generic constants.
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We are now in a position of proving Proposition 1.1. For simplicity, in the rest
of this paper, we denote by C' the various positive constants, which may depend on v
and 1 but not on t.

Proof of Proposition 1.1. Due to the equivalence of the norm ||(u,b)||g2 with the
norm ||(u,b)||zz + ||(u, b)|| 72, it suffices to bound the L? and the homogeneous H -
norm of (u,b). We start with the L?-estimate. First, by the basic energy estimates
and the facts that V-u =V - b= 0, we obtain

t
(3-1) ICu, D)7 + 2/0 (vl102ullz +nllb2l72) dr = [I(uo, bo)lI7-

To estimate the H2-norm, applying 02(i = 1,2) to (1.2) and then dotting them
y (02u,87b) in L?, we deduce

2 2 2 5
Z 107w, 70)|[72 +v Y 107 0zulfe + 1) 10702172 = Y I,
i=1 i=1

=1 =1

(3.2)

DN | =
&‘Q‘

where

2
I = Z/ (0701b- BFu+ 0701w - B7b) dx

Iy

—Z/a2u Vu) - 02u dr,
2
Iy := Z/ (07 (b- Vb) —b-V}b) - Ou du,

Iy

—Z/a% Vb) - 92 dz,
2
Iy = Z/ (07(b- Vu) = b-Vdiu) - 97b du.

By integration by parts,
(3.3) I, =0.
To bound Iy, we divide it into two parts,

—/8f(u-Vu)-8fu dx—/@%(u-Vu)~822u dr = Iz1 + Iz,

where the terms on right-hand side can be bounded as follows. First, using the
divergence-free condition V - 4 = 0 and Lemma 3.1, we obtain

Iy = — /(ﬁfu -Vu+ 201u - Voyu) - 8fu dx
2 2113 2113 3 3
< C|07ul| 2 (||31UHL2||3231UHL2||Vu||Lz||31VU||Lz

+ ||51u|\i2||512UIIEzHV<91UIIE2II<92V51UHE2)
(3-4) < Cllulle (|0vull i + [102ull2) -
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To bound Iss, we infer from Hoélder’s inequality that
Iny = — /(8§u “Vu + 202u - Vou) - O3u dx
< Cl|o3ull > (IVullLal|03ullLs + [|02ull | VOaul| 1)

< Cllull 2 |02 e
which, together with (3.4), yields
(3.5) Iy < Cllull = ([|0vullf + [102ull72) -

Similarly to estimate I3, we separate it into two items:

9 2
I3=Z/28ib-vaib'8i2u dm—i—Z/@?b-Vh@izu dz = I31 + L.
i=1 i=1

For I3y, by the divergence-free condition V - b = 0, Lemma 3.1, and Holder’s

inequality, we find

Iy = 2/ (01b- VO1b - O7u + Osb - Vob - D3u) da

< C110y V]| 2 1018]1 2. 02012, 107wl 2. 92030 2
+ C (19261 | 14 90102b] 2 + 191by |4 0201 2) 020l s
(3.6) < Ol b)ll = (1016]% + [D5u]%2)
and analogously

I3 = / (97b- Vb - OFu + 95b101b - D3u — D102b192b - D3u) dx

2 1 1 2 1 2 1
< C1|070]| L2 [|VO 72 101 VD] 72 (|07 ul| 72 [ 0207 ul| f »
+ C (103b1] £2|01b]| £ + |01 D21 || 121020 1) (|05 14

(3.7) < ClI(u; b)llzz2 (1010l 72 + 102l Fy2) -
Thus, combining (3.6) and (3.7) gives
(3-8) I3 < C||(u, b)ll 2 (101617 + 102ullZ;2) -

We proceed to estimate I4, which is more troublesome. Note that
2 2
(3.9) Ij=-— 2/2@‘“ -VOib- 02b dx — Z/afu Vb 02b dx := Iyg + Iyo.
i=1 i=1

To estimate 141, we split it into four parts,

Iy = —2/ (B1u - VO1b - 07b + Oau - Vb - 93b) da
- —2/ (alu-valb-a§b+a2ulalazb.a§b

+ 0901 09b10102b1 — 61'111|622bl|2)d‘r
(3.10) = In1 + Laz + Las + Laa,
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where the first three terms can be bounded by Lemma 3.2 and Hélder’s inequality:

Lyi1 + La12 + 1413
< C (||0vul| L |01V 12| 03b]| L2 + [|O2ul| Lo [|0102b] 2 | VD] 2)

< C (|0vull 3 10201l 310 V] 12 930 2 + Dol 12|01 D2bl] 2] V2D 2
(B.11) < Ol (w,b)l[m= (|00bl1 + [19aull) -

Next we turn to estimate I414, which is the most difficult term. As mentioned,
the strategy here is to replace dyu; by other terms in the equation of the magnetic
field:

(3.12) Ohup = 0iby +u-Vby —b-Vuy.
Indeed, substituting (3.12) into I414, we have
Iy = 2/81u1|a§b1|2 dr = 2/(@()1 +u-Vby —b-Vuy) |02b1)? dx
_ 2% / by |02b 2 dar — 4 / b1 0201 020,b da
(3.13) +2/(u -Vby) 020, | da — 2/(b~Vu1) |02b1)? da.

To deal with the second term on the right-hand side of (3.13), we use (3.12) again
to write it as

—4/b13§b18228tb1 dx = —4/b18§bl<9§(81u1 —u-Vb +b-Vuy) dzx
= 74/b18§b18§31u1 dx+4/bla§bla§u - Vb dz
+8/b1822b182u~V82b1 dz+2/b1u~v|0§b1\2 da
(3.14) —4/b1822b18§(b-Vu1) dz.
Inserting (3.14) into (3.13) and using the fact that
/blu -V |93b1|? dx + /u Vb1 |03b1* dz = 0,
we obtain
Iy = 2%/b1|8§bl|2 dx — 4/bla§bla§alu1 dx +4/b1822b18§u - Vb, dx
+ 8/b1622b182u - Vaby dx — 4/b16§b18§(b -Vuy) dx

(3.15) — 2/b-Vu1|8§b1\2 de:=J1+Jo+Js+ Jy+ J5+ Jg.
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We now have to bound Js,...,Js one by one. To bound J,, by integration by
parts twice and Holder’s inequality, we have

JQ = —4/[)1851)13%31@61 dx

= 4/811)18%1)182211,1 dl‘ - 4/82b18162618%ﬂ1 dI — 4/1)16132()16311,1 de

< C ([|01ba | 14|03 || 12 (|05 ur || Lo + [|O2b1 || 14|01 D2b| 12| 03w || 14)
+ C||b1 | Lo 1010201 || L2 |05 un || 2
(3.16) < Clbllg2 (11016131 + 02ull3y) -

For Js, by Lemmas 3.1 and 3.2, we obtain
Jy = 4/b1822b16§u Vb, dx

< Clball 7 10161l 71 19301 | 2 105l 22 105w 22 Vo [ 22101 Vb1 [ 72
(3.17) < Clblize (1010017 + 102ull32) -

To bound Jy, we first decompose it into two pieces,

J4 = 8/ (blagblagulalagbl -+ blagblﬁguﬁgbl) dr = J41 + J42,

where the first term on the right-hand side can be bounded as follows, using Holder’s
and Sobolev’s inequalities:

Ju1 < C||ba]| Lo ||03b1 || 22]| 02w || oo || 010261 || 12
(3.18) < CHbH%{z (H@UH%Q + ||31b||%{1) .

To estimate Jy2, the second difficult term, we use the special structure of the
magnetic field equation (3.12) to rewrite it as

Jio = —8/b181u1\8§b1\2 dx

= —8/b1\8§b1\2 (O¢b1 +u-Vby —b-Vuy) do

= —4% /b§|a§b1|2 dm+8/b§a§bla§atb1 dx
(3.19) - 4/(u Vb1 [2)|03b1|? dx +8/b1(b-vu1)|a§b1|2 da.
For the second term on the right-hand side of (3.19), we apply (3.12) again to obtain

8/b§a§bla§atb1 dx = 8/b§a§bla§(alu1 —u-Vby +b-Vuy) dr
= 8/b§a§bla§alu1 dx — S/bfagblagu Vb, dx
— 16/b§a§bla2u-va2b1 dx—4/b%u-V|a§b1|2 dz

(3.20) +8/b§a§bla§(b-vu1) de.
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Thus, substituting (3.20) into (3.19) and using the fact that
/(u - Vb?)|02b1|? dx + /biu V036, dz = 0,
we immediately obtain

d
iz =4 b?|02b; | dx + 8/b§8§bla§alu1 dx

- 8/b§a§bla§u Vb dx — 16/b§a§b132u - Voby dx
+8/b§a§bla§(b-vu1) dx+8/b1(b.vu1)|a§b1|2 da
(3.21) = Jyo1 + Juoo + Jyo3 + Jaos + Juos + Jase.

The three terms Jy22, J423, J424 can be bounded by

Jaz2 + Jao3 + Ja24
< Cllbal7e (10301 22103 01wa ]l L2 + 10501 || 2 (|05l L4 || VD1 | 24 )
+ Clo1 |7 10301 L2 |02 ]| L ||V D2br || 2
< Cl|ba [l 18101 | 111 (10501 ]| 210500 un || 2 + 110361 [| L2 | 05wl a1 [ Vba [| a1 )
+ Clloa || 110101 || 21 0361 1| L2 (| G| 142 | VDb || 2
(3.22) < C(|Ibllzr= + [1bl1F2) (1010)1 7 + 192ullF2) -

For Jyo5, noting that | Vu || gz = ||02u|| g2, we infer from Lemma 3.2 and Sobolev’s
inequalities that

Jaos = s/b%agbl(agb -Vuy + 202b - VOouy + b - VOiuy) da

< Olbal|7< 10361l 2 (1020] 2|V | o + (102Dl 14 [V Ooua || o + [[bl| Lo |V OFua [ 2)
(3.23)
< COllballz 10101l 9561 | 210l 22 [ D2ull 2 < Cl0NFr2 (010117 + 192ullf2) -

Similarly,

a6 < C|bl[ T [ Vur | L= 10301172 < Clbl| 21 1010|112 | Oz = (| 9501 172
(3.24) < C|bl|%2 (11010]13: + [|02ul|F2) -

Plugging (3.22), (3.23), (3.24) into (3.21), we have
d
(3.25) T < —4% [ RIBFE o C (Bl + 10l) (100613 + 10sul?e)
which, together with (3.18), leads to

d
(326)  Ji< -4 /b?|3361|2 dz + C (|[blI2 + [10]172) (10101171 + l|02ull32) -
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For the last two terms J5 and Jg, we use Lemmas 3.1 and 3.2 and (3.25) to get
Js+ Js = —4/b18§b1 (93b - Vuy +205b - VOouy +b- VO3uy) d

— 2/b . Vu1|6§b1|2dx

= %J42 — 4/()1821/4(9221)18%()2 dr — 8/1)185()132() . V@gul dx

74/b16§blb -Voau, dr — 2/b282u1|8§b1|2dx
3
< qJet Cllbr|| oo ||02us || o= [|05b1]| 12 [| 018201 || 2

1 1 1 1
+ Cl[ba || o< [[05b1 ]| 22110201122 101026112 [ VO2un || 72| VO3 ua | 72
+ C|Ibl|7 19501l 22 VO3 us || 2 + Cllbz| oo 9501|172 D2 [|
3
< T2+ Clbll3 102l 2 1016 + ClBIIZ = 1020l 122 1ba 2
3
< i+ Clblle (100l + [102ulF2)
d

(3.27) < =34 /bf\3361\2 dz + C (|[bll3= + [1Bl132) (o217 + 102ul2) |

where we have used the simple fact that ||01b||g1 = ||Vba|| 1. Substituting (3.16),
(3.17), (3.26), (3.27) into (3.15), we find

d d
Iy < 2 /b1|8§b1|2 dx — 7& /b§|a§b1|2 dx
(3.28) + C ([Ibll = + 1l 72 + [1B152) (1b2l72 + 1020 F2) -

This, combining with (3.11) and (3.10), shows that

d d
Iy < 2%/1)1\8361\2 dx — 7£/b§|8§b1\2 dx
(3.29) +C (1w, 0) 2 + 1811772 + [1Bl1772) (b2l + [102ull2) -
Next we return to estimate I45. By the divergence-free conditions V-u = V-b = 0,
Iy = —/8fu-Vb-8fbdx—/8§u-Vb-8§bdz
= —/afu Vb - 9%b dx — /8§u181b - 02b dx + /8§u281b1822b2 dx
+/8132u182b18§b1 dx = Iy21 + La2o + Lao3 + L424.
For 1491, 1422, and 493, by Lemma 3.1 and Sobolev’s inequalities, we obtain

1 1 1 1
Lioy + Ligo + Lugz < C||070]| 2|07 ul| 7. 10207 ul| . || V0|7 101 V0| 7.
+ C| 30| L2 (|03 ul| L[| 01 b]] o
< Cll(w,0)[| > (|010)1 7 + [102ullF2) -
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For 194, after integrating by parts twice, we have from Hoélder’s and Sobolev’s
inequalities that

1424 = /8182U182b18§b1 dr = /622u182b18182b1 dx

< C||03url| 4| 02b1 | 14|01 02b1 || 2
< ClIbll 2 (10101131 + 1|02ullF2)

and hence
(3.30) Liz < C|(w, )l 2 (19181171 + [102u372) -
Thus, inserting (3.29) and (3.30) into (3.9), we find
<22 /b1|82b1|2 do— 73 /62|82b1|2 do
= at 2 a ) 2
(3.31) +C (1w, D)2 + 181172 + 110l 72) (1021172 + 1021 Z2) -

Finally, it remains to estimate I5:
2 2
Is = Z/Q@Z—Imv&-u - 9%b dx + Z/afb-vu - 0%b da = Iy + Isy.
i=1 1=1

To estimate I51, we first use V-b =0 to get

= 2/816 -Voiu-0%b dr — 2/81b18§u - 03b dx

— 2/821)18182’(1,2828161 dm+2/32b13182u18§b1 dx
= Is11 + Is12 + Is13 + Is1a,

where the first three terms I511, I512, I513 on the right-hand side are bounded by

Isi1 + Isi2 + Isis
< C0R| 1912 19201 £ 1V Or 2 | VD .

+ C|030]| L2 |03 ul| La | Orb[| Lo + C|92b1 || L] D281z | L1 [|81 D2br || 2
< C|l(u,b)| 2 (1010]172 + [|02ul|7r2) -

Similarly to the derivation of I4o4, we have
Isia < C[bl g2 (/010131 + |02ullF2)
and consequently,

(3.32) Isy < Cll(u, b)llzz= (101617 + 102ull3;2) -
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Due to V- b =0, we can rewrite I5o as
Iso :/afb-vu-afbdm+/a§b-vu-a§bd:¢
= /81219 -Vu - é?fb dx — /8182b182u . 83() dx
—/8§b181u26182b1 dm+/81u1|8§b1|2 dx

1
= I501 + Isoo + I5o3 + 51414~

For I591, I522, and I593, by Lemma 3.2 and Sobolev’s inequalities, we obtain
Iso1 + Iz + Isoz < OVl = [|07b]| 72 + C||0ou]| o~ | 019201 | 12|03 12
+ O 0rus| o< [| 018201 12 03b1 | 2
< C||VU||1%{1H52VU||1%1 10761172 + CllO2u 112 (| 010201 || 2 (| 95b 2
+ Cl\0yua | i 192012l s 01D | 121931 | 1.
(3.33) < Oll(u,0) |2 ([10:6]1F: + 102wl Fr2 + [01ul|F) -

Collecting (3.32), (3.33), and the estimate of I414 in (3.28) together, we find

d 7d
I5 S a/bl|6§b1|2 dr — 5%/b%|8§b1|2 dxr
(3.34) +C (II(u, )12 + 1Bl1772 + 16l1772) (1211772 + 102ullF + |OvullF) -

Now, plugging (3.3), (3.5), (3.8), (3.31), and (3.34) into (3.2), we arrive at

1d
5 1(V2u, V20) |22 + ][0Vl + 0l V202 72

2 dt
d 21 d
< 3%/b1|822b1|2 de — 5= b3102b1|* dx
(3.35) +C (II(w, o) [l 2 + [I6ll72 + 100172) (1621132 + [102ullz2 + [Drullz) -

Thus, integrating (3.35) over [0, t], we obtain

1(V2u, V2b) |22 + Q/Ot (V1102V2ul| 22 + 0l V?02|72) dr

< ||(uo, bo) || %2 +6/b1|822b1|2 dx — 21/b§|a§b1|2 dx
—6/bl(x,0)|8§b1|2(m,0) da;+21/b§(x,0)|a§b1|2(x,0) dx

t
+ C/O (1€, D)L= + [1B372 + 1011 Z2) (0272 + 102ullZz + [Orullfyn ) dr

< ||, bo)llz= + C (b1 (0) [z + (11 (O)[[ 7<) 1b(0) I3
+C (Ibr ()l + b1 (O Z) [1bCE)IIF2

t
+C sup (1€, )= + 10l 72 + ||b||§,2)/0 (o212 + l102ullzz + [[Orullfy ) dr,
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which, combined with (3.1) and Cauchy—Schwarz’s inequality, gives
Ey(t) < CE(0) + CE1(0)2 + CEy (0)% + CEy(t)? + CEy(t)?
+ CE(t)? + CEy(t)? + CEy ()% + CEy(t)3.

The proof of Proposition 1.1 is therefore complete. 0

4. Proof of Proposition 1.2. This section aims to prove Proposition 1.2. It
relies on the special structure of the magnetic field equation in (1.2),, namely,

(4.1) Oru=0b+u-Vb+n(0,b2)" —b- Vu.

Proof of Proposition 1.2. Multiplying (4.1) with d;u in L? and integrating it over
R? yields

O1ul|2. = /81u - Opb dx + /u -Vb-01u dx
(4.2) +n/bg(91u2 dx—/b-Vu-@ludx::K1+K2+K3+K4.
To estimate K1, we use the velocity equation in (1.2); to get
K, = %/(%u-bda;—/b-81(1/8§u+b-Vb+81b—u-Vu) da

=K1 + K + K3 + Kis + K,

where we have eliminated the pressure term due to V- b = 0. By integration by parts
and Holder’s inequality, K12, K13, K14 can be easily bounded by

Ko = fu/b -0103u dx = 1//5‘117 - 02u dx < C||01b|| 12 ||05ul| L2,

Klng/b-al(be) dx:/81b~(b~Vb) da

:/blalbalb d$+/b262b81b dx

< Cllballpo[|01b]1Z + Cllbz]| oo (1020 2 [|91]] 2
< Clb]l 2 1b21172,

and
Ky = —/b - 0% dr = /61b-81b dz < C||01b||3:.
To bound Ki5, by Lemma 3.1 and integration by parts, we have
K15:/b-81(u-Vu) dmz—/@lb-(u-Vu) dz

1 1 1 1
< Cll0nb] 2 llull L2 l102ul 2 [Vl 221101Vl £
< Cllulle (1010017 + 102ull3e + 101ull ) -

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/15/21 to 139.78.244.96 Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

6090 SUHUA LAI, JJAHONG WU, AND JIANWEN ZHANG
In a similar manner,
ng/u~Vb~81u dx

1 1 1 1
< ClOvul|2[ull 2 [|02ull 2 VOl £2 1101 VI £
< Cll(w,0)ll 2 (10100170 + 102ull3pe + 101ullFn)

1
K3 = ’I]/bQ@ﬂLQ dzr S C||b2||L2||(91u2||L2 S §||81u||%2 + CHbQH%fz,
and
K4:—/b-Vu-81udx
1 1 1 1
< Cl|ovullL2 16l 7211010l 72 [ Vul| 22 102V ul|
< Ol(u, b)[ = (1016l 71 + 1|02ullzg + [OrullFn) -

This completes the L2-estimate of Oy u.
Next we proceed to bound the Hl-norm. Applying V to (4.1) and then multiply-
ing it by Vd,u in L?, we find

IV orul2s = /V81u~8tVb dm+/V(u-Vb)-va1u da

+ U/ValuQ -Vby dz — /V(b -Vu) - Voju dx
(43) =174+ Lo+ L3+ Ly.

To bound L, we integrate by parts and use the velocity equation in (1.2), to get

L1:%/V@lu-Vbdx—/Vb-V@l(uagu—i—b-Vb—i—alb—u-Vu) dx
'=L11+Lia+ Lis+ Liga + Lis.

The bounds of Lqs, L13, L14 are directly obtained by integrating by parts and
using Hélder’s inequalities,

Ly = —V/Vb -V0,05u dx = 1//81Vb - 03V dx < C||01b]| g1 ||02u| 2,

Ly = f/Vb'Val(erb) dz:/alvz)-V(b.Vb) da

2
=) /alaib(aibjajmbjajaib) dx

ij=1

= /81Vb . (Vb181b + ngagb) dr + / (b1\81Vb|2 +b20,Vb - 81Vb) dzx

< Cl[o1Vbl| 2 (VO || 4|01 s + | Vb2 £4]|020]] £4)
+C (Iball = |01 VB2 + [[b2| Lo 102V L2 |01 Vb| 2)
< Clbll 2162172,
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and

where we have used the fact that ||Vbs||g: = ||01b]| g in the estimate of Li3. Based
on Lemma 3.1 and integration by parts, we deduce

L15:/Vb-V81(u-Vu) dx:—/81Vb-V(u~Vu) dz
:—/31Vb~(Vu'Vu—|—u~V2u) dz

1 1
< Clo Vb2 [ Vul 2|01 Vul £ 10Vl £
1 1 1 1
+ Cl01Vb] alull 7 [ Orul 221 V2ull 2102V ull 72
< Cllulle (101017 + 102ull3e + 10rullFn) -

For Ly, we infer from integration by parts, Lemma 3.1, and Holder’s inequalities
that

Ly = /V(u -Vb) - Voyu dz
= /Vu -Vb-Voiu dx + /u181Vb~81Vu dxr + /uQGQVb-81Vu dx
= /Vu -Vb-Voiu dr + /u181Vb~81Vu dx — /81u282Vb -Vu dx
+ /82U281Vb -Vu dx + /uQ81Vb - L Vu dx

< Cl|0Vul L2l Vul £ 102Vl £ |V 221101 VD] 7
+ Cl|oVul 2 [Jur|| = [[01Vb] 2 + Cl|Ovuz]| L4 [ 02V L2 ([ Vul 4
+ C||Ozuz| 4[| 01 VO] 2 [ Vul[ 14 + Clluz|[L=[|01 V]| 12|02 Vul| 12
< C|l(u, )| 12 (0vullzr + 02wz + [|016]171) -
Obviously, L3, Ly can be bounded as follows:
1
Ly = n/Valuz - Vby dx < C[|Vbe| 2| VO1uz| 12 < 5\\31VU||2Lz + C||Vba| 72
and
Ly= —/V(b~Vu)-V81u do = —/valu- (Vb-Vu+b-Vu) do
< Cl|01Vul| 2 (HVbHE?HalVszz||VU||22||32VU||EQ
0172 10181 12 920l 52 102 92ul .

< Cll(w,0)ll = (10100172 + 102ull3pe + [|101ull ) -

Now, adding up (4.2) and (4.3), then combining all the estimates for K; through
K, and L; through L4, we obtain

1 d d
§\|81u||§,1 < $/81u~b dz + %/vaw-% dz + C ([|02ul|F2 + ||b2]|72)

(4.4) +Cll(w, b)ll a2 (Ib2ll7> + 102ullre + 0vullF) -
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Integrating (4.4) over [0, ¢] leads to
/Ot |01 u| % dr < 2/81u b dr — 2/81u(:v,0) -b(x,0) dz + 2/V81u - Vb dz
—Z/Vﬁlu(x,0)~Vb(1:,O) dx+CAt (102ull %2 + [[b2]|%2) dr
+ C/Ot s 0) a2 ([1b2]l772 + 102w F2 + |16l 3 ) dT
< C[(uo, bo) [ Fr2 + Ol (u, b) [ 72 + C/Ot 1(D2, bo) || Fr2dr

t
+C sup w8l [ (1balfy + 10aulfye + [aulfys) dr,
STS 0

which particularly implies that
Ey(t) < CEy(0) + CEy(t) + CEy(t)? 4+ CEy(t)? .

The proof of Proposition 1.2 is thus complete. ]
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