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Several inviscid models in hydrodynamics and geophysics such as the incompressible
Euler vorticity equations, the surface quasi-geostrophic equation, and the Boussinesq
equations are not known to have even local well-posedness in the corresponding
borderline Sobolev spaces. Here Hs is referred to as a borderline Sobolev space
if the L∞-norm of the gradient of the velocity is not bounded by the Hs-norm
of the solution but by the H s̃-norm for any s̃ > s. This paper establishes the lo-
cal well-posedness of the logarithmically regularized counterparts of these inviscid
models in the borderline Sobolev spaces. C© 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4725531]

Dedicated to Professor Peter Constantin on the occasion of his sixtieth birthday.

I. INTRODUCTION

It is not clear if the 2D Euler vorticity equation{
∂tω + u · ∇ω = 0,

u = ∇⊥ψ ≡ (−∂x2 , ∂x1 )ψ, �ψ = ω
(1.1)

is locally well-posedness in the Sobolev space H 1(R2). Since H 1(R2) is not embedded in L∞(R2),
the classical Yudovich theory13 does not apply. A simple energy estimate reveals that one may need
to control the L∞-norm of ∇u in order to obtain even a local bound for ‖ω‖H 1 , but unfortunately
‖∇u‖L∞ is not bounded by ‖ω‖H 1 . H 1(R2) is at the borderline in the sense that L∞(R2) is embedded
in H s(R2) for any s > 1 and (1.1) is actually globally well-posed in Hs with s > 1. This phenomenon
of lack of local well-posedness result in a corresponding borderline space appears to be universal for
several other inviscid models. Among them are the 2D inviscid Boussinesq and the 2D ideal MHD
equations. Another outstanding model with this property is the inviscid surface quasi-geostrophic
(SQG) equation {

∂tθ + u · ∇θ = 0,

u = ∇⊥ψ, �ψ = θ,
(1.2)

where θ = θ (x, t) is a scalar function of x ∈ R2 and t ≥ 0, and � = √−�. (1.2) models actual
geophysical flows in the atmosphere and is useful in understanding certain weather phenomena such
as the frontogenesis (see, e.g., Refs. 5, 7, and 10). (1.2) is locally well-posed in Hs with s > 2 (see
Refs. 5 and 6), but the local existence in the borderline space H2 remains unknown. The phenomena
of lack of local well-posedness result also exists for the 3D inviscid models. For example, the 3D
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Euler vorticity equations and the 3D Boussinesq equations are not known to be locally well-posed
in H

3
2 (R3).

This paper studies the local posedness of the logarithmically regularized counterparts of the
aforementioned inviscid models, although a global result is also provided for the regularized 2D Euler
equation. “Logarithmically” refers to the regularization at the level of logarithm of the Laplacian.
This study is partially inspired by a recent work of Chae, Constantin, and Wu,3 in which a general
framework is laid out for dealing with inviscid models generalizing the 2D Euler and the SQG
equations. In the following P(�) denotes a Fourier multiplier operator, namely,

̂P(�) f (ξ ) = P(|ξ |) f̂ (ξ ).

We assume that the symbol P(|ξ |) satisfies

P ≥ 0, P is radially symmetric, P ∈ C(Rd ), P ∈ C∞(Rd \ {0}) (1.3)

and, for any integer j and n = 1, 2, . . . , 1 + [
d
2

]
,

sup
2−1≤|η|≤2

∣∣(I − �η)n P(2 j |η|)∣∣ ≤ C P(C0 2 j ), (1.4)

where C and C0 are two constants independent of j and n. As pointed out in Ref. 3, (1.4) is a very
natural condition on symbols of Fourier multiplier operators and is similar to the main condition in
the Mihlin-Hörmander multiplier theorem (see, e.g., Ref. [11, p. 96]). All the operators that we care
about satisfy this condition. For the logarithmically regularized 2D Euler vorticity equation⎧⎪⎨⎪⎩

∂tω + u · ∇ω = 0,

u = ∇⊥ψ, �ψ = P(�)ω,

ω(x .0) = ω0(x),

(1.5)

we are able to show that any ω0 ∈ H1 leads to a unique local solution when P(|ξ |) obeys an explicit
integral condition as stated in Theorem 1.1. In particular, the result holds if

P(|ξ |) ≤ (ln(e + |ξ |2))−γ for any γ >
1

2
.

Theorem 1.1: Let ω0 ∈ H 1(R2) and consider the initial-value problem (IVP) (1.5). Assume the
symbol P(r) of the operator P(�) satisfies∫ ∞

1

P2(r )

r
dr < ∞. (1.6)

Then, there is T = T (‖ω0‖H 1 ) > 0 such that (1.5) has a unique solution ω on [0, T] satisfying

θ ∈ C([0, T ]; H 1(R2)).

In particular, if we take

P(�) = (ln(e − �))−γ , γ >
1

2
,

then (1.6) is fulfilled and (1.5) has a unique local solution.

A key point in the proof of this theorem is that the nonlinear part can now be bounded in terms
of ‖ω‖H 1 . Similar local results hold for logarithmically regularized 2D Boussinesq and the 2D MHD
equations. The details are provided in Sec. II.

Attention is also paid to a family of regularized SQG equations⎧⎪⎨⎪⎩
∂tθ + u · ∇θ = 0,

u = ∇⊥ψ, �βψ = P(�)θ,

θ (x, 0) = θ0(x),

(1.7)
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where 1 ≤ β ≤ 2. When β = 2, (1.7) reduces to (1.5) while (1.7) with β = 1 is a regularized version
of (1.2). When P(�) represents a logarithmic regularization, (1.7) possesses a unique local solution
in H 3−β(R2), as stated in the following theorem.

Theorem 1.2: Let θ0 ∈ H 3−β (R2). Assume that the symbol of the operator P(�) satisfies the
integral condition in (1.6). Then, there exists a T = T (‖θ0‖H 3−β ) such that (1.7) possesses a unique
solution θ ∈ C([0, T]; H3−β). Especially the logarithmically regularized inviscid SQG equation,
namely, (1.7) with β = 1, is locally well-posed in H2.

To prove this theorem, we identify H3−β with the Besov space B3−β

2,2 and estimate the norm
‖θ‖B3−β

2,2
through the Besov space techniques. For the convenience of the readers, the definition of

Besov spaces and some of its properties are provided in Appendix. This theorem is proved in Sec. III.
Even though the vorticity formulation of the 3D Euler equations involves the vortex stretching

term, the local well-posedness theory can still be established for the logarithmically regularized
3D Euler equations and for the logarithmically regularized 3D Boussinesq equations. Here the
regularized 3D Euler vorticity equations and the Boussinesq equations assume the form{

∂tω + u · ∇ω = ω · ∇u,

u = ∇ × ψ, �ψ = P(�)ω
(1.8)

and ⎧⎪⎨⎪⎩
∂tω + u · ∇ω = ω · ∇u + ∇ × (θe3),

u = ∇ × ψ, �ψ = P(�)ω,

∂tθ + u · ∇θ = 0,

(1.9)

respectively, where e3 denotes the unit vector in the z-direction. The local theory in the space H
3
2

can be stated as follows.

Theorem 1.3: Consider (1.8) with an initial vorticity ω0 ∈ H
3
2 (R3). If the symbol of the op-

erator P(�) satisfies (1.6), then (1.8) has a unique local solution ω ∈ C([0, T ]; H
3
2 (R3)) for some

T = T
(
‖ω0‖H

3
2

)
> 0.

Theorem 1.4: Consider (1.9) with ω0 ∈ H
3
2 (R3) and θ0 ∈ H

5
2 (R3). If the symbol of the op-

erator P(�) satisfies (1.6), then (1.9) has a unique local solution ω ∈ C([0, T ]; H
3
2 (R3)) and

θ ∈ C([0, T ]; H
5
2 (R3)) for some T = T

(
‖ω0‖H

3
2
, ‖θ0‖H

5
2

)
> 0.

The proofs of the two theorems above involve Besov spaces techniques. The vortex stretching
term ω · ∇u is handled differently from the convection term u · ∇ω. The details are given in Sec. IV.
Finally we remark that it appears to be very difficult to extend the local well-posedness result for
the slightly regularized 2D Euler equation into a global solution in H1. Nevertheless, we are able to
obtain the global existence in W 1,p(R2) for any p > 2. The precise result is stated in Theorem 5.1 of
Sec. V.

II. LOGARITHMICALLY REGULARIZED 2D EULER AND RELATED EQUATIONS

This section is devoted to proving Theorem 1.1. In addition, we also obtain parallel local well-
posedness theory for the logarithmically regularized 2D inviscid Boussinesq equations and the 2D
ideal MHD equations. First we prove Theorem 1.1.

Proof of Theorem 1.1: The key component of the proof is a local a priori H1-bound for ω.
Once the bound for ‖ω‖H 1 is established, the local well-posedness follows from a standard Picard
fixed-point theorem (see Ref. 8). It is clear that, for any 1 ≤ q ≤ ∞,

‖ω(·, t)‖Lq ≤ ‖ω0‖Lq .
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We now estimate ‖∇ω‖L2 . Due to ∇ · u = 0, we have

1

2

d

dt
‖∇ω‖2

L2 = −
∫

∇ω · ∇u · ∇ω ≤ ‖∇u‖L∞ ‖∇ω‖2
L2 . (2.1)

In the Fourier space, u is related to ω by

û(ξ ) = ξ⊥|ξ |−2 P(|ξ |) ω̂(ξ ) (2.2)

and thus, thanks to (1.6),

‖∇u‖L∞ ≤
∫
R2

|P(|ξ |) |ω̂(ξ )| dξ

≤
[∫

R2
|P(|ξ |)|2 |ξ |−2 dξ

] 1
2
[∫

R2
|ξ |2 |ω̂(ξ )|2 dξ

] 1
2

≤ C ‖∇ω‖L2 . (2.3)

Inserting the bound above in (2.1) and combining with the L2-bound yields

d

dt
‖ω‖H 1 ≤ C ‖ω‖2

H 1 ,

which implies

‖ω(·, t)‖H 1 ≤ ‖ω0‖H 1

1 − C t‖ω0‖H 1
.

To complete the proof for the H1-local well-posedness, a Picard type theorem on a Banach space
suffices (see Ref. [8, pp. 100–112]). One starts with the mollified equation{

∂tω
ε + Jε(Jεuε · ∇ Jεω

ε) = 0,

uε = ∇⊥ψε, �ψε = P(�)ωε

and treats it as an ordinary differential equation on H1. One then verifies that the nonlinear part
defines a locally Lipschitz map on H1 and the Picard theorem assesses the existence of a local
solution ωε . A limiting process then yields a desired local solution. This completes the proof of
Theorem 1.1. �

Similar local well-posedness can be established for other logarithmically regularized 2D inviscid
models that share similar structures with the 2D Euler. Especially, the H1 local well-posedness holds
for the logarithmically regularized 2D Boussinesq and the 2D ideal MHD equations.

Theorem 2.1: Consider the generalized inviscid 2D Boussinesq equations in vorticity
formulation ⎧⎪⎪⎨⎪⎪⎩

∂tω + u · ∇ω = ∂x1ρ,

∂tρ + u · ∇ρ = 0,

u = ∇⊥ψ, �ψ = P(�)ω,

ω(x, 0) = ω0(x), ρ(x, 0) = ρ0(x).

(2.4)

Assume that ω0 ∈ H 1(R2) and ρ0 ∈ H 2(R2). If the operator P(�) obeys the condition in (1.6), then
(2.4) has a unique local solution (ω, ρ) ∈ C([0, T]; H1) × C([0, T]; H2).

We now turn to the generalized 2D ideal MHD equations. We use the formulation in terms of the
vorticity ω and the current density j. It is easy to check that this formulation is formally equivalent
to the standard 2D MHD equations of the velocity and the magnetic field (see, e.g., Ref. 2).
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Theorem 2.2: Consider the generalized ideal 2D MHD equations⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tω + u · ∇ω = b · ∇ j,

∂t j + u · ∇ j = b · ∇ω + 2∂x1 b(∂x1 u2 + ∂x2 u1) − 2∂x1 u(∂x1 b2 + ∂x2 b1),

u = ∇⊥ψ, �ψ = P(�)ω,

b = ∇⊥φ, �φ = P(�) j,

ω(x, 0) = ω0(x), j(x, 0) = j0(x).

(2.5)

Assume that ω0 ∈ H 1(R2) and j0 ∈ H 1(R1). If the operator P(�) obeys the condition in (1.6), then
(2.5) has a unique local solution (ω, j) ∈ C([0, T ]; H 1(R2)) × C([0, T ]; H 1(R2)).

III. LOGARITHMICALLY REGULARIZED INVISCID SQG TYPE EQUATION

This section proves Theorem 1.2. The approach is to identify the Sobolev space Hσ with the
Besov space Bσ

2,2 defined the Littlewood-Paley theory (see Appendix). This allows us to employ
the techniques associated with the estimates of Besov norms. An important ingredient in the proof
involves bounding ∇u in terms of θ and we need a proposition from Ref. [3, p. 41]. In this proposition,
�j with j = − 1, 0, 1, 2, . . . denotes the Fourier localization operators as defined in Appendix.

Proposition 3.1. Let u : Rd → Rd be a vector field. Assume that u is related to a scalar θ by

(∇u)ik = RlRm P(�) θ,

where 1 ≤ i, k, l, m ≤ d, (∇u)ik denotes the (i, k)th entry of ∇u and Rl denotes the Riesz transform.
Assume the symbol P(|ξ |) satisfies (1.3) and (1.4). Then, for any integer j ≥ 0,

‖� j∇u‖Lq ≤ Cd P(C02 j ) ‖� jθ‖Lq , 1 ≤ q ≤ ∞, (3.1)

where Cd is a constant depending on d only.

Proof of Theorem 1.2: As we have explained in the proof of Theorem 1.1, it suffices to establish
a local a priori bound for ‖θ‖H 3−β . For this purpose, we write σ = 3 − β (purely for notational
convenience) and identify Hσ with the Besov space Bσ

2,2. Applying �j to the first equation in (1.7),
taking the inner product with �jθ , multiplying by 22σ j and summing over j = − 1, 0, . . . , we find

1

2

d

dt
‖θ‖Hσ = −

∞∑
j=−1

22σ j
∫

� jθ � j (u · ∇θ ) dx

= I1 + I2 + I3 + I4 + I5,

where, by the notion of paraproducts,

I1 = −
∞∑

j=−1

22σ j
∫

� jθ
∑

| j−k|≤2

[� j , Sk−1u · ∇]�kθ,

I2 = −
∞∑

j=−1

22σ j
∫

� jθ ·
∑

| j−k|≤2

(Sk−1u − Sj u) · ∇� j�kθ,

I3 = −
∞∑

j=−1

22σ j
∫

� jθ · (Sj u · ∇)� jθ,

I4 = −
∞∑

j=−1

22σ j
∫

� jθ ·
∑

| j−k|≤2

� j (�ku · ∇Sk−1θ ),

I5 = −
∞∑

j=−1

22σ j
∫

� jθ ·
∑

k≥ j−1

� j (�ku · ∇�̃kθ )
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with �̃k = �k−1 + �k + �k+1. Thanks to ∇ · u = 0, we have I3 = 0. We now bound I1. Noticing
that the summation over k contains only a finite number of terms, namely, |k − j| ≤ 2, it suffices to
bound the typical term with k = j. By Hölder’s inequality and a standard commutator estimate,

|I1| ≤ C
∞∑

j=−1

22σ j‖� jθ‖2
2 ‖∇Sj−1u‖∞ ≤ C ‖∇u‖∞‖θ‖2

Hσ . (3.2)

The second equation in (1.7) implies that u is related to θ by

û(ξ ) = ξ⊥|ξ |−β P(|ξ |) θ̂(ξ )

and thus, thanks to (1.6),

‖∇u‖∞ ≤
∫
R2

|ξ |2−β P(|ξ |) |θ̂(ξ )| dξ

≤
[∫

R2
(|ξ |−1 P(|ξ |))2

] 1
2

[∫
R2

(|ξ |3−β |θ̂(ξ )|)2 dξ

] 1
2

≤ C ‖θ‖Hσ . (3.3)

Inserting this bound in (3.2) yields

|I1| ≤ C ‖θ‖3
Hσ . (3.4)

Noticing that Sk − 1u − Sju is a sum of a finite number of terms �l with l between k − 1 and j and
that |k − j| ≤ 2, we apply Hölder’s inequality to obtain

|I2| ≤
∞∑

j=−1

22σ j ‖� jθ‖2‖� j u‖∞ ‖∇� jθ‖2.

To further estimate, we shift the derivative from ∇�jθ to �ju. For this purpose, we divide the sum
into two parts j ≤ 2 and j ≥ 3,

|I2| ≤
⎛⎝ 2∑

j=−1

+
∞∑
j=3

⎞⎠ 22σ j ‖� jθ‖2‖� j u‖∞ ‖∇� jθ‖2. (3.5)

For the part j ≤ 2, we apply Bernstein’s inequality of Appendix, Proposition 3.1 and the Hardy-
Littlewood-Sobolev inequality to obtain

‖� j u‖∞ ‖∇� jθ‖2 ≤ C ‖� j∇⊥�−β P(�)θ‖∞ ‖� jθ‖2 ≤ C ‖� jθ‖2
2.

For the large mode part j ≥ 3, the lower bound part of Bernstein’s inequality then applies and yields

‖� j u‖∞ ‖∇� jθ‖2 ≤ C ‖� j u‖∞ 2 j‖� jθ‖2 ≤ C‖∇� j u‖∞ ‖� jθ‖2.

Bounding ‖∇�ju‖∞ by (3.3) and inserting these estimates in (3.5) lead to

|I2| ≤ C ‖θ‖3
Hσ . (3.6)

By Hölder’s and Bernstein’s inequalities,

|I4| ≤ C
∞∑

j=−1

22σ j‖� jθ‖2 ‖� j u · ∇Sj−1θ‖2

≤
∞∑

j=−1

22σ j‖� jθ‖2 ‖� j u‖22 j‖Sj−1θ‖∞. (3.7)

As in the estimate of I2, we split the sum into two parts: j ≤ 2 and j ≥ 3. The low mode part j ≤ 2
can be bounded as before and the high mode part satisfies

‖� j u‖22 j ≤ C‖∇� j u‖2 for j ≥ 3.
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By Proposition 3.1, we have

‖∇� j u‖2 ≤ C P(2 j ) ‖� jθ‖2. (3.8)

In addition, by (A1), ̂Sj−1θ is supported on the ball of radius 2j and thus

‖Sj−1θ‖∞ ≤
∫
R2

|̂Sj−1θ(ξ )| dξ =
∫
R2

ψ j (ξ ) |θ (ξ )| dξ ≤ C
∫

|ξ |≤2 j

|θ (ξ )| dξ

≤ C

[∫
|ξ |≤2 j

〈ξ 〉−2(3−β) dξ

] 1
2

[∫
R2

(〈ξ 〉3−β |θ̂ (ξ )|)2 dξ

] 1
2

, (3.9)

where 〈ξ 〉 =
√

1 + |ξ |2. Since 1 ≤ β ≤ 2, we evaluate the first integral by polar coordinates and find

‖Sj−1θ‖∞ ≤ C
(
log(1 + 2 j )

) 1
2 ‖θ‖Hσ . (3.10)

Inserting (3.8) and (3.9) in (3.7), we find that

|I4| ≤ C sup
j≥−1

P(2 j )
(
log(1 + 2 j )

) 1
2 ‖θ‖3

Hσ .

Clearly, (1.6) implies that, there is an integer j0 > 0,

sup
j≥ j0

P(2 j )
(
log(1 + 2 j )

) 1
2 ≤ C, (3.11)

where C is a constant independent of j. Thus,

|I4| ≤ C ‖θ‖3
Hσ . (3.12)

To bound I5, we first apply Hölder’s and Bernstein’s inequalities to obtain

|I5| ≤
∞∑

j=−1

22σ j‖� jθ‖∞
∑

k≥ j−1

2 j ‖�ku‖2 ‖�̃kθ‖2.

Interchanging the order of the double summation, we have

|I5| ≤
∞∑

k≥−1

22σk2k‖�ku‖2 ‖�̃kθ‖2

∑
j≤k+1

2(2σ+1)( j−k)‖� jθ‖∞.

We again split the summation over k into the low and high mode parts. The low mode part is easily
handled and the high mode part obeys

2k‖�ku‖2 ≤ C ‖∇�ku‖2.

Invoking similar estimates as in (3.8) and (3.10), we obtain

|I5| ≤ C ‖θ‖Hσ

∞∑
k≥−1

22σk ‖�kθ‖2
2

∑
j≤k+1

2(2σ+1)( j−k) P(2k)
(
log(1 + 2 j )

) 1
2 .

Thanks to (3.11), we have

|I5| ≤ C ‖θ‖3
Hσ . (3.13)

Combining (3.4), (3.6), (3.12), and (3.13), we find

d

dt
‖θ‖2

Hσ ≤ C ‖θ‖3
Hσ ,

which yields a local bound for ‖θ‖Hσ . This completes the proof of Theorem 1.2. �
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IV. LOGARITHMICALLY REGULARIZED 3D INVISCID MODELS

This section provides the proofs of Theorem 1.3 and Theorem 1.4, the local well-posedness of the
logarithmically regularized 3D Euler equations and the logarithmically regularized 3D Boussinesq
equations in the borderline space. The approach here is to identify the Sobolev norm Hs with the
Besov space Bs

2,2 and apply the Besov space techniques. Direct manipulations with the Sobolev
space Hs does not appear to work.

Proof of Theorem 1.3: For notational convenience, we write s for 3
2 in the entire proof. Since

the Sobolev norm Hs is equivalent to the norm in the Besov space Bs
2,2, the proof takes advantage of

the Besov space techniques.

Applying �j to the first equation in (1.8), taking the inner product with �jω, multiplying by
22sj and summing over integers j ≥ − 1, we obtain

1

2

d

dt
‖ω‖2

H s = J1 + J2, (4.1)

where

J1 =
∞∑

j=−1

22s j
∫

� j (ω · ∇u) · � jω,

J2 = −
∞∑

j=−1

22s j
∫

� j (u · ∇ω) · � jω.

To estimate J1, we decompose �j(ω · ∇u) into paraproducts and write J1 as

J1 = J11 + J12 + J13,

where

J11 =
∞∑

j=−1

22s j
∫ ∑

|k− j |≤2

� j (Sk−1ω · ∇�ku) · � jω,

J12 =
∞∑

j=−1

22s j
∫ ∑

|k− j |≤2

� j (�kω · ∇Sk−1u) · � jω,

J13 =
∞∑

j=−1

22s j
∫ ∑

k≥ j−1

� j (�kω · ∇�̃ku) · � jω.

By Hölder’s inequality, we have

|J11| ≤ C
∞∑

j=−1

22s j‖Sj−1ω · ∇� j u‖2 ‖� jω‖2. (4.2)

Noticing that ∇u = ∇�− 1∇ × P(�)ω and the boundedness of Riesz transforms on L2, we have

‖Sj−1ω · ∇� j u‖2 ≤ ‖Sj−1ω‖∞ ‖∇� j u‖2 (4.3)

≤ C ‖Sj−1ω‖∞ ‖� j P(�)ω‖2.

By the definition of Sj − 1 and Hölder’s inequality,

‖Sj−1ω‖∞ ≤
∫

|̂Sj−1ω(ξ )| dξ ≤
∫

|ξ |≤2 j

|ω̂(ξ )| dξ

≤ C ‖ω‖H s (log(1 + 2 j ))
1
2 . (4.4)
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Therefore, by Proposition 3.1,

‖Sj−1ω · ∇� j u‖2 ≤ C ‖ω‖H s (log(1 + 2 j ))
1
2 P(2 j ) ‖� jω‖2. (4.5)

Inserting (4.5) in (4.2) and noticing that, due to (1.6), for some j0 > 0,

sup
j≥ j0

(
log(1 + 2 j )

) 1
2 P(2 j ) ≤ C, (4.6)

we find

|J11| ≤ C sup
j≥ j0

(log(1 + 2 j ))
1
2 P(2 j ) ‖ω‖H s

∞∑
j=−1

22s j‖� jω‖2
2

≤ C ‖ω‖3
H s . (4.7)

J12 can be bounded easily. In fact, by Hölder’s inequality,

|J12| ≤ C
∞∑

j=−1

22s j‖� jω · ∇Sj−1u‖2 ‖� jω‖2

≤ C ‖∇u‖∞ ‖ω‖2
H s .

By a similar calculation as in (2.3), we have

‖∇u‖∞ ≤ C‖ω‖H s . (4.8)

Therefore,

|J12| ≤ C ‖ω‖3
H s . (4.9)

To bound J23, we apply a different Hölder’s inequality to obtain

|J13| ≤ C
∞∑

j=−1

22s j‖� jω‖∞
∑

k≥ j−1

‖�kω · ∇�̃ku‖1

≤ C
∞∑

j=−1

22s j‖� jω‖∞
∑

k≥ j−1

‖�kω‖2 ‖∇�̃ku‖2

≤ C
∞∑

k=−1

‖�kω‖2 ‖∇�̃ku‖2

∑
j≤k+1

22s j‖� jω‖∞. (4.10)

Similarly as in (4.4), we have

‖� jω‖∞ ≤ C ‖ω‖H s (log(1 + 2 j ))
1
2 . (4.11)

In addition, by Proposition 3.1 again,

‖∇�̃ku‖2 ≤ C P(2k) ‖�kω‖2. (4.12)

Inserting (4.11) and (4.12) in (4.10), we find

|J13| ≤ C ‖ω‖H s

∞∑
k=−1

22ks‖�kω‖2
2

∑
j≤k+1

22s( j−k) P(2k) (log(1 + 2 j ))
1
2 . (4.13)

Thanks to (1.6), we have, for large k,

P(2k) ≤ C(log(1 + 2k))−
1
2

and thus

|J13| ≤ C ‖ω‖H s

∞∑
k=−1

22ks‖�kω‖2
2 = C ‖ω‖3

H s . (4.14)
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Combining (4.7), (4.9), and (4.14), we have

|J1| ≤ C ‖ω‖3
H s . (4.15)

We now turn to J2. By paraproducts decomposition, we write

J2 = J21 + J22 + J23 + J24 + J25,

where

J21 =
∞∑

j=−1

22s j
∫

� jω ·
∑

| j−k|≤2

[� j , Sk−1u · ∇]�kω,

J22 =
∞∑

j=−1

22s j
∫

� jω ·
∑

| j−k|≤2

(Sk−1u − Sj u) · ∇� j�kω,

J23 =
∞∑

j=−1

22s j
∫

� jω · Sj u · ∇� jω,

J24 =
∞∑

j=−1

22s j
∫

� jω ·
∑

| j−k|≤2

� j (�ku · ∇Sk−1ω),

J25 =
∞∑

j=−1

22s j
∫

� jω ·
∑

k≥ j−1

� j (�ku · ∇�̃kω).

By Höler’s inequality and a standard commutator estimate, we have

|J21| ≤ C
∞∑

j=−1

22s j‖� jω‖2 ‖∇Sj−1u‖∞‖� jω‖2

≤ C ‖∇u‖∞‖ω‖2
H s ≤ C ‖ω‖3

H s . (4.16)

To estimate J22, we first notice that Sk − 1u − Sju contains only a finite number of terms �lu for l
between k − 1 and j. By Hölder’s and Bernstein’s inequalities,

|J22| ≤ C
∞∑

j=−1

22s j‖� jω‖2 ‖� j u‖∞ 2 j‖� jω‖2.

In order to apply the lower bound part of Bernstein’s inequality, we split the summation into the low
and high modes. That is,

|J22| ≤ C

⎛⎝ 2∑
j=−1

+
∞∑
j=3

⎞⎠ 22s j‖� jω‖2 ‖� j u‖∞ 2 j‖� jω‖2. (4.17)

For the high mode part j ≥ 3, the lower bound part of Bernstein’s inequality and (4.8) imply that

‖� j u‖∞ 2 j ≤ C‖∇� j u‖∞ ≤ C ‖∇u‖∞ ≤ C ‖ω‖H s .

For the low mode part j ≤ 2, by the Hardy-Littlewood-Sobolev inequality

‖� j u‖∞ 2 j ≤ C‖� j u‖6 = C ‖∇ × �−1 P(�)� jω‖6 ≤ C‖� jω‖2.

Inserting these estimates in (4.17), we find

|J22| ≤ C ‖ω‖3
H s . (4.18)
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By ∇ · Sju = 0, we have J23 = 0. To bound J24, we first apply Hölder’s inequality and Bernstein’s
inequality to obtain

|J24| ≤ C
∞∑

j=−1

22s j‖� jω‖2 ‖� j u‖2 2 j‖Sj−1ω‖∞.

As in (4.17), we split the summation into two parts. Since the low mode part can be easily handled,
we shall only present the details for the high mode part. Then

|J24| ≤ C
∞∑

j=−1

22s j‖� jω‖2 ‖∇� j u‖2 ‖Sj−1ω‖∞. (4.19)

Bounding ‖∇�ju‖2 ‖Sj − 1ω‖∞ as in (4.3), we can bound J24 in the same way as for J11,

|J24| ≤ C ‖ω‖3
H s .

Finally we bound J25. The idea is to first shift the derivative from ω to u as we just did in estimating
J24 and then to bound it as in J13. The bound is still the same,

|J25| ≤ C ‖ω‖3
H s .

Collecting all the estimates, we obtain that

d

dt
‖ω‖2

H s ≤ C ‖ω‖3
H s ,

which yields a local bound for ‖ω‖H s . This completes the proof of Theorem 1.3. �
We now prove Theorem 1.4.

Proof of Theorem 1.4: The proof of this theorem is parallel to the previous proof. Since the
Boussinesq vorticity equation only differs from the Euler vorticity equation by the term ∇ × (θe3),
a similar procedure as in the proof of Theorem 1.3 yields

d

dt
‖ω‖2

H
3
2

≤ C ‖ω‖3

H
3
2

+ ‖θ‖
H

5
2
‖ω‖

H
3
2
. (4.20)

We now estimate the evolution of ‖θ‖
H

5
2
. Applying �j to the second equation in (1.9), taking the

inner product with �jθ , multiplying by 25j and summing over integers j ≥ − 1, we obtain

1

2

d

dt
‖θ‖2

H
5
2

= −
∞∑

j=−1

25 j
∫

� j (u · ∇θ ) · � jθ. (4.21)

The term on the right-hand side can be further decomposed into the sum of

K1 = −
∞∑

j=−1

25 j
∫

� jθ ·
∑

| j−k|≤2

[� j , Sk−1u · ∇]�kθ,

K2 = −
∞∑

j=−1

25 j
∫

� jθ ·
∑

| j−k|≤2

(Sk−1u − Sj u) · ∇� j�kθ,

K3 = −
∞∑

j=−1

25 j
∫

� jθ · Sj u · ∇� jθ,

K4 = −
∞∑

j=−1

25 j
∫

� jθ ·
∑

| j−k|≤2

� j (�ku · ∇Sk−1θ ),

K5 = −
∞∑

j=−1

25 j
∫

� jθ ·
∑

k≥ j−1

� j (�ku · ∇�̃kθ ).
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As in the estimates of J21 and J22, namely (4.16) and (4.18), we have

|K1| ≤ C‖∇u‖∞‖θ‖2

H
5
2

≤ C ‖ω‖
H

3
2
‖θ‖2

H
5
2
, |K2| ≤ C ‖ω‖

H
3
2
‖θ‖2

H
5
2
.

Thanks to ∇ · Sju = 0, K3 = 0. By Hölder’s inequality,

|K4| ≤ C
∞∑

j=−1

25 j‖� jθ‖2 ‖� j u‖2 ‖Sj−1∇θ‖∞.

As in (3.8), for j ≥ 3,

2 j‖� j u‖2 ≤ C‖∇� j u‖2 ≤ C P(2 j ) ‖� jω‖2. (4.22)

Following a similar calculation as in (4.4), we have

‖Sj−1∇θ‖∞ ≤ C ‖θ‖
H

5
2

(log(1 + 2 j ))
1
2 . (4.23)

Due to (1.6) and thus (4.6), we have

|K4| ≤ C
∞∑

j=−1

24 j‖� jθ‖2 ‖� jω‖2 ‖θ‖
H

5
2

≤ C ‖ω‖
H

3
2
‖θ‖2

H
5
2
.

To bound K5, we employ the idea used in dealing with J13. By Hölder’s inequality,

|K5| ≤ C
∞∑

j=−1

25 j‖� jθ‖∞
∑

k≥ j−1

‖�ku‖2 ‖�̃k∇θ‖2

= C
∞∑

k=−1

‖�ku‖2 ‖�̃k∇θ‖2

∑
j≤k+1

25 j‖� jθ‖∞.

Similarly as in (4.22) and (4.23), we have

2k‖�ku‖2 ≤ C P(2k) ‖�kω‖2, 2 j ‖� jθ‖∞ ≤ ‖θ‖
H

5
2

(log(1 + 2 j ))
1
2 .

Therefore,

|K5| ≤ C ‖θ‖
H

5
2

∞∑
k=−1

2
3
2 k ‖�kω‖2 2

3
2 k ‖�k∇θ‖2

×
∑

j≤k+1

2−3(k− j) P(2k) (log(1 + 2 j ))
1
2 .

Using the fact that P(2k) ≤ C(log(1 + 2k))−
1
2 , we obtain

|K5| ≤ C ‖θ‖2

H
5
2
‖ω‖

H
3
2
.

Combining the estimates and inserting them in (4.21), we obtain

d

dt
‖θ‖2

H
5
2

≤ C ‖θ‖2

H
5
2
‖ω‖

H
3
2
. (4.24)

(4.20) and (4.24) together then yield the desired local bound. This completes the proof of
Theorem 1.4. �
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V. GLOBAL SOLUTIONS OF LOGARITHMICALLY REGULARIZED 2D EULER

This last section presents a global regularity result for the logarithmically regularized 2D Euler
equation (1.5). The global bound is obtained in a slightly different functional setting from the
borderline space.

Theorem 5.1: Let p > 2 and ω0 ∈ W 1,p(R2). Then the vorticity ω of solution to (1.5) with P
satisfying (1.6) obeys

ω ∈ C(0,∞; W 1,p(R2)).

Proof: Applying ∇ on (1.5), and then taking L2(R2) inner product with ∇ω|∇ω|p − 2, we obtain
after integration by part,

1

p

d

dt
‖∇ω‖p

L p ≤ ‖∇u‖L∞‖∇ω‖p
L p ,

and thus

d

dt
‖∇ω‖L p ≤ ‖∇u‖L∞‖∇ω‖L p . (5.1)

Since d
dt ‖ω‖L p = 0, we have from (5.1) that

d

dt
‖ω‖W 1,p ≤ C‖∇u‖L∞‖ω‖W 1,p . (5.2)

We recall the following inequality proved in Ref. 9,

‖ f ‖L∞ ≤ C {1 + ‖ f ‖B M O ln(e + ‖ f ‖W 1,p )} , p > d,

where d is the dimension of space. Then, we have

‖∇u‖L∞ ≤ C {1 + ‖∇u‖B M O ln(e + ‖∇u‖W 1,p )}
≤ C {1 + ‖ω‖B M O ln(e + ‖ω‖W 1,p )}
≤ C {1 + ‖ω‖L∞ ln(e + ‖ω‖W 1,p )}
= C {1 + ‖ω0‖L∞ ln(e + ‖ω‖W 1,p )} , (5.3)

where we used the fact

∇̂u(ξ ) = Q(ξ )ω̂(ξ ), Q(ξ ) := ξξ⊥|ξ |−2 P(|ξ |),
and the operator defined by the multiplier Q maps BMO into itself. Substituting (5.3) into (5.2), one
obtains

d

dt
‖ω‖W 1,p ≤ C‖ω‖W 1,p {1 + ‖ω0‖L∞ log(e + ‖ω‖W 1,p )} . (5.4)

By Gronwall’s inequality this provides us with the desired global bound. �
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APPENDIX: BESOV SPACES AND RELATED FACTS

This appendix provides the definitions of �j, Sj, and inhomogeneous Besov spaces. Related
useful facts such as the Bernstein inequality are also provided here. Materials presented in this
appendix here can be found in several books and papers (see, e.g., Refs. 1 and 4 or 12).
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Let S(Rd ) and S ′(Rd ) denote the Schwartz class and tempered distributions, respectively. The
partition of unity states that there exist two nonnegative radial functions ψ, φ ∈ S such that

supp ψ ⊂ B

(
0,

11

12

)
, supp φ ⊂ A

(
0,

3

4
,

11

6

)
,

ψ(ξ ) +
∑
j≥0

φ j (ξ ) = 1 for ξ ∈ Rd , φ j (ξ ) = φ(2− j ξ ),

supp ψ ∩ supp φ j = ∅ if j ≥ 1,

supp φ j ∩ supp φk = ∅ if | j − k| ≥ 2,

where B(0, r) denotes the ball centered at the origin with radius r and A(0, r1, r2) is the annulus
centered at the origin with the inner radius r1 and the outer radius r2.

For any f ∈ S ′, set

�−1 f = F−1 (ψ(ξ )F( f )) = � ∗ f,

� j f = F−1
(
φ j (ξ )F( f )

) = � j ∗ f, j = 0, 1, 2, . . . ,

� j f = 0 for j ≤ −2,

Sj =
j−1∑

k=−1

�k when j ≥ 0,

where we have used F and F−1 to denote the Fourier and inverse Fourier transforms, respectively.
Clearly,

� = F−1(ψ), �0 = � = F−1(φ), � j (x) = F−1(φ j )(x) = 2 jd �(2 j x).

In addition, we can write

F(Sj f ) = ψ

(
ξ

2 j

)
F( f ). (A1)

With these notation at our disposal, we now provide the definition of the inhomogeneous Besov
space.

Definition A.1: For s ∈ R and 1 ≤ p, q ≤ ∞, the inhomogeneous Besov space Bs
p,q is defined by

Bs
p,q =

{
f ∈ S ′ : ‖ f ‖Bs

p,q
< ∞

}
,

where

‖ f ||Bs
p,q

≡

⎧⎪⎪⎨⎪⎪⎩
( ∞∑

j=−1

(
2 js ‖� j f ‖L p

)q)1/q
, if q < ∞,

sup
−1≤ j<∞

2 js ‖� j f ‖L p , if q = ∞.

(A2)

The following Bernstein type inequalities are very useful and have been used in Secs. III–IV.

Proposition A.2 (Bernstein inequalities): Let α ≥ 0. Let 1 ≤ p ≤ q ≤ ∞.

(1) If f satisfies

supp f̂ ⊂ {ξ ∈ Rd : |ξ | ≤ K 2 j },
for some integer j and a constant K > 0, then

max
|β|=k

‖Dβ f ‖Lq (Rd ) ≤ C 2k j+ jd( 1
p − 1

q )‖ f ‖L p(Rd ),

‖(−�)α f ‖Lq (Rd ) ≤ C 22α j+ jd( 1
p − 1

q )‖ f ‖L p(Rd )

for some constant C depending on K, p, and q only.
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(2) If f satisfies

supp f̂ ⊂ {ξ ∈ Rd : K12 j ≤ |ξ | ≤ K22 j }
for some integer j and constants 0 < K1 ≤ K2, then

C 2k j‖ f ‖Lq (Rd ) ≤ max
|β|=k

‖Dβ f ‖Lq (Rd ) ≤ C 2k j+ jd( 1
p − 1

q )‖ f ‖L p(Rd ),

C 22α j‖ f ‖Lq (Rd ) ≤ ‖(−�)α f ‖Lq (Rd ) ≤ C 22α j+ jd( 1
p − 1

q )‖ f ‖L p(Rd ),

where the constants C depend on K1, K2, p, and q only.
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