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On the initial- and boundary-value problem for 2D micropolar equations
with only angular velocity dissipation
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Abstract. This paper focuses on the initial- and boundary-value problem for the two-dimensional micropolar equations
with only angular velocity dissipation in a smooth bounded domain. The aim here is to establish the global existence and
uniqueness of solutions by imposing natural boundary conditions and minimal regularity assumptions on the initial data.
Besides, the global solution is shown to possess higher regularity when the initial datum is more regular. To obtain these
results, we overcome two main difficulties: one due to the lack of full dissipation and one due to the boundary conditions.
In addition to the global regularity problem, we also examine the large time behavior of solutions and obtain explicit decay
rates.
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1. Introduction and main results

This paper studies the global existence and uniqueness and large time behavior of solutions to the
two-dimensional (2D) micropolar equations in a bounded domain D with smooth boundary. The 2D
micropolar equations are a special case of the 3D micropolar equations. The standard 3D incompressible
micropolar equations are given by

us — (Vv + K)Au+u - Vu+ Vr = 25V X w,
wy — YAw + dkw — pVV - w +u - Vw = 2V X u, (1.1)
V-u=0,

where u = u(z, t) denotes the fluid velocity, 7(z, t) denotes the scalar pressure, w(z, t) denotes the microro-
tation field, the parameter v represents the Newtonian kinematic viscosity, x represents the microrotation
viscosity, v and p represent the angular viscosities.

In the special case, when

u = (Ul(l’l,l’g,t),’b@(l‘l, IQat)7O)7 ™= W(Ilaa:Qat)v w = (Oa 0,w3(I1,1’27t)),
the 3D micropolar equations reduce to the 2D micropolar equations,

ug — (v + K)Au+u - Vu + V7 = 26V+w,
wy — YAwW +4dkw + u - Vw = 26V X u, (1.2)
V.u=0.

Here u = (u1,usg) is a 2D vector with the corresponding scalar vorticity Q given by

QEVXU:&quﬁgul,

Published online: 04 September 2017
) Birkhauser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-017-0855-z&domain=pdf
http://orcid.org/0000-0002-6409-1146

107 Page 2 of 24 Q. Jiu et al. ZAMP

while w represents ws (21, x2,t) for simplicity, which is a scalar function with
Viw = (Gyw, —01w).

The micropolar equations were introduced in 1965 by C.A. Eringen to model micropolar fluids (see,
e.g., [7]). Micropolar fluids are fluids with microstructure. Certain anisotropic fluids, e.g., liquid crystals
which are made up of dumbbell molecules, are of this type. They belong to a class of non-Newtonian fluids
with nonsymmetric stress tensor (called polar fluids) and include, as a special case, the classical fluids
modeled by the Navier—Stokes equations. In fact, when microrotation effects are neglected, namely w = 0,
(1.1) reduces to the incompressible Navier-Stokes equations. The micropolar equations are significant
generalizations of the Navier—Stokes equations and cover many more phenomena such as fluids consisting
of particles suspended in a viscous medium. The micropolar equations have been extensively applied and
studied by many engineers and physicists.

Due to their physical applications and mathematical significance, the well-posedness problem and
large time decay issue on the micropolar equations have attracted considerable attention recently from
the community of mathematical fluids [2,3,8,15]. Lukaszewicz in his monograph [15] studied the well-
posedness problem on the 3D stationary as well as the time-dependent micropolar equations. In [4], Dong
and Chen obtained the global existence and uniqueness, and sharp algebraic time decay rates for the 2D
micropolar equations (1.2).

More recent efforts are focused on the 2D micropolar equation with partial dissipation, which naturally
bridge the inviscid micropolar equation and the micropolar equation with full dissipation. The global
regularity problem for the inviscid equation is currently out of reach. In [6], Dong and Zhang examined
(1.2) with the microrotation viscosity v = 0 and established the global regularity by observing that the
combined quantity

2K

w
v+ K

obeys a transport-diffusion equation. Another partial dissipation case, (1.2) with v =0, v > 0, & > 0,
and Kk # -y, was examined by Xue, who was able to obtain the global well-posedness in the frame work
of Besov spaces [20]. We remark that the requirement x # v in [20] is not crucial and it is not difficult
to see that the global well-posedness remains valid even when x = 7. Recently Dong, Li and Wu took on
the case when (1.2) involves only the angular viscosity dissipation [5]. They proved the global (in time)
regularity by fully exploiting the structure of system and controlling the vorticity via the evolution of a
combined quantity of the vorticity and the microrotation angular velocity. In addition, [5] introduced a
diagonalization process to eliminate the linear terms in order to obtain the large time behavior of the
solutions.

Most of the results we mentioned above are for the whole space R? or R®. In many real-world applica-
tions, the flows are often restricted to bounded domains with suitable constraints imposed on the bound-
aries and these applications naturally lead to the studies of the initial- and boundary-value problems.
In addition, solutions of the initial- and boundary-value problems may exhibit much richer phenomena
than those of the whole space counterparts. The case when v > 0, K > 0 and v > 0 has been extensively
analyzed. [18] proves the existence and uniqueness of a global solution for 2D micropolar fluid equation
with periodic boundary conditions. [21] obtains the global existence of strong solutions with small initial
data for the three-dimensional case. However, the global regularity problem for the partial viscosity case
in (1.3) is not answered and solved in this paper.

This paper is devoted to the initial- and boundary-value problem for the 2D micropolar equations
with only angular viscosity dissipation,

u +u-Vu+ Vr = 26V4w,

wy — yAw + 4dkw + u - Vw = 26V X u, (1.3)
V-u=0,
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with the natural boundary condition
u-nlogp =wlogp =0 (1.4)
and the initial condition
() (2,0) = (ug, wo)(x), in D, (1.5)
where D C R? represents a bounded domain with smooth boundary and m is the unit outward normal
vector. In addition, for global existence of smooth solutions, we also impose the following compatibility
conditions
uo - mfop = wolap =0,
V- ug = 0, (16)
drkwy + ug - Vwg = yAwy + 26V X ug, on 9D.

Our first goal here is to establish the global existence and uniqueness of solutions to (1.3)—(1.5) by
imposing the least regularity assumptions on the initial data. We assume here that the initial vorticity
Qo = V X ug is in the Yudovich class and wy € H?(D), and obtain the following result.

Theorem 1.1. Let D C R? be a bounded domain with smooth boundary. Assume (ug,wq) satisfies
up € HY(D), Qo€ L¥(D), wo € H*(D).
Then, for any T > 0, (1.3)—(1.5) have a unique global strong solution (u,w) satisfying
u€ L=(0,T; HY(D)), Q€ L>(0,T;L>(D)), w e L>(0,T;H*(D)). (1.7)
We further establish higher regularity of the solution stated in Theorem 1.1. By imposing the higher
regularity
ug € H3(D), wy € H*(D),

we obtain that the corresponding solution (u,w) remains this class for all time. More precisely, we have
the following theorem.

Theorem 1.2. In addition to the conditions in Theorem 1.1, we further assume
up € H¥(D), wy € H*(D),
and the compatibility conditions (1.6), then, the solution is smooth and remains the same regularity for
all time, namely
u € L>=(0,T; H¥(D)), w € L*(0,T; H*(D)),
for any T > 0.

The proof of Theorem 1.1 is divided into several major steps. The first step is to establish the global
H'-bound for (u,w). We make use of the equation of the vorticity Q = V x u,

02+ u-VQ = —-2cAw (1.8)

and the equation of Vw, and bound the vortex stretching term in the equation of Vw suitably. The
second step combines the global H'-bound obtained in the first step and Schauder’s fixed point theorem
to prove the global existence of weak solutions. The third step establishes the global boundedness of the
vorticity in L*°. Due to the presence of the bad term —Aw, (1.8) itself does not allow us to extract the
desired global bound. To overcome this difficulty, we consider the combined quantity
Z=Q+ 2£w,
Y

which satisfies ) )
4
8tZ+u~VZHZ+8H<1+K>wO. (1.9)
Y 0 Y

This equation eliminates the difficulty and yields the desired bound. The fourth step is to prove the global
H?2-bound for w. Due to the no-slip boundary condition for w, the standard energy estimates would not
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work. Instead, we obtain a global bound for ||0;w||12(p) first and the global bound for ||w||f2(py follows
as a consequence.

To prove the higher regularity bounds specified in Theorem 1.2, we further exploit the equation of Z,
namely (1.9). By taking the gradient of (1.9) and making use of a logarithmic Sobolev type inequality,
we obtain the global bounds for

IV L 0.1:La(py)  and [Vl < 0,751 (D))

where ¢ € (1,00). These bounds allow us to further consecutively establish the bounds for

[AwllLa.riLay)s  IVOwlLeomiL2(py) and  [[w]| Lo (0,1:m4(D))-

We remark that, in contrast to the whole space case, the estimates here are not so straightforward. We
use extensively the estimates on the heat equation and general elliptic equations. Due to the bounded
domain setup, many of the estimates here are more delicate than those in the whole space case.

This paper also looks into the large time behavior of solutions of (1.3) with an extra velocity damping
term and without the term 4kw in the w equation, namely

g + ku+u - Vu 4+ V1 = 26V4w,
wy —YAw +u - Vw = 25V X u, (1.10)
V.u=0.

This system is not explicitly derived as a physical model, although it may be relevant for physical
circumstances in which the drag force on the system obeys Stokes’ law (the drag force is proportional to
the velocity field w). It is clear that Theorems 1.1 and 1.2 remain valid for (1.10). The damping term in
(1.10) and the elimination of 4kw term do not affect the regularity results. Our last focus is the large
time behavior, and we show that if

v > 4k, (1.11)

then the H'-norm of (u,w) decays exponentially in time,
[(u(t), w(t) ||z (py < Ce,

where C' > 0 is a constant depending on the H!-norm of (ug,wg) and C>0 depends on v and x only.
More precisely, we have the following theorem.

Theorem 1.3. Let D C R? be a bounded domain with smooth boundary. Assume the conditions on (ug,wo),
as stated in Theorem 1.1. If we further assume

v > 4k, (1.12)
then the solution (u,w) of (1.10) satisfies

ull 3y + 1wl py < Ce ", (1.13)
where C' > 0 is a constant depending on the H'-norm of (ug,wo) and C>0 depends on v and k only.

The condition in (1.11) is necessary and sharp. As pointed out in [5], when (1.11) is violated, the
solution may grow in time.

The rest of this paper is divided into five sections. The second section serves as a preparation and
presents a list of facts and tools for bounded domains such as embedding inequalities and logarithmic
type interpolation inequalities. Section 3 establishes the global existence of H'-weak solutions, one major
step in the proof of Theorem 1.1. Section 4 proves the global L™ bound for € and the global H? bound
for w. This step completes the proof of Theorem 1.1. Section 5 proves Theorem 1.2, the higher global
regularity bounds. The last section is devoted to the large time behavior result stated in Theorem 1.3.
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2. Preliminaries

This section serves as a preparation. We list a few basic tools for bounded domains to be used in the
subsequent sections. In particular, we provide the Gagliardo—Nirenberg type inequalities, the logarith-
mic type interpolation inequalities, and regularization estimates for elliptic and parabolic equations in
bounded domains. These estimates will also be handy for future studies on PDEs in bounded domains.
We start with the well-known Gagliardo—Nirenberg inequality for bounded domains (see, e.g., [17]).

Lemma 2.1. Let D C R™ be a bounded domain with smooth boundary. Let 1 < p,q,r < 0o be real numbers
and j < m be nonnegative integers. If a real number a satisfies

1 ] 1 1 '
_j:a<—m)+(1—a), igagla
p n r n q m

then

1D fllze(py < CLID™ IS ) I Fl iy + Coll flle oy,

where s > 0, and the constants C; and Cy depend upon D and the indices p,q,r,m,j,s only.
In particular, the following special cases will be used.

Corollary 2.1. Suppose D C R? be a bounded domain with smooth boundary. Then,
(W) 1£llsoy < C WA oy IV FlE 1y + I ll2())s VS € HYD);
@) 1940110y < C (N2 192 12 ) + Il 2c0)), ¥ € HE(D);
(3) 170y < C NN Ea oy IV2F Ny + I ll20)), VF € HA(D);

2 0k .
() Wl oy < C U o) IV ) + 1 lzoy)s ¥ € H(D).
The lemma below provides estimates for products and commutators (see, e.g., [16]).

Lemma 2.2. Let D C R? be a bounded domain with smooth boundary. Then, for any multi-indices o and

B,
I1D*(f9)llz2p) < CUIfllz)llgll et oy + | £l 1et 0y |9l o (D)) (2.1)
for some constant C' depending on D and «, and
IDP(f9) — fDPgll2(py < CUIV £l llgllziei-2 oy + 1 £ o1y gl L= () (2.2)

for some constant C depending on D and (.
We will need the Poincaré type inequality (see, e.g., [9]).

Lemma 2.3. Let D C R? be a bounded domain with smooth boundary and u € H (D). Then, there exists
a constant C' depending on D only such that

lullz2(py < ClIVullL2(p)-

It is well known that the standard singular integral operators are bounded on L4(R"™) for any ¢ € (1, o)
(see, e.g., [19]). The lemma below provides the bounded domain version of this fact (see, e.g., [1,10,19]).
More precisely, this lemma allows us to control the gradient of a vector field in L? in terms of its curl.

Lemma 2.4. Let D C R? be a bounded domain with smooth boundary and let m be a positive integer. If
a vector field uw € LI(D) with q € (1,00) satisfies

V xu e Wm (D), V-u=0, u-nlsgp =0,
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then there is a constant K = K(D,m) > 0 (independent of q) such that
[ullwm.apy < K q([[V X ullwm-r.ap) + llullLa(p))-

The lemma next presents a logarithmic interpolation inequality for vector fields defined on bounded
domains. It is taken from [13].

Lemma 2.5. Let D C R? be a bounded domain with smooth boundary. Then, for any 0 < a < 1,
IVul| oo (py < CIIV X ul| oo (py (1 +log (e + [|V X ul|ca(py))-

The next two lemmas state the regularization estimates for elliptic and parabolic equations defined
on bounded domains (see, e.g., [9,11,14]).

Lemma 2.6. Let D C R? be a bounded domain with smooth boundary. Consider the elliptic boundary-value
problem

-Af=g inD,
{f =0 on 0D. (2:3)

If, for p € (1,00) and an integer m > —1, g € W™P(D), then (2.3) has a unique solution f satisfying
I fllwmt20(Dy < Clligllwmr Dy,
where C' depending only on D, m and p.
Lemma 2.7. Let D C R? be a bounded domain with smooth boundary. Assume, for q € [2,00),
¢ e Wy''(D), g e L%0,T;LD)).
Assume f € L*(0,T; HY (D)) with f; € L*(0,T; H=Y(D)) is a weak solution of the parabolic system

ftiAf:ga Z?’lD,
f=0 on D,
fli=o=¢ in D.

Then, there exists a constant C' depending only on q, D, such that
[ fell Lago,riLa(y) + 1Al Laco,rsnapy) < CUlgllLao,r50(0)) + lellwia(py)-
We also recall Kato’s well-posedness result on the 2D Euler equations (see [12]).

Lemma 2.8. Let D C R? be a bounded domain with smooth boundary. Consider the initial- and boundary-
value problem

up —u-Vu+ Vp=f,

V.-u=0,

ult—o = uo(x), u-nlsgp = 0.
Assume ug € CYTY(D) with 0 < v < 1 satisfying V -ug = 0 and up - nlgp = 0. Let T > 0 and
f€C(0,T);C**7(D)). Then, there exists a unique solution (u,p) such that (u,p) € C**7(D x [0,T)).

3. Global existence of H!'-weak solutions

This section proves the global existence of H'-weak solutions of (1.3)—(1.5). This result is an important
step in the proof of Theorem 1.1. To be more precise, we first provide the definition of weak solutions of
(1.3)—(1.5) and then state the main result of this section as a proposition.
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Definition 3.1. Let D C R? be a bounded domain with smooth boundary. Assume (ug,wg) € L?(D). A
pair of measurable functions (u,w) is called a weak solution of (1.3)—(1.5) if

(1) we C(0,T; L*(D)), w e C(0,T; L*(D)) N L*(0, T; Hy (D));
T
(2) /u0~g00d:1:+ /[u-apt+u-Vg0-u+2meX(p]dxdtzo,
D 0 D

T
/wowodx-i-//[wz/Jt—7Vw-Vw—4nww+u~Vi/}-w+2fw-VL1/J]dxdt:O;
0 D

holds for any test functions ¢ = (1, p2) € C§°([0,T) x D)? satisfying V- = 0 and ¢ € C5°([0,T) x D).
The main result of this section is stated in the following proposition.

Proposition 3.1. Let D C R? be a bounded domain with smooth boundary. Assume (ug,wg) € H*(D).
Then, (1.3)~(1.5) has a global weak solution.

The proof of this proposition relies on the following global H!-bound.

Lemma 3.1. Under the assumptions of Proposition 3.1, for any T > 0, there exists a constant C' depending
only on T and the initial data such that

l[ull Lo 0,312 (D)) + 1wl oo 0,712 (D)) + 1wl 200,73 182(D)) < C-

Proof of Lemma 3.1. We start with the global L2-bound. Taking the inner product of (1.3) with (u,w)
yields

(||UHL2(D) + ||w||L2(D)) + 'Y”VU’”LZ(D + 4’<¢Hw||L2 D)

N[ =
D—“Q_,

= QK/VLw-udx—FQH/quwdm.

Noticing that V x u = dyus — dou; and V4w = (dew, —01w), we have
V X uw = (Orug — douy)w = 91 (ug w) — da(ug w) + V4w - u.

Integrating by parts and applying the boundary condition for w, we have
25/Vlw-udx+2n/v X uwdx

:4&/Vlw udx—l—Ql@/u ntwds
oD

=4k /Vlw-udx (3.1)

A

Y
3 ||Vw||%2(D) +C ||UH%2(D)’
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L=

where n —ng,ny). It then follows, after integration in time, that

t ¢
||UH%2(D)+||U)||%2(D)+’Y/vaH%%D)dT*'S“/||w||2L2(D)d7'
0 0

< e (lluollZ2py + llwollfz(p)) = As(t [I(uo, wo)lz2), (3-2)
where C' = C(7, k). To obtain the global H!-bound for (u,w), we invoke the vorticity equation
Qi +u-VQ = -2kAw, (3.3)

Multiplying (3.3) by © and the equation of w in (1.3) by Aw, and applying the boundary condition
w|ap = 0, the Cauchy—Schwarz inequality, and Corollary 2.1, we have
2dt
= /u-VwAwdx—lln/Adex
D D
< Aw[[r2p) |l sy IVl Lapy + 46[2 L2(p) | Aw|| £2(p)

Q1 Z2(p) + IVwlZ2(p)) + A AwIT2 o) + 46l Vwlli2 p)

3 1 1 1
< C”Aw”zzw)||Q||]2;2(D)||Vw||zz([)) + C”AWHL?(D)||Q||22(D)HV1UHL2(D)
+ 45192 22 (py [Aw]| 2 D)
~
< §||Aw|\%2(D) + CvaH%?(D)(l + ||Q||2L2(D)) + C||Q||2L2(D)- (3.4)

Gronwall’s inequality and (3.2) then yield the following global H!-bound

t t
Hvu(t)nizw)+va(t)||%2(D)+’Y/HAwuiz(D)dT‘Hl"ﬂ/||Vw||%2(D) dr
0 0

< 01 %™ | (Vug, Vo) |22 py = Aa(t), (3.5)
where C1 = Ci(v, k), Ca = Ca(v, K, ||(uo, wo)| £2(py) and C3 = C3(7, k). This completes the proof of
Lemma 3.1. 0

We now prove Proposition 3.1.

Proof of Proposition 3.1. The proof is a consequence of Schauder’s fixed point theorem. We shall only
provide the sketches.

To define the functional setting, we fix 7' > 0 and Ry to be specified later. For notational convenience,
we write

X = C(0,T; L*(D)) N L2(0,T; H} (D))
with [|gl|x = ll9llco,r:22(0)) + 191l 220,753 (D)) and define
B={g€X||glx < Ro}.

Clearly, B C X is closed and convex.
We fix € € (0,1) and define a continuous map on B. For any g € B, we regularize it and the initial
data (ug,wp) via the standard mollifying process,

€ __ € € _ € € _ €
gt =p"xg, uh=p-xug, wh=p°*uwo,
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where p€ is the standard mollifier. According to Lemma 2.8, the 2D incompressible Euler equations with
smooth external forcing 2xV+g¢ and smooth initial data u§

g +u-Vu+ Vi =2V,
V-u=0, (3.6)
u(x,()):ug(x), u'n‘aD:Oa

have a unique solution u°. We then solve the linear parabolic equation with the smooth initial data wg

{wt_,yAw_A'_zlliw—Fu-vw:QKvau) (37)

w(x, O) = w(ﬁ)(.'];‘), w|3D =0,
and denote the solution by w®. This process allows us to define the map
Fe(g) = w".

We then apply Schauder’s fixed point theorem to construct a sequence of approximate solutions to (1.3)—
(1.5). Tt suffices to show that, for any fixed e € (0,1), F° : B — B is continuous and compact. More
precisely, we need to show

(a) [[w]B < Ro;
(®) wlleormi@) + [wllzzorm20) < C;
(¢) |IF(g1) — F<(g92)llB < Cllg1 — ¢2]| B for C independent of € and any g1, g2 € B.

We verify (a) first. A simple L2-estimate on (3.6) leads to

t
(Ol 22y < gl 2o + 2% / Vg ]l 2oy dr,
0

t
< Juollzzo) + 2 [ 19620y
0

Similar to (3.2), we have

t t t
€ € € 2I</2 €
o By +7 | 190 Eaqy a4 4 [ 10 By 7 < lwolfagoy + 2o [ [l dr
0 0 0

In order for F° to map B to B, it suffices for the right-hand side to be bounded by Ry. Invoking the
bounds for ||u¢||r2 and ||w€||r2, we obtain a condition for T" and Ry,

[wollZ2py + CT (luolliz(py + TRE) < Rg, (3-8)

where the constants C' depend only on the parameters x and ~. It is not difficult to see that, if T is
sufficiently small, (3.8) would hold. Similarly, we can show (b) and (c) under the condition that T is
sufficiently small. Schauder’s fixed point theorem then allows us to conclude that the existence of a
solution on a finite time interval T". These uniform estimates would allow us to pass the limit to obtain
a weak solution (u,w).

We remark that the local solution obtained by Schauder’s fixed point theorem can be easily extended
into a global solution via Picard type extension theorem due to the global bounds obtained in (3.2) and
(3.5). This allows us to obtain the desired global weak solution. This completes the proof. 0
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4. Yudovich regularity and proof of Theorem 1.1

The goal of this section is to complete the proof of Theorem 1.1. To do so, we first establish the Yudovich
type regularity for the vorticity 2, namely Q € L for all time, and then show that w € L>(0,T; H?(D)).
The regularity obtained here for 2 and w allows us to prove the uniqueness of the weak solutions estab-
lished in the previous section.
Recall that € satisfies

QO +u-VQ = —-2xAw. (4.1)
Due to the bad term —Aw on the right-hand side, this equation itself does not allow us to extract a
global bound on . To bypass this difficulty, we combine (4.1) with the equation of w,

—yAw +4kw — 26V X u+u - Vw =0

to eliminate the bad term. More precisely, we consider the combined quantity

2
Z=Q+ L
Y
and the equation that it satisfies
4 8
hZ +u- vz-“z+“<1+“>w:07 (4.2)
v v Y

which leads us to the desired global bound. More precisely, we have the following proposition.

Proposition 4.1. Assume that (ug,wp) satisfies the conditions stated in Theorem 1.1. Let (u,w) be the
global weak solution obtained in Proposition 3.1. Then, the corresponding vorticity §2 obeys the global
bound, for any 2 <p < oo, and any T >0 and 0 <t < T,

1| 0,7:Lr (D)) < C,
where the constant C' depends only on D, T and the initial data.

Proof. We start with the equation of Z, namely (4.2). For any 2 < p < oo, multiplying (4.2) with |Z|P=2Z
and integrating on D, we obtain

8k
N7 oy < N2y + VQ+)wmwwmw

i.e.,

d 4K 8k? K

Zlirioy < 212y + 2 (142 olloco

dt (D) ~ (D) ~ ~ (D)
which, according to Gronwall’s inequality, implies

4;&2

120 < €5 W Zolloioy + € [ ) liriopds
0

Noting that C' is independent of p, we obtain, by letting p — oo,
s /
1Z][Lpy < e 7" | [ ZollL=(p) + C | llw(T)|[Le(pydT
0

4x?

<ent HZOHLoo(D)JrC’/||w(7')HH2(D)dT
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Thus, by noticing that |[wl|z2(0,7;m2(py) < C from Lemma 3.1, it is clear that
1 Z| L 0,10 (D)) < C, (4.3)
for any 2 < p < co. By the definition of Z, Sobolev embedding, and Lemma 3.1, we have
19| o< (0,72 (D)) < (I Z]| Loe (0,712 (D)) + W] £oo (0,722 (DY))

< C(1Z|| 0,10 (D)) + Wl Lo (0,751 (D))
<C.

for any 2 < p < co. This completes the proof of Proposition 4.1. O

Next we prove the global bound for ||wl| 2 (py. In contrast to the whole space case, we need to estimate
the time derivatives of (u,w) in order to obtain the desired bound.

Proposition 4.2. Assume that (ug,wo) satisfies the conditions stated in Theorem 1.1. Let (u,w) be the
global weak solution obtained in Proposition 3.1. Then, for any T >0 and 0 <t < T,

Hut||L°C(O,T;L2(D)) + ||wt||L°°(O,T;L2(D)) + HwHLO"(O,T;Hz(D)) <C,
where the constant C' depends only on D, T, and the initial data.
Proof. We first estimate |lu¢||z2(p). Dotting the equation of u in (1.3) with u;, we have
||ut||%2(D) =— /u -Vu-ude + 2/{/VLw cupde
D D

1
< §||ut||%2(D) + Cllu-Vullzpy + CI Vw72 p)
1
< §||Ut||%2(D) +C ||UH2L4(D)||VU||%4(D) + CHVWH%z(D)

< %Hut”%Q(D) +C ||UH?L11(D)(||UH%2(D) + ”QH%‘*(D)) + C||Vw||%2(D).
The global bounds in Lemma 3.1 and Proposition 4.1 then imply
[uellzoe (0,7;22(0)) < C. (4.4)
To estimate [|w¢||z2(py, we take the temporal derivative of the w-equation in (1.3) to get
Wy + u - Vwy + uy - Vw + dkwy = yAwy + 268 (4.5)

Multiplying (4.5) with w; and integrating on D, it follows that

1d
§a||wt”2L2(D) + 7||th||2L2(D) + 4’f||wt||2L2(D)

(4.6)
= —/wtut . dem+2n/§2twt dz.
D

D

By integration by parts, Holder’s inequality, and Young’s inequality,

— /wtut -Vwdz = /wut - Vw dx
D D

vy C
< Zvat”%P(D) + ;HutH%?(D)”wH%O@(D)

vy C
< ZHVWHQH(D) + ;”utHQL?(D)”wH%{?(D)'
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To estimate the second term in the right of (4.6), we make use of the vorticity equation (4.1) and integrate
by parts on D to get

ZH/Qtwtdx = —2/4:/u - VQw,dx — 4&2/Awwtdaz
D D D
= QKJ/U - Vw,Qdz + 4k2 / Vw - Vwdz,

D D
which yields

324
Y

¥ 8k?2
2’<0/Qt711tC1ﬂc < vawt‘l%?(D) + THQ||%4(D)||UH12L11(D) + ||Vw||%2(D).
D

Combining the two estimates above with (4.6), applying (4.4), and invoking Lemma 3.1 and Proposition
4.1, we conclude

|well Lo 0,7,L2(D)) < C-
By Lemma 2.6,
lwlla2py < C (llwelle2py + - Vwll 2oy + lwll2py + 1€ £2(p)) - (4.7)
By Hélder’s inequality, Sobolev embedding inequality, and Lemma 2.4, we have
[ Vwllrzpy < ull e (p) VWl 22(D)
< Cllullwrr oy IVwl L2y
< C([|Q ey + [[ullmr (o) IVl L2(D),
where 2 < p < oco. Together with Lemma 3.1 and Proposition 4.1, we obtain the desired global bound.
This completes the proof of Proposition 4.2. O

The global bound for |||z (py follows as an easy consequence of Proposition 4.2.

Proposition 4.3. Assume that (ug,wp) satisfies the conditions stated in Theorem 1.1. Let (u,w) be the
global weak solution obtained in Proposition 3.1. Then, for any T >0 and 0 <t < T,
[ Lo 0,72 (D)) < C,
where the constant C' depends only on D, T, and the initial data.
Proof. According to (4.3),
1 Z]| oo (0,1;2 (D)) < C,
which implies, by the definition of Z, Sobolev’s embedding, and Proposition 4.2,
12| o< 0,752 (D)) < (12| L 0,752 (D)) + lwll L (0,732 (D))
< C(1Z|l>=01;2 D)) + Wl Lo (0,7:12(D)))
<C.
This completes the proof of Proposition 4.3. O

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. In view of Propositions 3.1, 4.1 and 4.2, it suffices to prove the uniqueness. We
employ the method of Yudovich.

Assume (u,w, ) and (o, w,7) are two solutions of (1.3)—(1.5) with the regularity specified in (1.7).
Consider their difference

U=u—u, W=w-w, I=m—m,
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which solves the following initial- and boundary-value problem

U +u-VU+U-Vu+ VII =26V,
Wi+ u-VW +U -V —yAW + 4cW = 2kV x U,

V.U =0, (4.8)
U -nlog = Wlsa =0,
(U, W)(z,0) = 0,

Dotting the first two equations with (U, W) yields
1d
2 dt
:—/U-Vﬂ-de—/U-V@-de (4.9)
D D
—|—2/€/VJ‘W-UdJU—|—2/£/V x U - Wdz.
D D

UUNZ2py + IW 122 () + A IVW L2 () + 46IW 172 )

By the divergence theorem and the boundary condition Wlgq = 0,

QK/VJ‘W~de+2/{/V><U-de
D D
= 4k /VLW-de < gHVWHiQ(D) + CU|22(py-
D

Since Vu is not known to be bounded in L°° while the correspondin~g vorticity Q is, we apply the
Yudovich approach to bound the first term on the right of (4.9). Since Q € L*(0,T; L>°(D)), we have,
by Lemma 2.4,

19l 00 < Cg (I0zao) + [lliop) ) < Ca (I@0zoqmy + 1920y + llz2co) ) -
Therefore,

Vu
L =sup Hﬂ < 00.
q>2 q

In addition, by Lemma 2.1,

M= |Ullp) < € (IVUGa(p) 10132y + 1Tz )
< C (IVullpacpy + IVl Lapy + lullL2(py + 2l L2(py) < oo.

Therefore, by Holder’s inequality, for any 2 < g < oo,

1—1
/U-va-de <CqLMi <||UH2L2(D)+6) .
D

where § > 0 is inserted here to justify some of the later steps. By optimizing the bound above in terms
of ¢, we obtain

M2

U-Vi-Udz| <CeL(|U|32p) +0) In .
/ ) U112 py + 0

D
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To bound the second term on the right of (4.9), we integrate by parts and invoke the boundary condition
Wlaa = 0 to obtain
—/U-V@-de:/@U-Vde
D D
@] zo (D) U220y VW |2 (D)
04 ~
9 HVW”%?(D) +C ”w”?LIQ(D) ”UH%Q(D)'

IN

A

Inserting the estimates above in (4.9) yields

d ~
% <(||U||%2(D) +0) + ||W||2L2(D)) < C A+ @l E2py) (UN72(py +9)
M2
+CL(|U|2: +0) In .
L2 ||U||%2(D) +4
By Osgood’s inequality, we obtain
IU@Z2(py +6) + IW (B)lI72(p)
e*CLt

<

C [+ @l32 ) dr
e o O (106 ey + 6) + I Wollfe o))

t T
[CLe CL®=T) 1n<M2 exp(C f(1+HmT;H§12(D))ds) dr
X eo 0

for any t € (0,T). Letting § — 0 and noting that Uy = Wy = 0, we obtain the desired uniqueness
U = W = 0. This finishes the proof of Theorem 1.1. g

5. Higher regularity and proof of Theorem 1.2

The section proves Theorem 1.2, the higher regularity of (u,w). These higher regularity bounds are
achieved through several steps. The first step is to prove the global bound

Vu e L*(0,T; L*(D)) and VQ e L*(0,T;LP(D)) with2<p< oo
via the equation of the combined quantity Z. The second step is to show the global bound for
w € L>(0,T;W*P(D)) with p € [2,00) and w € L™®(0,T; H*(D)).

Finally, we prove w € L>(0,T; H*(D)). To do so, we estimate ||wy||r2(p) and Q@ € L>(0,T; H*(D)) and
invoke the regularization estimates for elliptic equations (Lemma 2.6).
We start with the first step.

Proposition 5.1. Assume that (ug,wp) satisfies the conditions in Theorem 1.2. Let (u,w) be the corre-
sponding solution of (1.3)—(1.5) guaranteed by Proposition 3.1. Then, for any T >0 and 0 <t < T, and
for any 2 < p < oo,

IVl Lo 0,1;25 (D)) + IV Lo (0,720 (D)) < C-
where the constant C' depends only on D, T, and the initial data.

Proof. Taking the first-order partial 9; of (4.2) yields

42 812
OZ +u-NOZ + Ou-VI — %&-Z + % (1 + :) dyw = 0. (5.1)
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Multiplying (5.1) by |9; Z|P~20;Z, summing over i, and integrating on D, we have

1 d
||VZHLP(D) < HVU”L‘X’(D)HVZH L?(D) + HVZ”LP(D

82
+2 (142) ||VwHLp<D>uvanp(D

which also implies
8k? K
||VZ||LP(D <C 5 + IVullLo(py ) IVZ| L (D) + - 1+ 5 [Vl e (p)- (5.2)

By Lemma 2.5 and the Sobolev embedding WP (D) < C*(D) for p > 2,
[Vullp(p)y <C[|Q| L= (p) log(e + [|Qlw1(D)),

which, together with the definition of Z, yields

2K
[Vul| L (p)y < C[|€| Lo (p) log <6 +1IVZ|epy + 12| v Dy + 7||“’||W1-,P(D)> . (5.3)
Inserting (5.3) in (5.2) yields

d
aHVZHLP(D) <O +logle + IVZ|lLrp)) IVZ| e (D) + C,

where we have invoked the regularity bounds for (u,w) from the previous sections. We obtain, via Gron-
wall’s inequality, the global bound

IVZ|[Lo(0,7;20(D)) < C. (5.4)
By the definition of Z, for any 2 < p < oo,

2K
V| Lo 0,757 (D)) < IV Z ||z 0,150 (D)) + 7”vaL°°(O,T;LP(D)) <C, (5.5)

which, together with (5.3), implies

[Vl Lo 0,152 (D)) < C.
By the way, the bound of ||V, 1;z2(p)) can be inferred by (5.5), Holder’s inequality, and the
boundedness of domain D directly. This completes the proof of Proposition 5.1. g

Our next goal is to show the global bound for |[w|ly=2.»py and ||w| gs(p). To avoid the boundary
effects, we make use of the estimates of time derivatives and the regularization bounds in Lemma 2.6.

Proposition 5.2. Assume that (ug,wq) satisfies the conditions in Theorem 1.2. Let (u,w) be the corre-
sponding solution of (1.3)—(1.5) guaranteed by Proposition 3.1. Then, for any T >0 and 0 <t < T, and
for any 2 <p < oo,

lwll Lo 0,75 w2 (D)) + lwllLoe(0,7; B2 (D)) < C, (5.6)

where the constant C' depends only on D, T,p and the initial data.
Proof. To prove this proposition, we first show that

[Vwe |l Lo (0,7; L2(D)) < C.
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By Lemma 2.7, for any 2 < p < oo,

T
13wl e
0

T

< C [ [lwollyya py + 0l gy + 1900 ) + llu- Vol | at

o

T
<c / [1wol3z2 oy + 108y + 1Ay + Nl ) [ V002 ) |
0

Due to the embedding
Vw20 (D) < Cllwl| g2 (D)

and the global bound on |[w|| (0,7, #2(p)) in Proposition 4.2, we obtain

/ Iyt < C: 6.1

Multiplying (4.5) by —Aw; and integrating on D, it follows that

1d|
2dt

= /u - Vw Awgdr — /ut -VwAwdx — 2/{/QtAwtdx.

D D D

VwlZa(py + Y Awel 72y + 46 Vewr L)

By Holder’s inequality, Sobolev’s embedding, and Lemma 2.4,

/ w- VanAwyde < [lull e (o) | Ve | 20 | Awe | 2o
D

y C
< g”Ath%z(D) + ;HUH%IQ(D)”th”%Z(D)

y C
< lAwdiZa ) + ;[HUHQH(D) VL2 o)Vl 72 )

and

—/ut . V’LUAwtdl‘ S ||utHLz(D)||Vw||Loo(D)||Awt||Lz(D)
D

<7
g”AthLZ(D)+ ||Ut||%2(D)||w||%V2,p(D)-
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By the vorticity Eq. (3.3) and Lemma 2.4,

fQH/QtAwtd:r = 2/—@/u - VQAwdx +4/£2/AwAwtdz
D D D

IA

5y Ck Cr?
g”Ath%%D) + THU||?{2(D)HVQH%2(D) + T||A7UH%2(D)

IN

y Ck
ghdwlitaio + == [l + 199U3:0)| IV )

Cr?
+ T”wHHz(D)'

Inserting the estimates above in (5.8) and invoking the regularity bounds obtained before, we have
By Lemma 2.6,
[wllwzsw) < ClllwellLepy + lu- Vol Loy + 1wl ey + 190l Le ()]
< Clllwillar oy + lullz2e 0y VWl L2v 0y + 1wl 1oy + 1€ 2o ()]
< Cllwellzr oy + lull g ) IVwll 1 0y + wll a0y + (1@ 2e ()] -
According to (5.9) and Proposition 4.1,
lwl| Lo 0,7 w2r (D)) < C- (5.10)
As a consequence, by Lemma 2.6,
lwll 3oy < Clllwell g oy + 1w - Vwllg oy + lwllmr oy + 1 5 ()]
< Clllwell e oy + lull o (o) VWl 1 (py + IVw]| oo (o |l 1 ()
+ wll oy + 19 1 ()]

(5.11)
< C[HthHl(D) + Hu||H2(D)Hw||H2(D) + ”w”W?vP(D)Hu”Hl(D)
+ lwll g oy + 1920151 ()]
< C.
This completes the proof of Proposition 5.2. g

Finally, we prove the global H*-bound for w by making full use of the structure of the micropolar
equations and classical elliptic regularization theory.

Proposition 5.3. Assume that (ug,wq) satisfies the conditions in Theorem 1.2. Let (u,w) be the corre-
sponding solution of (1.3)=(1.5) guaranteed by Proposition 3.1. Then, for any T >0 and 0 <t < T,

wll o< 0,7:m4(D)) < C,
where the constant C' depends only on D, T, and the initial data.
Proof. By Lemma 2.6,
[wllza(py < Clllwell 2oy + 1w - Vol gzpy + lwll g2y + [192]#2(0)] -

llwl| 72 (py is globally bounded due to Proposition 4.2. To bound |[u-Vw| g2(py, we apply Lemmas 2.2, 2.4
and the Sobolev embedding H?(D) — L>(D) to get

[u- Vol g2y < Clllull L=y IVwl 2Dy + V]| L 0y |0l 52(p)]
< Ollullgz(p)lIVwl| g2 (p)
< Ol a1 oy + llull 2] lwl s oy < C.
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according to Propositions 5.1-5.2. Our main efforts are devoted to bounding
lwill 2oy and (|9 g2(p)-

The following two lemmas establish these desired global bounds. With the help of these lemmas, we
obtain

|wl| Lo (0,7; m2(Dy) < C-
The two lemmas and their proofs are given below. This completes the proof of Proposition 5.3. O

We have used the fact that [Jw;|| g2(p) is globally bounded. The following lemma states this fact and
then prove this fact.

Lemma 5.1. Assume that (ug,wp) satisfies the conditions in Theorem 1.2. Let (u,w) be the corresponding
solution of (1.3)—(1.5) guaranteed by Proposition 3.1. Then, for any T >0 and 0 <t <T,

192 Loe (0,730 (DY) < C and  ||w|| o< 0,1; 2Dy < C,
where the constant C' depends only on D, T, and the initial data.
Proof. Applying Lemma 2.6 to (4.5) yields
lwell 2oy < ClllweellLz(py + - Vwellpzpy + lue - Vwl|p2(p)
+ |well 2oy + ||Qt||L2(D)} (5.12)
< Clllweell 2oy + lull 2y IVwell 2oy + el 2oy IVl 2 oy
+ [lwell 2oy + 1%l 22Dy ] -
Clearly, the terms ||ul| g2(p) || Vwe | 2Dy + |t || 220y [ VWl 52(py + |wel|L2(p) are all bounded. Therefore,
it suffices to bound ||[z2(py and ||ws|[z2(p).
Multiplying (3.3) by |Q:[P~2Q; and integrating on D, we have
190y = = [0 VAP e — 2 [ Auf 00, 5.19)
D
By Holder’s inequality and the embeddings H?(D) < L>(D) and H'(D) — L?(D),
= [ w9 < ull ) IV 02
D
< lull g2 IV o) 12415
and

_2K/Aw|mv’ 20 < Ok Al o () |2l

< C“HWHH’J(D)HQt”Lp(Dy
Inserting the estimates above in (5.13) yields
194/l ey < Clllull 20y IVl e (D) + 0] 131
< Cl9lm(py + llull 22 () IVQl LoDy + w3 (py] < C-.
Next we prove the global bound

[uet]l Lo (0,12 (D)) + l[wetl| Low 0,7:22(D)) < C.
Taking the temporal derivative of the velocity equation in (1.3) yields

Ut + U - V’ut + Uy - Vu+ th = 721€VL’UJt. (514)
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Dotting (5.14) with uy yields

||utt\|%z(D) = - /u -V, - ugde — /ut -Vu - updz — 2ﬁ/utt V4w dz

D D D

< SllueelZapy +C [llu- Varl2apy + llue - VullZagpy + IV w2

< 5lluelzzpy + €| tlz2 (o) + llue L2(D) tllz2(p)
1 )

< §Hutt||%2(p) +C _||u||2Loo(D)||VUt||%2(D) + HutH%Q(D)”qu%m(D)

+ ||th||%2(p)}

1 i
< Slueliz (o) + C {lullfre o) (lueliz o) + 19007200)) + luelza o) 1l iz o)

+ [ Vwille(p)]

1
< §Hutt||2L2(D) +C

:(HUH%?(D) +IVQUZ2p)) Uluel 22 oy + 191 72())
Vel o))
which implies
llwsel| 2Dy < C. (5.15)
To estimate ||wy| r2(p), we take the second-order temporal derivative of (4.5)
Wy + U - Vwy + 2uy - Vwy + ugy - Vw + drwyy = yAwy + 26044 (5.16)
Multiplying (5.16) by wy; and integrating on D, we have
1d,
2 dt
= —2/ut - Vwiwgdr — /utt - Vwwydx + QK/Qttwttdx.
D D D

wiel 2oy + VIVt l|72(py + 4l wiel|72 ()
(5.17)

By integration by parts, Holder’s inequality, Young’s inequality, Lemma 2.4, and the embedding H' (D) —
LY(D),

—Q/Ut . thwttdx = 2/ut . thtwtdx
D D
< 2l|ug|lapy lwell a0y [ Vwee | L2 Dy

ol ) C. ) (5.18)
< g”thth(D) + ;HutHHl(D)”thHl(D)
< 11VuulZagoy + SN0y + el 220wt oy
6 gl
- /Utt -Vuwwydr = /utt - Vwywdx
D D
< lusell L2y llwll o 0y IV wet | 22 () (5.19)

5y C
< g”tht”%Z(D) + ;||Utt|\%2(p)||w||§{2(p)
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and

2R/Qttwttdx = —ZH/Utt . vattd.’E
D

D (5.20)
Cr?

< <[ Vw72 (py + THuttnzL?(D)‘

|2

Inserting (5.18)—(5.20) in (5.17) yields

d
Sl < UL ) + Il Bzl o)
+C(1+ ||Utt||%2(D))||w||§12(D)-
Integrating in time yields the desired estimates. This proves Lemma 5.1. O
We now move on to the second lemma asserting the global bound for ||| z2(p).

Lemma 5.2. Assume that (ug,wp) satisfies the conditions in Theorem 1.2. Let (u,w) be the corresponding
solution of (1.3)—(1.5) guaranteed by Proposition 3.1. Then, for any T >0 and 0 <t <T,

12| o< (0,712 (DY) < C.
where the constant C' depends only on D, T, and the initial data.

Proof. Taking 07 of (4.2) yields

2 2 Ar? 81 K\ g2 2 2
BtﬁiZ—ku-V@-Z—T@-Z—FT 1+; Ofw=u-VO;Z—0;(u-VZ). (5.22)
Multiplying (5.22) by 927 and integrating on D, we have
1d 4K? 8k? K
3 510220y = 210 2y — 2 (14 %) [ opwepzae
b (5.23)
+/(u-vafZ— O (u-V2))0;Zdx.
D
By V-« =0 and the commutator estimate (2.2),
/ (u-VOZZ -0} (u-VZ))0;Zdx
D
- / (u-02VZ — 02V - (uZ)) 02 Zdx (5.24)

D
< C(IVulloe ()1 Z 20y 107 Z || 120y + 1wl 1130y | 2] oo () 107 Z | 12y ) -
Then, by Lemma 2.4 and definition of Z, one has
[ull sy < C(I190l 2oy + lullL2(py) < C (121l m2(p) + w20y + lullz2 ()
which together with (4.3) and (5.24) yields
/ (u-VOZZ -0} (u VZ))0;Zdx
D
< IVull Lo () | 21| 1120107 Z L2 () + 1 21| 220y 107 Z | 12
+ (lwllzzpy + lullL20)) 107 Zl L2y
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By Holder’s inequality,
8}-@

y (“ )/ ‘92“’8%“87(” )Ilfﬁwnm 102 21|20)

Inserting the estimates in (5.23) and summing up by i, we have

1d

5 dt”v2Z”L2(D) <O+ [[Vullp=(p) + ||w||H2 (D) T Hu||L2(D))

X (||V22||L2(D) + HVZ”L?(D) + ||Z||L2(D))~
Gronwall’s inequality implies
||V2Z||L2(D) <C.
By the definition of Z and Proposition 4.2, we have
190|220y < N1 Z |2 + w20y < C.
This completes the proof of Lemma 5.2. O

6. Large time behavior

This section proves Theorem 1.3, namely the large time estimate stated in (1.13) under the condition
that v > 4k.
Proof of Theorem 1.3. To begin with, we take the inner product of (1.10) with (u,w) to obtain

1d

537 (Iulao) + 0li3a(p)) + rllula o) + 71Vl Ea )

= 2m/u-VLwdm+2n/wVXudx:4n/u-VLwdx
D D D

where we have used (3.1) to combine the two terms on the right. By Holder’s inequality,

8k?2 ’y—|—4/£
7_%,€||1ﬁ(7f)\|%2(13) +—

4K /u - Viwdz < dklull2(py | Vol z2(py <
D

Vw72 py-

Therefore,

d
= (@ o) + (@) 220)) +

Noticing that w|sp = 0, we have, by Lemma 2.3,

” 2O 2 )2y + (0~ 49) IV By <0 (62)

lwllZzpy < ClIVwlZ2(p),
which, together with (6.2), yields

1d
537 (lull3ao) + w0l +

Since v > 4k, it is then clear that

el o) + 101320y < e (luola o) + lwol3a()) (63)

(v —4r)
HUH%Z‘(D) + THWH%Z(D) <0.

2k(y — 4k)
v+ 4K

where Cj is given by

Co = min{%(v —4K) (v —4k) } _

y+4k C
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In addition, multiplying (6.2) by eFt and integrating in time yields
t t
Co 2 o, 2
€27 [u(m)lzz(py d7 + (v = 4K) [ e= 7 [Vw(7T)|[12(p) dT
0
< lluollZz(py + lwollZz(p)- (6.4)

2k(y — 4k)
v+ 4k

We now turn to the decay of the gradient of (u,w). Multiplying (3.3) by 2 and the w-equation in
(1.10) by —Aw and then integrating on D, one has

1d
(19213 0y + 90 ) + #l1€030) + A3

2dt
(6.5)
= —4/{/Awﬂdx+/u-VwAwdx.
D D
By Young’s inequality,
16k2 v+ 12k
i | [ 8w 0da| < 190y + T Al
D
By Holder’s inequality, Corollary 2.1, Lemma 2.4 and Young’s inequality,
[ Vutuds <Clulla| Vol [ Auwlzm)
D
} } Lo
SCHu”m(D)”VUHL'Z(D)(”VUJHB(D)||V w”Lz(D)
+ [Vwllrz2(p)) |Aw|[ 2 (D)
1 1 1 1 1
< CHquz(D)(”QHi?(D) + ||U||22(D))(||Vw“22(D)”Awnzz(D)
+ IVwl|2(p)) |Aw]| 2(p)
v — 4K
< [Aw|[Z2(p)
+ CQ A [ullfz o)) (ullZz o) + 1072 o) IVl Z2(15)-
Inserting the estimates above in (6.5), we have
d 2 2 4k(y — 4k) 2 2
e <||QHL2(D) + ||Vw||L2(D)) + IESTr [272(py + 2(7 — 4k) [[Aw|T2(py (6.6)

<O+ ”’U‘H%Z(D))(HUH%Q(D) + ||QH%2(D))HVW||%2(D)~
We note that v > 4k. Applying Gronwall’s inequality and using (6.4), we have

COtulap) [ IV s, dr
HQ||%2(D) —|— ||Vw||2LQ(D) S e L2(D) R L2(D) (

1201220 + V201320 )

t
C(1+‘|u‘|iZ(D)) g va("—)HZLZ(D) dr

t
‘ (ulftacoy + o) | 190 oy
0

< C(uo,wo), (6.7)
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where C is a constant depending only on H'-norm of (ug,wp). This global bound, together with (6.3),
allows us to obtain the global exponential bound for the gradient of (u,w). In fact, if we set

4 —4
¢ = mind 20 =49 Co
v+ 12K 2
and multiply (6.6) by e“1* and integrate in time, we have

d
= (P10 2 ) + e IVl ) < Cre® [Vl )

+C(1+ Hu||2L2(D))(||uH%2(D) + ||Q||i2(D)) et vaniz(p)-
Integrating in time and recalling the global bounds in (6.4) and (6.7) yield that
Q)7 2(py + VW (B)|72(py < Clug, wo),

where C(ug,wp) depends on ||uo| g1 (py and [Jwol| g1 (py only. This completes the proof of Theorem 1.3. [
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