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Abstract
This paper concerns the vanishing viscosity limit of the two-dimensional
degenerate viscous lake equations when the Navier slip conditions are
prescribed on the impermeable boundary of a simply connected bounded regular
domain. When the initial vorticity is in the Lebesgue space Lq with 2 < q � ∞,
we show that the degenerate viscous lake equations possess a unique global
solution and the solution converges to a corresponding weak solution of the
inviscid lake equations. In a special case when the vorticity is in L∞, an
explicit convergence rate is obtained.

Mathematics Subject Classification: 35Q30, 76D03, 76D09

1. Introduction

In [15] Levermore and Sammartino derived a system of shallow water equations that model the
large-scale horizontal motion confined to a fixed basin with a slowly varying bottom topograph
from three-dimensional incompressible flow with eddy viscosities, which read as{

∂tv + v · ∇v − µb−1∇ · (2bD(v) − b∇ · vI) + ∇h = −ηv + f,

∇ · (bv) = 0,
(1.1)

where x ∈ �, t > 0, � ⊂ R
2 is a simply connected bounded domain. The unknown functions

are v(x, t), which is the horizontal fluid velocity averaged vertically over x ∈ � at time t , and
h(x, t), which means the top surface height. µ and η are a positive eddy viscosity coefficient
and a nonnegative turbulent drag coefficient defined over �, respectively, and f (x, t) is the
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wind forcing defined over � × [0, ∞). I is a 2 × 2 identity matrix and D(v) stands for the
deformation tensor, defined by

D(v) = ∇v + (∇v)t

2
.

Physically b = b(x) denotes the depth of the basin and is assumed to be positive in [15], i.e.
b(x) � b0 > 0, x ∈ �̄ for some positive constant b0, which means that lakes and oceans have
vertical lateral boundaries, like swimming pools.

The derived boundary conditions in [15] are

v · n = 0, µτ · 2D(v) · n + αv · τ = 0 x ∈ ∂�, (1.2)

where n(x) and τ(x) are the outward unit normal and a unit tangent to ∂�, and α(x) is a
nonnegative turbulent boundary drag coefficient defined on ∂�. (1.2) are usually called the
Navier boundary conditions, which were first used by Navier in 1827 and mean that there
is a stagnant layer of fluid close to the wall allowing a fluid to slip, and the slip velocity is
proportional to the shear stress. In [15], the authors also studied the well-posedness of the
initial–boundary-value problem to the system (1.1)–(1.2) with some given initial data.

At the end of [15], Levermore and Sammartino proposed that ‘......it would be natural to
investigate the zero viscosity limit of our model equations (i.e., system (1.1)) and prove that
the solutions converge to the solution of the model derived in [4]’, which is{

∂tu
0 + u0 · ∇u0 + ∇p0 = 0,

∇ · (b u0) = 0,
(1.3)

with the corresponding boundary condition

bu0 · n = 0 on ∂�, (1.4)

and given initial data

u0(x, t)|t=0 = u0, x ∈ �. (1.5)

(1.3) are the known lake equations which have been derived in [4, 5, 8, 13] to model
the evolution of the vertically averaged horizontal components of the 3D velocity to the
incompressible Euler equations confined to a shallow basin with a varying bottom topography.
It is clear that when b(x) has a positive lower bound, (1.4) is equivalent to u · n = 0, x ∈ ∂�.

In this paper, we are not assuming that b is nondegenerate, namely that b may be zero on
∂�. We neglect the linear term ηu and the source term f in (1.1) (for simplicity) and consider
the following viscous lake equations:{

∂tu
µ + uµ · ∇uµ − µb−1∇ · (2bD(uµ) − b∇ · uµI) + ∇pµ = 0,

∇ · (buµ) = 0.
(1.6)

Attention is focused here on the initial- and boundary-value problem (IBVP) for (1.6) with the
free boundary condition

buµ · n = 0, ∇ × uµ = 0, x ∈ ∂�, t > 0, (1.7)

and given initial data

uµ(x, t) |t=0= u0, x ∈ �, (1.8)

It is remarked that (1.7) is called the free (Navier) boundary condition, which was introduced
in [1, 16, 17] and can be regarded as a special case of the general Navier boundary condition

buµ · n = 0, 2D(uµ)n · τ + αuµ · τ = 0, x ∈ ∂�. (1.9)
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In detail, (1.9) reduces to (1.7) when α(x) = 2κ(x), where κ(x) is the curvature of the
boundary ∂� (see lemma 2.1 in [7] and corollary 4.3 in [12], see also lemma 2.8 in section 2)
The boundary condition ∇ × uµ = 0 makes the Lq(2 < q � ∞)-estimates of the vorticity
available and it is still unknown so far how to get these estimates using the general Navier
boundary (1.9).

In [3] Bresch and Métivier studied the well-posedness of the lake equations (1.3) in the
presence of a beach, assuming that b(x) is positive in the interior of the domain and vanishes
at the boundary ∂�. Motivated by [3], in this paper, we write ∂� as the zero level set of a
smooth function. That is,

b(x) = ϕ(x)a, � = {ϕ > 0} and ∂� = {ϕ = 0}, (1.10)

where a > 0 and ϕ ∈ C2(�). This type of condition (1.10) covers a wide range of functions
and is the same as what is required in the degenerate elliptic estimates obtained in [3] (see
lemma 2.7 in section 2).

It should be noted that in the derivations of (1.1) in [15] and (1.3) in [4, 5, 8, 13], it
is assumed that the amplitude of the surface waves is much smaller than the depth of the
lake and therefore it is reasonable to impose that the bottom function b(x) has a positive
lower bound. However, it would be interesting to study the case in the presence of a beach,
which corresponds to the case that the bottom function b(x) degenerates on the boundary. As
remarked by Levermore et al in [13], when the lakes and oceans have beaches, the dynamics
in the interior of the domain still can be described by the lake equations, but how to model
the surface wave near the beach may need further investigation. Although it is not physically
relevant in the presence of a beach, similar models are still used by several geophysicists and
mathematicians to understand the dynamics of the lakes (see [3]).

Our goal here is to understand the vanishing viscosity limit of solutions to the IBVP (1.6)–
(1.8) when the initial vorticity ω0 = b−1∇ × u0 ∈ Lq(�) for some q satisfying 2 < q � ∞,
under the assumption of (1.10) in the presence of a beach. To deal with the vanishing viscosity
limit problem, we first establish the global existence of solutions to the viscous IBVP (1.6)–
(1.8) with ω0 ∈ Lq(�) for 2 < q � ∞. For the inviscid IBVP (1.3), (1.4) and (1.5), there is
an adequate theory on the existence and uniqueness of weak solutions. For the general case
ω0 ∈ Lq(�) with 2 < q � ∞, a global weak solution to (1.3)–(1.5) in the distributional sense
is obtained in [10, 13] for nondegenerate b(x), namely

0 < b0 � b(x) � b1 for all x ∈ �. (1.11)

When b(x) is degenerate, the global weak solution can be obtained by replacing b(x) by
b(x) + ε for small ε > 0, applying the result for the nondegenerate case in [10] and taking
the limit as ε → 0. The weak solutions of (1.3)–(1.5) are in the distribution sense and their
uniqueness is unknown if we just have ω0 ∈ Lq(�) with 2 < q < ∞. If ω0 ∈ L∞(�), Bresch
and Métivier [3] established the global existence and uniqueness of weak solutions in the class
ω ∈ L∞(� × [0, T ]) for any T > 0. In this paper, we are able to establish two vanishing
viscosity limit results. The first one is the strong convergence (up to a subsequence)

uµ → u0 in Lr(0, T ; Wδ,r ′
(�)) as µ → 0,

where uµ refers to the aforementioned solution of (1.6)–(1.8) and u0 is some weak solution
of (1.3)–(1.5) associated with ω0 ∈ Lq , and the indices r and δ will be specified later. When
ω0 ∈ L∞, an explicit rate of convergence can be obtained. More precisely, we have

‖
√

b(uµ − u0)(t)‖2
L2 � C M2(1−e−C̃t )

(‖√b(uµ − u0)(0)‖2
L2 + µt

)e−C̃t

.

Here u0 is the unique weak solution of (1.3)–(1.5) obtained in [3]. Precise statements of these
results will be given in the following section.



644 Q Jiu et al

To put our results in proper context, we briefly summarize some recent work on the viscous
and inviscid lake equations. When b = 1, (1.6) and (1.3) become the classical Navier–Stokes
and Euler equations, respectively. There is a large amount of literature on the inviscid limit of
the Navier–Stokes equations with the Navier boundary conditions (see, e.g., [1, 2, 7, 9, 18, 19]).
If b is not a constant but nondegenerate, namely b satisfies (1.11), the global existence and
uniqueness of strong solutions to the IBVP (1.6)–(1.8) are obtained in [15] while the global
weak solutions to the IBVP (1.3)–(1.5) are studied by Levermore et al in [13, 14]. The vanishing
viscosity limit of (1.6)–(1.8) in the case when b is nondegenerate was investigated by Jiu and
Niu [10], which answered Levermore and Sammartino’s question of [15] in the nondegenerate
case. They proved that the solution of (1.6)–(1.8) with any initial vorticity in Lp (1 < p � ∞)

converges to a weak solution of (1.3–(1.5). In another recent work [11], Jiu and Niu studied
the viscous boundary layer problem for (1.6) with Navier boundary conditions.

We remark that the vanishing viscosity limit problem for the case when b is degenerate
is more difficult than the nondegenerate case. In the nondegenerate case, the viscous term
− ∫

�
uµ · ∇ · (2bD(uµ) − b div uµI) dx gives rise to the H 1 bound of uµ utilizing the Navier

boundary conditions and integrating by parts in a straight way (see [10]). In fact the restriction
κ � 0 in [10] can be removed by adopting the approach by Kelliher [12]. But in the degenerate
case, the degeneracy of b(x) will produce an additional term

∫
�
(uµ · ∇)uµ · ∇b dx during the

integration by parts, which cannot be estimated by the term
∫
�

|(uµ · ∇)uµ · b| dx. Thus,
the H 1-estimate of the velocity uµ cannot be obtained directly, even under the restriction
κ � 0. To encounter this difficulty, we first obtain the L∞([0, T ]; L2(�)) estimate of

√
buµ in

lemma 3.1. The restriction κ � 0 is crucial in this case and it is still open now how to remove
it. Moreover, a key tool employed here is an elliptic-type estimate for degenerate equations
(see [3] and lemma 2.7 below). This estimate allows us to bound the W 1,q-norm of uµ and u0

uniformly with respect to the degenerate b(x). Other techniques involved such as the Yudovich
approach will be unfolded in the subsequent sections.

The rest of this paper is divided into three sections. The second section states the main
results and provides the tools to be used in the subsequent sections. The third section establishes
the existence and uniqueness of solutions to the IBVP (1.6)–(1.8) while the last section presents
the inviscid limit results.

2. Main results and preparations

This section provides the precise statements of the main results and list some of the tools to be
used in the proofs of these theorems.

One of the main theorems asserts the global existence and uniqueness of solutions to the
viscous IBVP (1.6)–(1.8). This theorem involves the vorticity formulation. If uµ solves the
IBVP (1.6)–(1.8), then it can be verified (see [10]) that ωµ = b−1∇ × uµ solves the following
IBVP for the vorticity equation


∂tω

µ + uµ · ∇ωµ − µ�ωµ + 3µb−1∇b · ∇ωµ = µG(uµ, ∇uµ),

bωµ = 0, x ∈ ∂�,

bωµ(·, 0) = bω0, x ∈ �.

(2.1)

where G(uµ, ∇uµ) involves only the linear terms of the first derivatives of uµ, and is given by

G = (b−1�b + |∇ ln b|2)ωµ + b−1∇ × ((∇uµ·) ln b)

+ b−1∇ × (∇ ln b(uµ · ∇(ln b))). (2.2)
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Theorem 2.1. Let � ⊂ R
2 be a simply connected and smooth bounded domain with

nonnegative curvature κ � 0. Consider the IBVP (1.6)–(1.8) with b = b(x) being given
by (1.10) for a � 2. Assume

√
bu0 ∈ L2(�) and ω0 = b−1∇ × u0 ∈ Lq(�) for some q

satisfying 2 < q < ∞. Then (1.6)–(1.8) has a unique solution which satisfies


d

dt

∫
�

φ · uµb dx + 2µ

∫
�

Duµ : Dφ b dx − µ

∫
�

div uµdivφ b dx

+
∫

�

uµ · ∇uµ · φ b dx + 2µ

∫
∂�

κuµ · φb dS =
∫

�

∂tφ · uµb dx,

buµ · n = 0, x ∈ ∂�,

uµ(x, 0) = u0, x ∈ �

for any test function φ ∈ C([0, T ); W
1,

q

q−1 ) with φ · n = 0 on ∂�.
In addition, ωµ = b−1∇ × uµ is well defined, and satisfies (2.1) in the distribution sense.

Furthermore, for any T > 0, b
1
p ωµ ∈ C([0, T ]; Lq(�)) and

‖
√

buµ‖L∞(0,T ;L2) + ‖b 1
q ωµ‖L∞(0,T ;Lq) � C, (2.3)

‖uµ‖W 1,q � C, (2.4)

where C is a constant depending on a, q, T , ‖ϕ‖C2(�) and the initial norms ‖√bu0‖L2 and
‖ω0‖Lq only.

Since � is a bounded domain, ω0 ∈ L∞(�) can be treated as a special case of theorem 2.1.

Corollary 2.2. Let � ⊂ R
2 be a simply connected and smooth bounded domain with

nonnegative curvature κ � 0. Consider the IBVP (1.6)–(1.8) with b = b(x) being given
by (1.10) for a � 2. Assume

√
bu0 ∈ L2(�) and ω0 ∈ L∞(�). Then (1.6)–(1.8) has a unique

solution uµ, which obeys (2.3) and (2.4) for any 2 < q < ∞.

It is not clear whether the vorticity ωµ is in L∞(�). The approach of taking the limit of
‖ω‖Lq as q → ∞ would not work since the bound for ‖ω‖Lq grows with respect to q very
quickly (see the bound in lemma 3.2).

Two other main results are the following theorems on inviscid limits. The first one is a
strong convergence result without an explicit rate. The second result is that when ω0 ∈ L∞

an explicit convergence rate can be obtained. Before that, we give a definition of the weak
solution of (1.3) in the sense of distributions, which is as follows.

Definition 2.1. For any T > 0, we call (u0, p0) a weak solution of (1.3)–(1.5) if

(i)
√

bu0 ∈ C([0, T ]; L2(�)) and for any φ ∈ C1([0, T ] × �) with φ(x, T ) = 0,∫
�

φu0b dx +
∫ T

0

∫
�

u0 · ∇u0 · φb dx =
∫

�

u0φ(0, ·)b dx +
∫ T

0

∫
�

∂tφuµb dx dt;
(ii) the boundary condition (1.4) is satisfied in the weak sense. That is, for any scalar function

ϕ(x) ∈ C1(�̄, ∫
�

bu0 · ∇ϕ dx = 0.

We note that the boundary condition (1.4) can also be explained in the weak trace
sense (see lemma 2.1 in [12] for instance). In [3], a definition of the weak solution was
given in the vorticity-stream form. It is remarked that these two definitions are equivalent
if the weak solution has more regularity, for example, if

√
bu0 ∈ C([0, T ]; L2(�)) and

ω = b−1∇ × u ∈ L∞([0, T ]; L2(�)) (see remark 2.4 in [3]).
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In the following theorem u0 denotes a weak solution of the inviscid IBVP (1.3)-(1.5) in
the distributional sense. As we explained in the introduction, such weak solutions exist for
all time. In particular, for the case when ω0 ∈ L∞(�), the existence and uniqueness of weak
solutions was obtained by Bresch and Métivier [3], which is as follows.

Lemma 2.3. Consider the inviscid IBVP (1.3)–(1.5) with b = b(x) being given by (1.10) for
a � 2. Assume

√
bu0 ∈ L2(�) and ω0 ∈ L∞(�). Then (1.3)–(1.5) has a unique solution u0,

which satisfies, for any 2 < p < ∞ and any T > 0,

u0 ∈ C([0, T ]; W 1,p), ω0 ∈ C([0, T ]; Lp) ∩ L∞([0, T ] × �)

and

sup
p�3

1

p

(∫
�

|∇u0|p dx

) 1
p

< ∞.

We now state our first vanishing viscosity limit result.

Theorem 2.4. Suppose that the assumptions of theorem 2.1 hold true. Assume
√

bu0 ∈ L2(�)

and ω0 ∈ Lq(�) for some 2 < q � ∞. Let uµ be the unique solution established in
theorem 2.1. Let ωµ = b−1∇ × uµ. Then, there exist a subsequence of uµ (still denoted
by itself) and a measurable function u0(x, t) such that for any 1 < r < ∞ satisfying
1 < 1/r + 2/q < 3/2,

uµ −→ u0 in Lr(0, T ; Wδ,r ′
(�)), (2.5)

as k −→ ∞, where r ′ is the conjugate index of r , 1/r + 1/r ′ = 1 and δ ∈ (0, 1) satisfies
1/r ′ < 1/q − (1 − δ)/2. Moreover, u0 is a weak solution to (1.3)–(1.5), satisfying, in the case
when 2 < q < ∞

√
bu0 ∈ L2(�), ω0 ∈ L∞([0, T ], Lq(�))

and, if q = ∞, ω0 ∈ L∞([0, T ], Lq̃(�)) for any 1 � q̃ < ∞.

When ω0 ∈ L∞(�), the weak solution u0 in theorem 2.4 coincides with the unique one
presented in lemma 2.3, which is as follows:

Corollary 2.5. Suppose that the assumptions of theorem 2.1 hold true. If ω0 ∈ L∞(�), the
weak solution u0 in theorem 2.4 coincides with the unique weak solution in lemma 2.3 and the
convergence in (2.5) holds true for the whole sequence of uµ.

Moreover, when ω0 ∈ L∞(�), we obtain an explicit convergence rate.

Theorem 2.6. Suppose that the assumptions of theorem 2.1 hold true. Assume
√

bu0 ∈ L2(�)

and ω0 ∈ L∞(�). Let uµ be the unique solution established in theorem 2.1 and let u0 be the
unique weak solution of the IBVP (1.3)–(1.5). Then, for any T > 0 and t � T ,

‖
√

b(uµ − u0)(t)‖2
L2 � C M2(1−e−C̃t )(‖

√
b(uµ − u0)(0)‖2

L2 + µt)e−C̃t

,

where C, C̃ and M are constants depending on a, T , ‖ϕ‖C2(�) and the norms ‖√bu0‖L2 and

‖ω0‖L∞ only. In particular, if ‖√b(uµ − u0)(0)‖L2 → 0, then ‖√b(uµ − u0)(t)‖L2 → 0 with
an explicit rate, as µ → 0.

We now list some of the tools to be used in the proofs of the theorems stated above.
The first one is an estimate for solutions of degenerate elliptic equations. This estimate was
obtained in [3, theorem 2.3].
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Lemma 2.7. Let � ⊂ R
d be a simply connected bounded domain with a smooth boundary

and let b = b(x) be given by (1.10). Consider

∇ · (bv) = 0, ∇ × v = f in � and (bv) · n = 0 on ∂�.

If, for 2 < p < ∞,

bv ∈ L2(�) and f ∈ Lp(�),

then

v ∈ C
1− d

p (�), ∇v ∈ Lp(�), v · n|∂� = 0

and, for a constant Cp depending on p only,

‖v‖
C

1− d
p

� Cp (‖f ‖Lp + ‖bv‖L2).

In particular,

‖v‖Lp � C‖v‖L∞ � Cp (‖f ‖Lp + ‖bv‖L2). (2.6)

In addition, for any p0 > 2 and p0 < p < ∞, there is a constant C depending on p0 only
such that

‖∇v‖Lp � Cp (‖f ‖Lp + ‖bv‖L2). (2.7)

Remark 2.1. The estimates in lemma 2.7 bound the W 1,p-norm of v uniformly with respect
to b. The estimates in (2.6) and (2.7) actually hold for p = 2, namely the H 1-norm of v is
bounded by C(‖f ‖L2 + ‖bv‖L2).

The following lemma reformulates the Navier friction condition in terms of vorticity (see,
e.g., [18]).

Lemma 2.8. Suppose v ∈ H 2(�) with v · n = 0 on ∂�. Then,

D(v)n · τ = −κ(v · τ) + 1
2∇ × v on ∂�,

where τ denotes the unit tangent vector and κ the curvature of ∂�. In particular, if ∇ × v = 0
on ∂�, then

D(v)n · τ = −κ(v · τ) on ∂�.

We will also need the following Osgood-type inequality(see, e.g., [6]).

Lemma 2.9. Let α(t) > 0 be a locally integrable function. Assume ω(t) � 0 satisfies∫ ∞

0

1

ω(r)
dr = ∞.

Suppose that ρ(t) > 0 satisfies

ρ(t) � a +
∫ t

t0

α(s)ω(ρ(s)) ds

for some constant a � 0. Then if a = 0, then ρ ≡ 0; if a > 0, then

−�(ρ(t)) + �(a) �
∫ t

t0

α(τ) dτ,

where

�(x) =
∫ 1

x

dr

ω(r)
.
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3. Global solutions of the viscous equations

This section is devoted to the proof of theorem 2.1. For this purpose, we first establish several
a priori estimates including a global L2-bound for the velocity, a global Lq-bound for the
vorticity and a global L2

t H
1
x bound for the velocity.

We start with the L2-bound for the velocity.

Lemma 3.1 (L2-estimate). Suppose that the assumptions of theorem 2.1 hold and let uµ be a
smooth solution of (1.6). Then, for any T > 0,

‖
√

buµ‖2
L∞((0,T );L2(�)) +

∫ T

0

∫
∂�

κ|uµ · τ |2b dS � ‖
√

bu0‖2
L2(�), (3.1)

where κ � 0 is the curvature of ∂�.

Proof. We take the inner product of the first equation of (1.6) with buµ and integrate by parts.
Due to the divergence-free condition ∇ · (buµ) = 0, the contribution from the nonlinear term
and the pressure term is zero. The inner product with the dissipative term is

µ

∫
�

uµ · ∇ · (2bDuµ − b∇ · uµI) dx

= −µ

∫
∂�

(2uµ · Duµn − (uµ · n)∇ · uµ)b dS

+ 2µ

∫
�

∇uµ : Duµb dx − µ

∫
�

(∇ · uµ)2b dx.

Writing uµ = (uµ·n)n+(uµ·τ)τ , applying the boundary condition in (1.7) and the basic identity
∇uµ : Duµ = Duµ : Duµ, and invoking lemma 2.8, namely D(uµ)n · τ = −κ(uµ · τ) on ∂�,
we have
d

dt

∫
�

|uµ|2b dx + 2µ

∫
�

Duµ : Duµ b dx − µ

∫
�

(∇ · uµ)2 b dx

+ 2µ

∫
∂�

κ|uµ · τ |2b dS = 0, (3.2)

where κ is the curvature of ∂� which is nonnegative by assumption. Since

2Duµ : Duµ − (∇ · uµ)2 = (∂1u
µ

2 + ∂2u
µ

1 )2 + (∂1u
µ

1 − ∂2u
µ

2 )2 � 0,

(3.1) then follows from (3.2). The proof of the lemma is then finished.

For the vorticity ωµ = b−1∇ × uµ, we have the following estimate.

Lemma 3.2 (Estimate of vorticity). Suppose that the assumptions of theorem 2.1 hold and
let uµ be a smooth solution of (1.6). Let ωµ = b−1∇ × uµ. Then, for any T > 0,

‖(b)
1
q ωµ‖q

L∞(0,T ;Lq) � (‖
√

bu0‖q

L2 + ‖ω0‖q

Lq )eµ(Cq)q+1T , (3.3)

where C is a constant depending on a, q, T and ‖ϕ‖C2(�).

Proof. As stated in section 2, ωµ satisfies (2.1). Taking the inner product of |ωµ|q−2ωµb with
the first equation of (2.1), integrating by parts and using the zero boundary condition for bωµ,
we have
1

q

d

dt
‖b 1

q ωµ‖q

Lq +
4(q − 1)

q2
µ

∫
�

|∇(ωµ)
q

2 |2b dx

� µ

∣∣∣∣
∫

�

|G(uµ, ∇uµ)||ωµ|q−2ωµb dx

∣∣∣∣ + 4µ

∣∣∣∣
∫

�

∇b · ∇ωµ|ωµ|q−2ωµ dx

∣∣∣∣ .



Degenerate lake equations 649

To bound the first term, we first notice from (2.2) that

‖bG(uµ, ∇uµ)‖Lq � ‖uµ‖W 1,q .

It then follows from Hölder’s inequality that

µ

∣∣∣∣
∫

�

|G(uµ, ∇uµ)||ωµ|q−2ωµb dx

∣∣∣∣ � Cµ‖uµ‖W 1,q ‖ωµ‖q−1
Lq .

To bound the last term, we recall that b = ϕa with ϕ ∈ C2(�) and ϕ � 0. Therefore, for
a � 2,

|∇b|2 = |aϕa−1∇ϕ|2 � Cϕ2a−2 � Cϕa = Cb. (3.4)

Thus, by Hölder’s and Young’s inequalities,∫
�

|∇b · ∇ωµ||ωµ|q−2ωµ dx � µ

q

∫
|∇(ωµ)

q

2 |2b dx +
Cµ

q
‖ωµ‖q

Lq ,

where C is independent of q. Therefore, we obtain

1

q

d

dt
‖b 1

q ωµ‖q

Lq +
3q − 4

q2
µ

∫
�

|∇(ωµ)
q

2 |2b dx

� Cµ

q
‖ωµ‖q

Lq + µ‖uµ‖W 1,q ‖ωµ‖q−1
Lq .

By the estimates in lemma 2.7,

‖ωµ‖Lq � ‖∇uµ‖Lq � Cq (‖b ωµ‖Lq + ‖buµ‖L2).

Thus,

d

dt
‖b 1

q ωµ‖q

Lq +
3q − 4

q
µ

∫
�

|∇(ωµ)
q

2 |2b dx

� µ(Cq)q(‖b ωµ‖Lq + ‖buµ‖L2)q

� µ(Cq)q+1(‖bωµ‖q

Lq + ‖buµ‖q

L2).

Noting that ‖bωµ‖Lq � ‖b1/qωµ‖Lq and applying lemma 3.1, we have

‖b 1
q ωµ‖q

L∞(0,T ;Lq) � (‖
√

bu0‖q

L2 + ‖ω0‖q

Lq )eµ(Cq)q+1T ,

which is (3.3). The proof of the lemma is complete.

The following lemma provides a bound for ‖√b∇u‖L2(�×[0,T ]). In addition, its proof is
also useful in proving theorem 2.6.

Lemma 3.3. Suppose that the assumptions of theorem 2.1 hold and let uµ be a smooth solution
of (1.6). Then, for any T > 0,

‖
√

buµ‖2
L∞((0,T );L2(�)) + µ

∫ T

0
‖
√

b∇uµ(t)‖2
L2(�) dt + µ

∫ T

0

∫
∂�

κ|uµ · τ |2b dS dt

� C(‖
√

bu0‖2
L2(�) + ‖ω0‖2

L2(�)). (3.5)

Proof. Substituting the identity

2Duµ : Duµ − (∇ · uµ)2 = |∇uµ|2 + 2(∂1u
µ

2 ∂2u
µ

1 − ∂1u
µ

1 ∂2u
µ

2 )
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into (3.2), we obtain

d

dt

∫
�

|uµ|2b dx + µ

∫
�

|∇uµ|2b dx − 2µ

∫
�

(∂1u
µ

1 ∂2u
µ

2 − ∂1u
µ

2 ∂2u
µ

1 )b dx

+ 2µ

∫
∂�

κ|uµ · τ |2b dS = 0. (3.6)

It is easy to check that

J ≡ 2
∫

�

(∂1u
µ

1 ∂2u
µ

2 − ∂1u
µ

2 ∂2u
µ

1 )b dx

=
∫

�

∇ · (u
µ

1 ∂2u
µ

2 − u
µ

2 ∂2u
µ

1 , u
µ

2 ∂1u
µ

1 − u
µ

1 ∂1u
µ

2 )b dx

=
∫

�

∇ · [(uµ

1 ∂2u
µ

2 − u
µ

2 ∂2u
µ

1 , u
µ

2 ∂1u
µ

1 − u
µ

1 ∂1u
µ

2 )b] dx

−
∫

�

(u
µ

1 ∂2u
µ

2 − u
µ

2 ∂2u
µ

1 , u
µ

2 ∂1u
µ

1 − u
µ

1 ∂1u
µ

2 ) · ∇b dx.

Writing

(u
µ

1 ∂2u
µ

2 − u
µ

2 ∂2u
µ

1 , u
µ

2 ∂1u
µ

1 − u
µ

1 ∂1u
µ

2 )

= u
µ

1 (∂2u
µ

2 , −∂1u
µ

2 ) − u
µ

2 (∂2u
µ

1 , −∂1u
µ

1 )

and applying the divergence theorem, we have

J =
∫

∂�

(u
µ

1 τ · ∇u
µ

2 − u
µ

2 τ · ∇u
µ

1 )b dS

−
∫

�

(u
µ

1 ∂2u
µ

2 − u
µ

2 ∂2u
µ

1 , u
µ

2 ∂1u
µ

1 − u
µ

1 ∂1u
µ

2 ) · ∇b dx.

Since buµ ·n = 0 on ∂�, we have buµ = (buµ ·τ)τ on ∂�. Writing u
µ

1 τ ·∇u
µ

2 −u
µ

2 τ ·∇u
µ

1 =
−τ · ∇uµ · (u

µ

2 , −u
µ

1 ), we find

J = −
∫

∂�

(τ · ∇uµ · n)(uµ · τ)b dS

−
∫

�

(u
µ

1 ∂2u
µ

2 − u
µ

2 ∂2u
µ

1 , u
µ

2 ∂1u
µ

1 − u
µ

1 ∂1u
µ

2 ) · ∇b dx.

By lemma 2.8,

J =
∫

∂�

κ|uµ · τ |2b dS

−
∫

�

(u
µ

1 ∂2u
µ

2 − u
µ

2 ∂2u
µ

1 , u
µ

2 ∂1u
µ

1 − u
µ

1 ∂1u
µ

2 ) · ∇b dx.

Then (3.6) becomes

d

dt

∫
�

|uµ|2b dx + 2µ

∫
�

|∇uµ|2b dx + µ

∫
∂�

κ|uµ · τ |2b dS

= −µ

∫
�

(u
µ

1 ∂2u
µ

2 − u
µ

2 ∂2u
µ

1 , u
µ

2 ∂1u
µ

1 − u
µ

1 ∂1u
µ

2 ) · ∇b dx. (3.7)
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Applying Hölder’s inequality and using (3.4), we have

µ

∣∣∣∣
∫

�

(u
µ

1 ∂2u
µ

2 − u
µ

2 ∂2u
µ

1 , u
µ

2 ∂1u
µ

1 − u
µ

1 ∂1u
µ

2 ) · ∇b dx

∣∣∣∣
� 1

2
µ

∫
�

|∇uµ|2b dx + C µ‖uµ‖2
L2

� 1

2
µ

∫
�

|∇uµ|2b dx + Cµ(‖b1/2ωµ‖2
L2 + ‖b1/2uµ‖2

L2). (3.8)

Combining (3.7) with (3.8), we obtain

d

dt

∫
�

|uµ|2b dx + µ

∫
�

|∇uµ|2b dx � Cµ(‖b1/2ωµ‖2
L2 + ‖b1/2uµ‖2

L2).

Applying (3.3) and the Gronwall inequality, we obtain (3.5) and thus finish the proof of this
lemma.

We are now ready to prove theorem 2.1.

Proof of theorem 2.1. Let ε > 0 be a small parameter. We construct the approximate solutions
(uε,µ, ωε,µ) to the nondegenerate viscous lake equations with bε = b + ε, namely



∂tu
ε,µ + uε,µ · ∇uε,µ

−µ(bε)−1∇ · (2bεD(uε,µ) − bε∇ · uε,µI ) + ∇pε,µ = 0,

∇ · (bεuµ) = 0,

bεuε,µ · n = 0, bεωµ = 0 on ∂�,

uε,µ(x, t) |t=0= u0.

(3.9)

Since bε is nondegenerate, the global existence and uniqueness of such solutions can be
obtained by a similar approach as in [10]. Moreover, uε,µ satisfies (3.9) in the sense of
distribution
d

dt

∫
�

φ · uε,µbε dx + 2µ

∫
�

Duε,µ : Dφ bε dx

−µ

∫
�

div uε,µ divφ bε dx +
∫

�

uε,µ · ∇uε,µ · φ bε dx

+ µ

∫
∂�

κ(uε,µ · φ)bεdS =
∫

�

∂tφ · uµbε dx (3.10)

for any test function φ ∈ C([0, T ]; W
1,

p

p−1 (�)) with φ · n = 0 on ∂�. Thanks to lemmas 3.1
and 3.2, we deduce the uniform estimates, for any T > 0,

‖
√

bεuε,µ‖L∞(0,T ;L2) + ‖(bε)
1
q ωε,µ‖L∞(0,T ;Lq) � C. (3.11)

By the estimates in lemma 2.7,

‖uε,µ‖W 1,q � C(‖
√

bεuε,µ‖L∞(0,T ;L2)

+‖(bε)
1
q ωε,µ‖L∞(0,T ;Lq)) � C. (3.12)

In these inequalities C are constants depending on T and q but not on ε or µ. Furthermore,
using (3.10), we can prove that ∂tu

ε,µ is uniformly bounded in L∞((0, T ); H−s
loc (�)) for some

s > 2. Thus (3.11) and (3.12) yield the compactness of
√

bεuε,µ in L2(0, T ; L2
loc(�)) by the

Aubin–Lions lemma. This allows one to pass to the limit ε → 0 in (3.10) (up to a subsequence)
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to get the existence of weak solutions of (1.6)–(1.8). Moreover, the solution uµ, ωµ satisfy
the estimates of (3.11) and (3.12). Using similar estimates of (3.9) and (3), we can prove
uniqueness of the weak solutions and we omit further details. The proof of the theorem is now
finished.

4. Vanishing viscosity limits

This section proves theorem 2.4, and theorem 2.6, the vanishing viscosity limit results. In
addition, a proof of corollary 2.5 is also provided at the end of this section.

Proof of theorem 2.4. According to theorem 2.1 and its proof given in the previous section,
the unique solution uµ of the IBVP (1.6)–(1.8) satisfies

√
buµ ∈ C(0, T ; L2) ∩ L2(0, T ; H 1(�)),

uµ ∈ L∞(0, T ; W 1,q(�)), b
1
q ωµ ∈ L∞(0, T ; Lq(�))

and, for any test function φ ∈ C([0, T ); W
1,

q

q−1 ) with φ · n = 0 on ∂�,∫
�

φuµb dx + 2µ

∫ T

0

∫
�

Duµ : Dφb dx + µ

∫ T

0

∫
�

∇ · uµdivφb dx

+
∫ T

0

∫
�

uµ · ∇uµ · φb dx + µ

∫ T

0

∫
∂�

κ(uµ · φ)b dS

=
∫

�

u0φ(0, ·)b dx +
∫ T

0

∫
�

∂tφuµb dx dt.

Then there exist a measurable function u0(x, t) and a subsequence, denoted by uµk , such that

uµk ⇀ u0 in w ∗ −L∞(0, T ; W 1,q(�)) ∩ L∞(0, T ; L2(�)),

ωµk ⇀ ω0 in w ∗ −L∞(0, T ; Lq(�)),

as k −→ ∞. Therefore, for any 1 < r < ∞ satisfying 1 < 1/r + 2/q < 3/2 and α ∈ (0, 1)

satisfying 1/r ′ < 1/q − (1 − α)/2,

uµ −→ u0 in Lr(0, T ; Wα,r ′
(�)),

where r ′ is the conjugate index of r , 1/r + 1/r ′ = 1.
In addition, the limiting function u0 satisfies the weak form of the inviscid lake equations,

that is,∫
�

φu0b dx +
∫ T

0

∫
�

u0 · ∇u0 · φb dx =
∫

�

u0φ(0, ·)b dx +
∫ T

0

∫
�

∂tφuµb dx dt.

This completes the proof.

We now turn to the proof of theorem 2.6.

Proof of theorem 2.6. The differences v = uµ − u0 and p = pµ − p0 formally satisfy


∂tv + v · ∇u0 + uµ · ∇v

−µb−1∇ · (2bDuµ − b∇ · uµ) + ∇p = 0,

∇ · (bv) = 0,

(4.1)
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with the boundary condition bv · n = 0. Taking the inner product of (4.1) with bv, integrating
by parts and applying the boundary conditions, we obtain
1

2

d

dt
‖
√

bv‖2
L2(�) +

∫
�

v · ∇u0 · vb dx + 2µ

∫
∂�

κv · vb dS + 2µ

∫
�

D(v) : D(v)b dx

−µ

∫
�

(∇ · v)2b dx = −2µ

∫
∂�

κu0 · vb dS − 2µ

∫
�

D(u0) : D(v)b dx

+ µ

∫
�

(∇ · u0)(∇ · v)b dx. (4.2)

We remark that (4.2) can be obtained rigorously by using the weak form of the equations. We
then combine the terms

2µ

∫
�

D(v) : D(v)b dx − µ

∫
�

(∇ · v)2b dx

and bound them as in the proof of lemma 3.3. More explicitly, as calculations in lemma 3.5,
we write

2µ

∫
�

D(v) : D(v)b dx − µ

∫
�

(∇ · v)2b dx

= µ

∫
�

|∇v|2b dx − 2µ

∫
�

(∂1v1∂2v2 − ∂1v2∂2v)b dx

= µ

∫
�

|∇v|2b dx − µ

∫
∂�

κ|uµ · τ |2bdS

+µ

∫
�

(u
µ

1 ∂2u
µ

2 − u
µ

2 ∂2u
µ

1 , u
µ

2 ∂1u
µ

1 − u
µ

1 ∂1u
µ

2 ) · ∇b dx.

and then bound the last term above as in (3.8), namely

µ

∣∣∣∣
∫

�

(u
µ

1 ∂2u
µ

2 − u
µ

2 ∂2u
µ

1 , u
µ

2 ∂1u
µ

1 − u
µ

1 ∂1u
µ

2 ) · ∇b dx

∣∣∣∣
� 1

2
µ

∫
�

|∇v|2b dx + Cµ(‖b1/2uµ‖2
L2 + ‖b1/2ωµ‖2

L2)

� 1

2
µ

∫
�

|∇v|2b dx + Cµ(‖b1/2u0‖2
L2 + ‖b1/2uµ‖2

L2)

+ Cµ(‖b1/2ω0‖2
L2 + ‖b1/2ωµ‖2

L2) � 1

2
µ

∫
�

|∇v|2b dx + Cµ,

where C depend on the initial norms ‖b 1
2 u0‖L2 and ‖ω0‖L∞ only. Since the boundary of � is

smooth, there is a constant κ0 � 0 such that κ(x) � κ0 for any x ∈ ∂�. Applying Hölder’s
inequality and lemma 2.7, we have, for any T > 0 and t � T ,
1

2

d

dt
‖
√

bv‖2
L2(�) +

1

2
µ

∫
�

|∇v|2b dx + µ

∫
∂�

κ v · vb dS

� Cµ +

∣∣∣∣
∫

�

v · ∇u0 · vb dx

∣∣∣∣ + 2µ(κ0)
1
2 ‖b1/2u0‖L2(∂�)

(∫
∂�

κ|v|2b dS

)1/2

+ 2µ‖∇u0‖L2(�)

(∫
�

|D(v)|2b dx

) 1
2

+ µ‖∇ · u0‖L2(�)

(∫
�

(∇ · v)2b dx

) 1
2

. (4.3)
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Applying the bounds ‖b1/2u0‖L2 � C for C independent of µ and by lemma 2.7,

‖∇u0‖L2(�) � C ‖∇u0‖L3(�)

� C(‖bω0‖L3(�) + ‖bu0‖L2(�))

� C,

where C depend on the initial norms ‖b 1
2 u0‖L2 and ‖ω0‖L∞ only, we have from (4.3) that

d

dt
‖
√

bv‖2
L2(�) +

µ

2

∫
�

|∇v|2b dx � 2

∣∣∣∣
∫

�

v · ∇u0 · vb dx

∣∣∣∣ + Cµ, (4.4)

where C is independent of µ. Since ∇u0 is not known to be bounded in L∞, we follow the
Yudovich approach to deal with the nonlinear term (see, e.g., [3, 20]). For this purpose, we set

L := sup
p�3

1

p

(∫
�

|∇u0|p dx

) 1
p

,

M := ‖u0‖L∞ + ‖uµ‖L∞ .

By lemma 2.3, L < ∞ and by lemma 2.7, M < ∞. Now, for δ > 0, let

�µ,δ(t) = ‖
√

bv‖2
L2(�) + δ.

Applying Hölder’s inequality to the nonlinear term in (4.4), we have, for any p � 3,

d

dt
�µ,δ(t) � pLM

2
p �µ,δ(t)

1− 1
p + Cµ. (4.5)

Optimizing the bound on the right of (4.5) with respect to p � 3 yields

d

dt
�µ,δ(t) � Ce(ln M2 − ln �µ,δ(t))�µ,δ(t) + Cµ.

Integrating in time leads to

�µ,δ(t) � �µ,δ(0) + Cµt + Ce

∫ t

0
ρ(�µ,δ(τ )) dτ,

where ρ(x) = x(ln M2 − ln x). Let

�(x) =
∫ 1

x

dy

ρ(y)
=

∫ 1

x

dy

y(ln M2 − ln y)

= ln(ln M2 − ln x) − ln ln M2.

Applying lemma 2.9, we get

−�(�µ,δ(t)) + �(�µ,δ(0) + Cµt) � C̃t,

where C and C̃ are constants independent of µ. Therefore,

− ln(ln M2 − ln �µ,δ(t)) + ln(ln M2 − ln(�µ,δ(0) + Cµt)) � C̃t.

That is,

�µ,δ(t) � M2(1−e−C̃t )(�µ,δ(0) + µt)e−C̃t

.

Letting δ → 0, we obtain

‖
√

b(uµ − u0)(t)‖2
L2 � C M2(1−e−C̃t )

(
‖
√

b(uµ − u0)(0)‖2
L2 + µt

)e−C̃t

.

This completes the proof of theorem 2.6.
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We finally prove corollary 2.5.

Proof of corollary 2.5. Let ω0 ∈ L∞(�) and let u0
1 and u0

2 be weak solutions given by lemma
2.3 and theorem 2.4, respectively. Then, the difference

ū0 = u0
1 − u0

2

satisfies the energy inequality
d

dt

∫
�

|ū0|2b dx � 2
∫ T

0

∫
�

|ū|2|∇u0
1|b dx.

A Yudovich-type argument as in the previous proof would lead to ū0 = 0, or u0
1 = u0

2. We
have thus completed the proof.
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