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Viscous approximation and weak solutions of
the 3D axisymmetric Euler equations
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The three-dimensional axisymmetric Euler equations without swirl can be represented by the conservation of!�=r along
the particle trajectory, where!� denotes the swirl component of the vorticity. The two-dimensional Euler equation shares
a parallel representation. Delort’s work has long settled the global existence of weak solutions corresponding to a vortex
sheet data of distinguished sign. In contrast, the parallel global existence problem for the axisymmetric Euler equations
remains an outstanding open problem. This paper establishes the global existence of weak solutions to the axisymmetric
Euler equations without swirl when the initial vorticity !�0 obeys !�0 =r 2 L1

�
R3
�
\ Lp

�
R3
�

for p 2 .1,1/. The approach
is the method of viscous approximations. A major step in the proof is to extract a strongly convergent subsequence of
solutions to a viscous approximation of the Euler equations. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

The global (in time) existence of classical solutions to the three-dimensional (3D) incompressible Euler equations�
@tuC u � ru D �rp, x 2 R3, t > 0,
r � u D 0, x 2 R3, t > 0

(1.1)

remains an outstanding open problem (see, e.g., [2, 3]). Even the global weak solution emanating from a L2-initial datum was only
recently obtained [4]. Here, u D .u1.x, t/, u2.x, t/, u3.x, t// denotes the velocity of the fluid flow, and the scalar p D p.x, t/ denotes the
pressure. This paper is concerned with the global existence of weak solutions to the 3D axisymmetric Euler equations with very weak
initial data. The velocity u and p representing an axisymmetric flow can be written in the cylindrical coordinate system as

u.x, t/ D ur.r, z, t/er C u� .r, z, t/e� C uz.r, z, t/ez , p.x, t/ D p.r, z, t/,

where er , e� and ez form an orthogonal basis of the cylindrical coordinates,

er D
� x1

r
,

x2

r
, 0
�

, e� D
�
�

x2

r
,

x1

r
, 0
�

, ez D .0, 0, 1/, r D
q

x2
1 C x2

2 .

The 3D Euler equations in (1.1) modeling axisymmetric flow can be rewritten as8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

eD
Dt ur �

.u�/
2

r C @rp D 0,eD
Dt

�
ru�

�
D 0,eD

Dt uz C @zp D 0,

@r .rur/C @z .ruz/ D 0,

(1.2)
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where eDDt D @tCur @rCuz@z denotes the material derivative. Writing! D !rerC!
�e�C!zez and noticing that the vorticity components

are given by
!r D �@zu� , !� D @ruz � @zur , !z D @ru� ,

it is sometimes more efficient to represent the 3D axisymmetric Euler equations in terms of u� and !� by the closed system

eD
Dt

�
ru�

�
D 0,

eD
Dt

 
!�

r

!
D �

1

r4
@z

�
ru�

�2
. (1.3)

(1.3) is often compared to the inviscid two-dimensional (2D) Boussinesq equations (see, e.g., [3]).
The issue of global (in time) existence of solutions to (1.3) appears to depend crucially on whether the swirl component u� is zero. If

the swirl component u� is not zero, the global existence of classical solutions or weak solutions associated with very weak data remains
unsettled, although the local well-posedness and various regularity criteria have been obtained (see, e.g., [5, 6]). In the case, when there
is no swirl, namely u� � 0, (1.3) becomes eD

Dt

 
!�

r

!
D 0 (1.4)

and !�

r is conserved along any particle trajectory. As a consequence, the 3D axisymmetric Euler equations without a swirl always
possess a unique global solution if the initial datum is sufficiently smooth ([3, 7]).

However, the story appears to be different if the datum is not so smooth. Delort [8] studied the global existence of weak solutions

to (1.4) emanating from a vortex sheet data, namely !
�
0

r 2 M.H/, where H � f.r, z/, r > 0, z 2 Rg and M.H/ denotes the space of finite
Radon measures. Although (1.4) resembles the 2D Euler vorticity equation and the global existence of weak solutions corresponding to
a vortex sheet data of distinguished sign has long been resolved (see [1, 9, 10]), the global existence of weak solutions to (1.4) remains
an outstanding open problem, and Delort’s study concludes that any approximation sequence must converge strongly in L2 to the
weak solution if the latter exists. This is in contrast to the global existence of vortex sheet with one sign for the 2D Euler equations.

In two papers [11, 12] Jiu and Xin considered a smooth approximation sequence !�0 of a vortex sheet data !0 and examined the
limit of the solution !� to (1.4) and that of the corresponding velocity u� , as � ! 0. They showed that the strong convergence of a
subsequence u�j to u on any compact subset away from the symmetry axis implies the strong convergence of u�j to u in L2

loc

�
R3
�
. This

result reveals that any potential energy-concentration must contain points outside the symmetry axis.
In several papers, Chae and his collaborators studied the global existence of weak solutions to the 3D axisymmetric Euler with-

out swirl in the Lebesgue space and other functional settings ([6, 13, 14]). In particular, Chae and Kim [14] established that any
!0

r 2 L
6
5
�
R3
�
\ Lp

�
R3
�

with p > 3 leads to a global weak solution. Chae and Imanuvilov [13] settled the global existence of weak solu-
tions for near-vortex-sheets initial data under the assumption that !0

r belongs to an Orlicz space L
�
log L

�
R3
��˛

with ˛ > 1
2 , and they

posed the problem of whether !0
r 2 L1

�
R3
�

would guarantee the global existence of a weak solution. This paper partially solves their
problem. It should be noted that in [13] and [14], the authors constructed the approximate solutions by regularizing the initial data.
In this paper, we employ the approach of viscous approximations to prove the global existence of weak solutions to the axisymmetric
Euler equations without swirl when !�0 obeys !�0 =r 2 L1

�
R3
�
\ Lp

�
R3
�

for p > 1. Moreover, in order to prove our main result, we
prove an inequality involving the radial component of the velocity (Lemma 2.3) for a general initial vorticity. This generalizes a previous
corresponding inequality in [11], which was only shown to be true for the viscous approximations under one-sign vorticity.

Our approximate solutions are constructed by solving the following Navier–Stokes equations:�
@tuC u � ru D �rpC "�u, x 2 R3, t > 0,
r � u D 0, x 2 R3, t > 0

(1.5)

To give a precise statement of our result, we first provide the definition of a weak solution.

Definition 1.1
Given T > 0. A vector field u D u.x, t/ 2 L1

�
Œ0, T�; L2

loc

�
R3
��

is said to be a weak solution of (1.1) with an initial data u0 D u0.x/ if

(i) For any vector field,ˆ D ˆ.x, t/ 2 C10
�
R3 � Œ0,1/

�
with r �ˆ D 0,Z 1

0

Z
R3
.u �ˆt C .u˝ u/ : rˆ/dxdt D

Z
R3

u0.x/ �ˆ.x, 0/dx,

where u˝ u denotes the standard tensor product and A : B denotes the trace of the matrix product AB.
(ii) For any '.x, t/ 2 C10

�
R3 � Œ0,1/

�
, Z 1

0

Z
R3
5' � u dxdt D 0.

In addition, we use �� to denote the standard mollifier, namely ��.x/ D ��3�
�

x
�

�
with

�.x/ D �.jxj/ 2 C10
�
R3
�

, � � 0,

Z
R3
�.x/ dx D 1.

Our global existence result can be stated as follows.

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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Theorem 1.2
Assume the initial velocity u0 2 L2

�
R3
�

with the swirl component u�0 � 0. Assume the corresponding vorticity !0 obeys, for p > 1,

!�0
r
2 L1

�
R3
�
\ Lp

�
R3
�

.

Set u�0 D �� � u0 and !�0 D r � u�0 D
�
!�0
��

e� . Let !� be the unique global solution of the Navier–Stokes vorticity equation8<:
eD
Dt

�
!�

r

�
D �

�
@2

r C @
2
z C

1
r @r

� �
!�

r

�
C � 2

r @r

�
!�

r

�
, .r, z/ 2 Œ0,1/ �R,

!�

r jtD0 D
.!�0 /

�

r

(1.6)

and denote by u� the corresponding velocity determined by the Biot–Savart law, namely u� D r?��1!� . Then, there exists a
subsequence u�j and a vector field u 2 L1loc

�
Œ0,1/; L2

loc

�
R3
��

such that, for any T > 0,

u�j ! u strongly in L2
�
Œ0, T�; L2

loc

�
R3
��

, as j!1

and u is a global weak solution of (1.1) in the sense of Definition 1.1.

A main ingredient in the proof of Theorem 1.2 is the aforementioned convergence result of Jiu and Xin [12]. That is, if a subsequence
u�j converges strongly in L2 to u on any compact subset away from the symmetry axis, namely

u�j ! u in L2.Œ0, T�; L2.Q//, as �j ! 0, (1.7)

for any Q �� R3 n fr D 0g, then u�j ! u in L2
�
Œ0, T�; L2

loc

�
R3
��

. Therefore, it suffices to show the strong convergence in (1.7). For this
purpose, we first establish the global uniform bounds for !

�

r ,�����
�
!� .t/

��
r

�����
L1.R3/

	

�����!�0r
�����

L1.R3/

,

�����
�
!� .t/

��
r

�����
Lp.R3/

	

�����!�0r
�����

Lp.R3/

, (1.8)

which, in particular, implies that
�
!�
��

admits a unform bound in L1.HR/ \ Lp.HR/, namely����!������
L1.HR/\Lp.HR/

	 C.R/,

where C.R/ is a constant independent of � and

HR D

�
.r, z/ 2 R2 : r >

1

R
, r2 C z2 < R2

�
. (1.9)

The global bounds in (1.8) allow us to show that, for a constant C.R/ depending on R only,��ru�
��

Lp.HR/
	 C.R/.

The detailed proof of this inequality is given in Lemma 2.4 in Section 2. Because of the trivial uniform bound��u�
��

L2.R3/
	 ku0kL2.R3/

and, for p 2 .1, 2/, we have ku�kLp.HR/
	 C.R/ku0kLp.HR/. Therefore, u� is in W1,p.HR/. Let u denote the weak limit of u� in L2. By the

Rellich–Kondrachov compactness theorem, the embedding W1,p.HR/ ,! L2.HR/ with any 1 < p < 2 is compact, where HR � R2 is
defined by (1.9). Thus, there exists a subsequence u�j (depending on R) such that

u�j ! u in L2.HR/.

By a diagonal selection process, we can select a subsequence of u�j that is independent of R (still denoted by u�j ) such that

u�j ! u in L2.Q/

for any Q �� R3 n fr D 0g. This strong limit together with Aubin–Lions lemma would allow us to conclude that u is the desired weak
solution of the Euler equation. We leave more details to the next section, in which we prove Theorem 1.2.

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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2. Proof of Theorem 1.2

The plan for proving Theorem 1.2 is as follows. First, we rigorously state and prove the global a priori bound (1.8). Then we state a
convergence result parallel to that of Jiu and Xin as aforementioned and prove a lemma that is used in obtaining this convergence
result. With these preparation at our disposal, we finally provide the proof of Theorem 1.2.

Proposition 2.1
Let u� and !� be defined as in Theorem 1.2. Let T > 0 be arbitrarily fixed. Then u� and !� obey the following global bounds:

(i) u� is uniformly bounded in L1
�
Œ0, T�; L2

�
R3
��

;
(ii)

�
!�
��

is uniformly bounded in L1
�
Œ0, T�; L1 .Œ0,1/ �R, drdz/

�
, namelyZ C1

�1

Z C1
0

ˇ̌̌�
!�
�� ˇ̌̌

drdz 	

Z C1
�1

Z C1
0

ˇ̌̌
!�0

ˇ̌̌
drdz; (2.1)

(iii) .!�/
�

r is uniformly bounded in L1
�
Œ0,1/; L1

�
R3
�
\ Lp

�
R3
��

, namely�����
�
!� .t/

��
r

�����
L1.R3/

	

�����!�0r
�����

L1.R3/

,

�����
�
!� .t/

��
r

�����
Lp.R3/

	

�����!�0r
�����

Lp.R3/

. (2.2)

Proof
(i) is obvious because u� satisfies the Navier–Stokes equations and the basic energy inequality��u�.t/

��
L2.R3/

	
��u�0

��
L2.R3/

	 ku0kL2.R3/

holds. We now show (ii). Writing � D .!�/
�

r , we have, by (1.6),

QD

Dt
� D �

	
@2

r C @
2
z C

1

r
@r



� C �

2

r
@r� , .r, z/ 2 RC �R. (2.3)

Let Sh.�/with h > 0 be a convex approximation of S.�/ D j� j, say

Sh.�/ D

8<:
�� , � 	 �h,
�2

2h C
h
2 , �h 	 � 	 h,

� , � � h.

Multiplying (2.3) by S0h.�/ yields

@

@t
Sh.�/C .u

r/
�
@rSh.�/C .u

z/
�
@zSh.�/

D �
�
@2

r C @
2
z

�
�S0h.�/C �

3

r
@rSh.�/

D �@2
r Sh.�/ � �S00h .�/ .@r�/

2 C �@2
z Sh.�/ � �S00h .�/ .@z�/

2 C �
3

r
@rSh.�/

	 �@2
r Sh.�/C �@

2
z Sh.�/C �

3

r
@rSh.�/. (2.4)

Multiplying (2.4) by r and integrating with respect to .r, z/ over .0,C1/ � .�1,C1/, we obtain

d

dt

Z C1
�1

Z C1
0

Sh.�/rdrdz 	 �2�

Z C1
�1

Sh.�/jrD0 dz. (2.5)

To derive (2.5), we have integrated by parts and used a few simple facts. By integration by parts and the divergence-free condition

@r

�
r .ur/

��
C @z

�
r .uz/

��
D 0, (2.6)

we have Z C1
�1

Z C1
0

�
.ur/

�
@rSh.�/C .u

z/
�
@zSh.�/

�
rdrdz D 0.

By integration by parts, Z C1
�1

Z C1
0

@2
z Sh.�/rdrdz D 0.

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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Integrating by parts and using the fact that
�
!�
��
jrD0 D 0 and .

!�/
�

r D @r

�
!�
��
jrD0 (see, e.g., [15]), we haveZ C1

�1

Z C1
0

@2
r Sh.�/rdrdz

D

Z C1
�1

.@rSh.�/r/

ˇ̌̌̌
ˇC1rD0 dz �

Z C1
�1

Z C1
0

@rSh.�/drdz

D

Z C1
�1

"
S0h.�/

 
�

�
!�
��

r2
C
@r

�
!�
��

r

!
r

#ˇ̌̌̌
ˇ
C1

rD0

dz �

Z C1
�1

Z C1
0

@rSh.�/drdz

D �

Z C1
�1

Z C1
0

@rSh.�/drdz.

Because Sh.�/jrD0 � 0, (2.5) leads to
d

dt

Z C1
�1

Z C1
0

Sh.�/rdrdz 	 0.

By the definition of Sh, this inequality allows us to conclude, after letting h! 0,Z C1
�1

Z C1
0

ˇ̌̌�
!�
�� ˇ̌̌

drdz 	

Z C1
�1

Z C1
0

ˇ̌̌
!�0

ˇ̌̌
drdz.

We now prove (iii). By switching to polar coordinates and by (2.1),�����
�
!�
��

r

�����
L1.R3/

D 4�2

Z C1
�1

Z C1
0

ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ rdrdz

D 4�2

Z C1
�1

Z C1
0

ˇ̌̌�
!�
�� ˇ̌̌

drdz

	 4�2

Z C1
�1

Z C1
0

ˇ̌̌�
!�0

�� ˇ̌̌
drdz

	

�����!�0r
�����

L1.R3/

.

Multiplying (1.6) by .
!�/

�

r

ˇ̌̌̌
.!�/

�

r

ˇ̌̌̌p�2

r and integrating with respect to .r, z/, we have

Z C1
�1

Z C1
0

 �
!�
��

r

!
t

�
!�
��

r

ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ

p�2

rdrdz (2.7)

C

Z C1
�1

Z C1
0

"
.ur/

�
@r

 �
!�
��

r

!
C .uz/

�
@z

 �
!�
��

r

!# �
!�
��

r

ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ

p�2

rdrdz

D �

Z C1
�1

Z C1
0

 
@2

r C @
2
z C

3

r
@r

� �
!�
��

r

!! �
!�
��

r

ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ

p�2

rdrdz.

By integration by parts and the divergence-free condition (2.6),

Z C1
�1

Z C1
0

"
.ur/

�
@r

 �
!�
��

r

!
C .uz/

�
@z

 �
!�
��

r

!# �
!�
��

r

ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ

p�2

rdrdz

D
1

p

Z C1
�1

Z C1
0

"
r .ur/

�
@r

ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ

p

C r .uz/
�
@z

ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ

p#
drdz D 0. (2.8)

By integration by parts,

Z C1
�1

Z C1
0

@2
z

 �
!�
��

r

! �
!�
��

r

ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ

p�2

rdrdz

D �.p � 1/

Z C1
�1

Z C1
0

 
@z

 �
!�
��

r

!!2 ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ

p�2

rdrdz. (2.9)

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014
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By integration by parts, Z C1
�1

Z C1
0

@2
r

 �
!�
��

r

! �
!�
��

r

ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ

p�2

rdrdz

D
1

p

Z C1
�1

"
r @r

 ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ

p!# ˇ̌̌̌
ˇ1rD0 dz �

1

p

Z C1
�1

Z C1
0

@r

 ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ

p!
drdz

� .p � 1/

Z C1
�1

Z C1
0

"
@r

 �
!�
��

r

!#2 ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ

p�2

rdrdz.

Using the facts that
�
!�
��
jrD0 D 0 and .

!�/
�

r D @r

�
!�
��
jrD0, we have

Z C1
�1

Z C1
0

@2
r

 �
!�
��

r

! �
!�
��

r

ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ

p�2

rdrdz

D �
1

p

Z C1
�1

Z C1
0

@r

 ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ

p!
drdz

� .p � 1/

Z C1
�1

Z C1
0

"
@r

 �
!�
��

r

!#2 ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ

p�2

rdrdz. (2.10)

Inserting (2.8), (2.9), and (2.10) in (2.7), we obtain

1

p

d

dt

�����
�
!�
��

r

�����
p

Lp.R3/

C �.p � 1/

Z C1
�1

Z C1
0

ˇ̌̌̌
ˇr
 �
!�
��

r

!ˇ̌̌̌
ˇ

2 ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ

p�2

rdrdz

C
2�

p

Z C1
�1

ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ

p ˇ̌̌̌
ˇ

rD0

dz D 0.

Integrating with respect to t leads to

1

p

�����
�
!�
��

r

�����
p

Lp.R3/

C �.p � 1/

Z t

0

Z C1
�1

Z C1
0

ˇ̌̌̌
ˇr
 �
!�
��

r

!ˇ̌̌̌
ˇ

2 ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ

p�2

rdrdzdt

C
2�

p

Z t

0

Z C1
�1

ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ

p ˇ̌̌̌
ˇrD0dzdt D

1

p

�����
�
!�0
��

r

�����
p

Lp.R3/

.

Especially, �����
�
!�
��

r

�����
Lp.R3/

	

�����!�0r
�����

Lp.R3/

.

This completes the proof of Proposition 2.1.

We now state a convergence result, a key ingredient in the proof of Theorem 1.2. This result is parallel to a theorem of Jiu and Xin [12].

Proposition 2.2
Let u� and !� be defined as in Theorem 1.2. Let T > 0 be arbitrarily fixed. If there exists a subsequence fu�jg � fu�g such that, for any
Q ��

˚
x 2 R3jr > 0

�
,

u�j �! u strongly in L2
�
Œ0, T�; L2.Q/

�
as j!1, then there exists a further subsequence of fu�jg, still denoted by itself, such that, as j!1,

u�j �! u strongly in L2
�
Œ0, T�; L2

loc

�
R3
��

.

The proof of Proposition 2.2 is similar to that in [12], and we shall not provide the full details. Instead, we point out a lemma used in
the proof of Proposition 2.2. This lemma is similar to a result due to Chae and Imanuvilov [13].

Lemma 2.3
Let u� and !� be defined as in Theorem 1.2. Then, for any T > 0,Z T

0

Z
R3

1

1C z2

	
.ur/�

r


2

dxdt 	 C

 
ku0k

2
L2.R3/

C

����!�0r
����

L1\Lp.R3/

!
, (2.11)

where z denotes the third component of x and C D C.T/ is a constant independent of �.
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Proof
The proof is parallel to that of Chae and Imanuvilov [13]. It is provided here for the sake of completeness. Set �.z/ D

R z
�1

1
1C�2 d� .

Multiplying (1.6) by 2�r�.z/ and integrating with respect to .r, z, t/ over R2
C
� Œ0, T�, we have

2�

Z T

0

Z
R2
C

@t

 �
!�
��

r

!
r�.z/drdzdt

C 2�

Z T

0

Z
R2
C

"
.ur/

�
@r

 �
!�
��

r

!
C .uz/

�
@z

 �
!�
��

r

!#
�.z/rdrdzdt

D 2��

Z T

0

Z
R2
C


@2

r C @
2
z C

3

r
@r

� �
!�
��

r

!
�.z/rdrdzdt, (2.12)

where we have written R2
C
D
˚
.r, z/ 2 R2jr � 0, z 2 R

�
. By integration by parts,

Z T

0

Z
R2
C

"
.ur/

�
@r

 �
!�
��

r

!
C .uz/

�
@z

 �
!�
��

r

!#
�.z/rdrdzdt

D �

Z T

0

Z
R2
C

�0.z/ .uz/
�
�
!�
��

drdzdt

and

Z T

0

Z
R2
C


@2

r C @
2
z C

3

r
@r

� �
!�
��

r

!
�.z/rdrdzdt

D

Z T

0

Z C1
�1

"
�.z/r @r

 �
!�
��

r

!# ˇ̌̌̌
ˇC1rD0 dzdt �

Z T

0

Z
R2
C

�.z/ @r

 �
!�
��

r

!
drdzdt

C

Z T

0

Z C1
0

"
�.z/r@z

 �
!�
��

r

!#ˇ̌̌̌
ˇ
C1

zD�1

drdt �

Z T

0

Z
R2
C

�0.z/r @z

 �
!�
��

r

!
drdzdt

C 3

Z T

0

Z
R2
C

�.z/@r

 �
!�
��

r

!
drdzdt

D �

Z T

0

Z
R2
C

@z

�
!�
��
�0.z/drdzdtC 2

Z T

0

Z
R2
C

@r

 �
!�
��

r

!
�.z/drdzdt

D

Z T

0

Z
R2
C

�
!�
��
�00.z/drdzdt � 2

Z T

0

Z C1
�1

" �
!�
��

r

!
�.z/

#ˇ̌̌̌
ˇ

rD0

dzdt.

Therefore, by (2.12),

2��

Z T

0

Z
R2
C

�
!�
��
�00.z/drdzdt � 4��

Z T

0

Z C1
�1

" �
!�
��

r

!
�.z/

#ˇ̌̌̌
ˇ

rD0

dzdt.

D

Z
R3

�
!�
��

r
�.z/dx

ˇ̌̌̌
ˇT0 � 2�

Z T

0

Z
R2
C

�0.z/ .uz/
�
�
!�
��

drdzdt

D

Z
R3

�
!�
��

r
�.z/dx

ˇ̌̌̌
ˇT0 � 2�

Z T

0

Z
R2
C

�0.z/ .uz/
� �
@r .u

z/
�
� @z .u

r/
�� drdzdt

D

Z
R3

�
!�
��

r
�.z/dx

ˇ̌̌̌
ˇT0 C �

Z T

0

Z C1
�1

h
�0.z/

�
.uz/

��2
i
jrD0dzdt

� 2�

Z T

0

Z
R2
C

�
�00.z/ .uz/

�
.ur/

�
C �0.z/ .ur/

�
@z .u

z/
�� drdzdt.
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Using the divergence-free condition, namely (2.6), we obtain

2��

Z T

0

Z
R2
C

�
!�
��
�00.z/drdzdt � 4��

Z T

0

Z C1
�1

" �
!�
��

r

!
�.z/

#ˇ̌̌̌
ˇ

rD0

dzdt.

D

Z
R3

�
!�
��

r
�.z/dx

ˇ̌̌̌
ˇT0 � 2�

Z T

0

Z
R2
C

�00.z/ .uz/
�
.ur/

� drdzdt

� 2�

Z T

0

Z
R2
C

�0.z/ .ur/
�

	
�
.ur/�

r
� @r .u

r/
�



drdzdt

D

Z
R3

�
!�
��

r
�.z/dx

ˇ̌̌̌
ˇT0 � 2�

Z T

0

Z
R2
C

�00.z/ .uz/
�
.ur/

� drdzdt

C 2�

Z T

0

Z
R2
C

�0.z/

�
.ur/�

�2

r
drdzdt.

Because �0.z/ D 1
1Cz2 > 0 and j�.z/j 	 C for all z 2 R, we have

2�

Z T

0

Z
R2
C

�0.z/

�
.ur/�

�2

r
drdzdt

	 2�

Z T

0

Z
R2
C

ˇ̌
�00.z/ .uz/

�
.ur/

�
ˇ̌

drdzdtC

Z
R3

ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ dx

ˇ̌
T
0

C 4��

Z T

0

Z C1
�1

"ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ �.z/

# ˇ̌̌̌
ˇrD0dzdtC 4��

Z T

0

Z
R2
C

ˇ̌̌�
!�
�� ˇ̌̌

drdzdt.

By Hölder’s inequality, Z T

0

Z
R2
C

ˇ̌
�00.z/ .uz/

�
.ur/

�
ˇ̌

drdzdt

	

"Z T

0

Z
R2
C

�0.z/

�
.ur/�

�2

r
drdzdt

# 1
2
"Z T

0

Z
R2
C

�
.uz/

��2 j�00.z/j2

�0.z/
rdrdzdt

# 1
2

	
1

2

Z T

0

Z
R2
C

�0.z/

�
.ur/�

�2

r
drdzdtC C

Z T

0

Z
R3

ˇ̌
u�
ˇ̌2

dx

and Z T

0

Z C1
�1

"ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ �.z/

#ˇ̌̌̌
ˇ

rD0

dzdt

	

"Z T

0

Z C1
�1

ˇ̌̌̌
ˇ
�
!�
��

r

ˇ̌̌̌
ˇ

p

jrD0dzdt

# 1
p
"Z T

0

Z C1
�1

j�.z/j
p

p�1 dzdt

# p�1
p

Therefore,

2�

Z T

0

Z
R2
C

�0.z/

�
.ur/�

�2

r
drdzdt 	 �

Z T

0

Z
R2
C

�0.z/

�
.ur/�

�2

r
drdzdt

C C ku0k
2
L2.R3/

C C

�����
�
!�0
��

r

�����
Lp.R3/

C C

�����
�
!�0
��

r

�����
L1.R3/

,

which immediately implies (2.11). This completes the proof of Lemma 2.3.

We now prove Theorem 1.2.

Proof
The proof follows the lines presented in the introduction. Let HR � R2 be defined as in (1.9). Clearly, H1 � H2 � � � � and, as R!1,

HR ! [
1
RD1HR D f.r, z/ : r 2 .0,1/, z 2 .�1,C1/g .

Because ku�.t/kL2.R3/ 	 ku0kL2.R3/, it follows by Hölder’s inequality that, for p 2 .1, 2/,Z
HR

ˇ̌
u�.r, z, t/

ˇ̌p
drdz 	 C.R/

��u�.t/
��

L2.R3/
	 C.R/ ku0kL2.R3/,

Copyright © 2014 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2014



Q. JIU ET AL.

where C.R/ is a constant depending on R only. By Proposition 2.1, we have��!���
Lp.HR/

D

����!�r r

����
Lp.HR/

	 R

����!�r
����

Lp.HR/

	 C.R/.

By Lemma 2.4, ��ru�
��

Lp.HR/
	 C1

��!���
Lp.HR/

C C2.R/

����!�0r
����

L1\Lp.R3/

	 C.R/.

Therefore, fu�g is uniformly bounded in L1
�
Œ0, T�; W1,p .HR, drdz/

�
. By the Rellich–Kondrachov compactness theorem, the embedding

W1,p .HR, drdz/ ,! L2 .HR, drdz/with any 1 < p < 2 is compact. By the definition of HR,

1

R

Z
HR

ˇ̌
u�.r, z, t/

ˇ̌2
drdz 	

Z
HR

ˇ̌
u�.r, z, t/

ˇ̌2
rdrdz 	

��u�.t/
��2

L2.R3/
	 ku0k

2
L2.R3/

,

that is, ��u�.t/
��

L2.HR/
	 C.R/ku0kL2.R3/,

Moreover, for any ' 2 H3
0,� .HR/, which is the closure of

˚
f 2 C10 .HR/j div f D 0

�
in H3.HR/, we have

�

Z T

0

Z
HR

u�j @ju
�
i 'idrdzdt D

Z T

0

Z
HR

u�j u�i @j'idrdzdt

	 C
��u�

��
L2.Œ0,T�;L2.HR//

kr'kL2.Œ0,T�,L1.HR//

	 C.T/ku0kL2.HR/k'kL2.Œ0,T�,H3
0,� .HR//.

Using the Navier–Stokes equations (1.5), we obtain��@tu�
��

L2
�
Œ0,T�,.H3

0,� .HR//
�
� 	 C.R/,

where
�

H3
0,� .HR/

��
is the dual space of H3

0,� .HR/. By the Aubin–Lions lemma, there exists a subsequence u�j (depending on R) such that

u�j ! u in L2
�
Œ0, T�; L2.HR/

�
.

By a diagonal selection process, we can select a subsequence of u�j that is independent of R (still denoted by u�j ) such that

u�j ! u in L2
�
Œ0, T�; L2.Q/

�
for any Q �� R3 n fr D 0g. By Proposition 2.2,

u�j ! u in L2
�
Œ0, T�; L2

loc

�
R3
��

. (2.13)

Equation (2.13) would allow us to conclude that u is a weak solution of (1.1). In fact, for anyˆ.x, t/ 2 C10
�
R3 � Œ0,1/

�
and r �ˆ D 0,

we have, as j!1, Z T

0

Z
R3

u�j ˝ u�j : rˆ dxdt �!

Z 1
0

Z
R3

u˝ u : rˆ dxdt

by the Dominated Convergence Theorem. The convergence of the linear terms can be easily shown. This completes the proof of
Theorem 1.2.

In the proof of Theorem 1.2, we have used an inequality in the following lemma.

Lemma 2.4
Let HR be defined as in (1.9). Let u� and !� be as in the proof of Theorem 1.2. Then��ru�

��
Lp.HR/

	 C1

��!���
Lp.HR/

C C2.R/

����!�0r
����

L1\Lp.R3/

, (2.14)

where C1 is a constant independent of R and � and C2 is a constant depending on R but independent of �.

Proof
According to Proposition 2.20 in [3, p.76], we can write

ru�.x, t/ D C !�.x, t/C P3!
�.x, t/, (2.15)

where C is a pure constant (independent of �) and P3 is a singular integral operator defined by the Cauchy principal-value integral

P3!
�.x, t/ D P.V .

Z
R3
rK3.x � y/ !�. y, t/ dy. (2.16)
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In addition, jrK3.x � y/j 	 C jx � yj�3 for any x, y 2 R3 with x 6D y. Let x D .x1, x2, z/ 2 R3 with .r, z/ 2 HR, where r D
q

x2
1 C x2

2 . To
split the integral in (2.16) into two parts, we write

	1 D

�
y D .y1, y2,ez / 2 R3 :er Dqy2

1 C y2
2 	 2R, jezj 	 2R

�
, 	2 D R3 n	1.

Clearly, jx � yj � R for any y 2 	2. Thus, for x D .x1, x2, z/ 2 R3 with .r, z/ 2 HR,ˇ̌
P3!

�.x, t/
ˇ̌
	

ˇ̌̌̌
P.V .

Z
�1

rK3.x � y/ !�. y, t/ dy

ˇ̌̌̌
C C

Z
�2

1

jx � yj3
ˇ̌
!�. y/

ˇ̌
dy

	

ˇ̌̌̌
P.V .

Z
R3
rK3.x � y/ 
�1!

�. y, t/ dy

ˇ̌̌̌
C

1

R2

Z C1
�1

Z 1
0

ˇ̌
!�.r, z/

ˇ̌
drdz, (2.17)

where 
�1 denotes the characteristic function on	1. By Proposition 2.1,Z C1
�1

Z 1
0

ˇ̌
!�.r, z/

ˇ̌
drdz 	

Z C1
�1

Z 1
0

ˇ̌
!�0 .r, z/

ˇ̌
drdz. (2.18)

Combining (2.15), (2.17), and (2.18) and using the boundedness of the singular integral operators on Lp
�
R3
�

with p 2 .1,1/, we obtain

��ru�
��

Lp.HR/
	 C

��!���
Lp.HR/

C C
��
�1!

�
��

Lp.R3/
C C.R/

����!�0r
����

L1.R3/

. (2.19)

Furthermore, recalling the definition of	1 and by Proposition 2.1,

��
�1!
�
��p

Lp.R3/
D

Z
R3

ˇ̌

�1!

�.x, t/
ˇ̌p

dx D 2�

Z 2R

�2R

Z 2R

0

ˇ̌
!�.r, z, t/

ˇ̌p
rdrdz

	 2�.2R/p

Z 2R

�2R

Z 2R

0

ˇ̌̌̌
!�.r, z, t/

r

ˇ̌̌̌p
rdrdz

	 .2R/p

����!�0r
����p

Lp.R3/

. (2.20)

Inserting (2.20) in (2.19) yields the desired bound in (2.14). This completes the proof of Lemma 2.4.
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