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Abstract

Stability and large-time behavior are essential properties of solutions to many partial differential equa-
tions (PDEs) and play crucial roles in many practical applications. When there is full Laplacian, many 
techniques such as the Fourier splitting method have been created to obtain the large-time decay rates. 
However, when a PDE is anisotropic and involves only partial dissipation, these methods no longer apply 
and no effective approach is currently available. This paper aims at the stability and large-time behavior of 
the 3D anisotropic Navier-Stokes equations. We present a systematic approach to obtain the optimal decay 
rates of the stable solutions emanating from a small data. We establish that, if the initial velocity is small in 
the Sobolev space H 4(R3) ∩H−σ

h
(R3), then the anisotropic Navier-Stokes equations have a unique global 

solution, and the solution and its first-order derivatives all decay at the optimal rates. Here H−σ
h

with σ > 0
denotes a Sobolev space with negative horizontal index.
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1. Introduction

The goal of this paper is to understand the stability and more importantly the precise large-
time behavior of solutions to the 3D Navier-Stokes equations with only horizontal dissipation⎧⎪⎨⎪⎩

∂tu + u · ∇u = −∇p + ν�hu, x ∈ R3, t > 0,

∇ · u = 0,

u(x,0) = u0(x),

(1.1)

where u = (u1(x, t), u2(x, t), u3(x, t)) denotes the velocity field, p = p(x, t) the pressure and 
ν > 0 the kinematic viscosity. Here �h = ∂2

x1
+ ∂2

x2
. For notational convenience, we shall write 

∂j for ∂xj
with j = 1, 2, 3. In addition, we use ∇h := (∂1, ∂2) for the horizontal gradient. (1.1)

arises in the modeling of anisotropic geophysical fluids for which the vertical diffusion is much 
smaller than the horizontal one (see, e.g., [12, Chapter 4])).

Solutions of (1.1) emanating from general large initial data are not known to exist for all 
time. Whether or not large smooth solutions can blow up in a finite time is an outstanding open 
problem. However, any sufficiently small initial data with suitable regularity always leads to 
a unique global solution. Significant progress has been made on the small data global well-
posedness and on the scaling invariant regularity criteria for (1.1) (see, e.g., [3–5,7,9–11,20,21]). 
For the convenience of the readers, we provide a simple proof for the global well-posedness of 
small data in Hk(R3) with any k ≥ 2 (see Proposition 1.1). The real issue concerned here is the 
precise large-time behavior. The solutions in some the aforementioned references may grow in 
time due to the application of Osgood type inequalities.

This paper aims at the exact large-time behavior and optimal decay rates of small global 
solutions to (1.1). When there is full Laplacian dissipation, Schonbek and her collaborators have 
developed powerful tools such as the Fourier splitting method to obtain the large-time behavior 
of solutions to the Navier-Stokes and related equations with full dissipation (see, e.g., [13–16]). 
However, these tools do not appear to work for the anisotropic Navier-Stokes equations like 
the one in (1.1). New approaches have to be developed in order to extract the precise large-
time behavior for (1.1). This paper offers an efficient but not very sophisticated method for the 
anisotrophic Navier-Stokes equations. The discoveries of this paper may help understand the 
large-time behavior of many other anisotropic systems.

Before we describe our main ideas, we explain a basic fact about the decay of the heat equa-
tion. For any v0 ∈ L2, the solution of the heat equation

∂tv = ν�v,

v(x,0) = v0(x)

is known to decay to zero in the L2-norm,

‖v(t)‖L2 → 0 as t → ∞.

But this decay can be slow and there is no uniform rate [2]. In order to obtain an explicit decay 
rate, extra assumptions on v0 must be imposed. Two types of conditions are normally inserted, ei-
ther v0 ∈ Lq with 1 ≤ q < 2 or v0 in a Sobolev space with negative index, namely v0 ∈ H−σ with 
σ > 0. This explains why we shall choose our initial data to be in the intersection of two Sobolev 
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spaces, one with positive index and one with negative index. Since (1.1) involves only horizon-
tal dissipation, the negative Sobolev setting involves only negative derivatives in the horizontal 
direction. To be more precise, we define H−σ

h (R3) with σ > 0 to be the space of distributions f
satisfying

‖�−σ
h f ‖2

L2(R3)
:=

∫
R3

|ξh|−2σ |f̂ (ξ)|2 dξ < ∞,

where ξh = (ξ1, ξ2) and the fractional Laplacian operator �−σ
h is defined via the Fourier trans-

form

̂�−σ
h f (ξ) = |ξh|−σ f̂ (ξ).

The exact functional setting for our initial data u0 is

u0 ∈ H 4(R3) ∩ H−σ
h (R3), ∂3u0 ∈ H−σ

h (R3),
3

4
≤ σ < 1.

We will explain the range of σ later. Our aim is to achieve the optimal decay rates, namely the 
rates for the corresponding heat equation,

{
∂tu = ν�hu, x ∈R3, t > 0,

u(x,0) = u0(x).
(1.2)

For u0 ∈ H 4(R3) ∩ H−σ
h (R3), the solution of (1.2) satisfies

‖u(t)‖H 4 ≤ ‖u0‖H 4, ‖u(t)‖H−σ
h

≤ ‖u0‖H−σ
h

.

Furthermore, using the representation of the solution to (1.2),

u(t) = eν�ht u0,

we find

‖u(t)‖L2 = ‖�σ
h eν�ht �−σ

h u0‖L2 ≤ C (νt)−
σ
2 ‖�−σ

h u0‖L2, (1.3)

‖∂3u(t)‖L2 ≤ C (νt)−
σ
2 ‖∂3�

−σ
h u0‖L2, (1.4)

‖∇h∂3u(t)‖L2 ≤ C (νt)−
σ+1

2 ‖�−σ
h u0‖L2 . (1.5)

We are able to show that the solution of the anisotropic Navier-Stokes equation (1.1) obeys 
the same decay rates as those for the heat equation (1.2). More precisely, we obtain the following 
theorem.
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Theorem 1.1. Consider (1.1) with ν > 0. Let 3
4 ≤ σ < 1. Assume

u0 ∈ H 4(R3), ∇ · u0 = 0, �−σ
h u0, �−σ

h ∂3u0 ∈ L2(R3).

Then, there is ε > 0 such that, if

‖u0‖H 4(R3) + ‖�−σ
h u0‖L2(R3) + ‖�−σ

h ∂3u0‖L2(R3) ≤ ε,

then (1.1) has a unique global solution u satisfying

‖u(t)‖H 4(R3) ≤ Cε, (1.6)

‖�−σ
h u(t)‖L2(R3) ≤ C ε, (1.7)

‖u(t)‖L2(R3) ≤ C ε(1 + t)−
σ
2 , ‖∂3u(t)‖L2(R3) ≤ C ε(1 + t)−

σ
2 , (1.8)

‖∇hu(t)‖L2(R3) ≤ C ε(1 + t)−
σ+1

2 . (1.9)

The decay rates in (1.8) and (1.9) coincide with those for the corresponding heat equation of 
(1.1) and are thus optimal.

The decay rates in (1.8) and (1.9) are exact the same as those for the heat equations in (1.3), 
(1.4) and (1.5), and are thus optimal. In addition, Theorem 1.1 assesses that the solution u re-
mains bounded and small in H−σ

h , namely (1.7) for all time when u0 ∈ H−σ
h is small. This 

especially implies that the anisotropic Navier-Stokes equation concerned here preserves and ac-
tually improves the regularity setting of the initial data. This distinguishes Theorem 1.1 from 
many existing decay results, which provides no information on the boundedness of the solution 
in the Sobolev space with negative index even though the initial data is required to be in this 
space. In general it is not trivial to show that the solutions of partially dissipated systems remain 
in the negative Sobolev setting for all time. Normally the solution regularity of such systems 
deteriorates as time evolves.

Since the local-in-time well-posedness can be established by standard approaches (see, e.g. 
[8]), we focus on the global a priori bounds on the solution. We adopt the bootstrapping argument 
(see, e.g., [17, p. 21]). Assuming that u0 ∈ H 4 ∩ H−σ

h satisfies

‖u0‖H 4 ≤ ε and ‖u0‖H−σ
h

≤ ε

for sufficiently small ε > 0, the bootstrapping argument starts with the ansatz that, for t < T ,

‖u(t)‖H 4 ≤ C0 ε, (1.10)

‖�−σ
h u(t)‖L2 ≤ C0 ε, (1.11)

‖u(t)‖L2,‖∂3u(t)‖L2 ≤ C0 ε(1 + t)−
σ
2 , (1.12)

‖∂1u(t)‖L2 ,‖∂2u(t)‖L2 ≤ C0 ε(1 + t)−
σ
2 − 1

2 (1.13)

for suitably selected C0 > 0. We then show via (1.1), (1.10), (1.11), (1.12) and (1.13) that
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‖u(t)‖H 4 ≤ C0

2
ε, (1.14)

‖�−σ
h u(t)‖L2 ≤ C0

2
ε, (1.15)

‖u(t)‖L2 ,‖∂3u(t)‖L2 ≤ C0

2
ε(1 + t)−

σ
2 , (1.16)

‖∂1u(t)‖L2 ,‖∂2u(t)‖L2 ≤ C0

2
ε(1 + t)−

σ
2 − 1

2 . (1.17)

The bootstrapping argument then assesses that T = ∞ and (1.14), (1.15), (1.16) and (1.17) hold 
for all t < ∞.

Since the assertion that any small initial data in H 4 yields a unique global small solution 
u ∈ L∞(0, ∞; H 4) itself represents an important fact, we take out this part and state it as a 
proposition.

Proposition 1.1. Consider (1.1) with ν > 0. Let k ≥ 2 be an integer. Assume u0 ∈ Hk(R3) with 
∇ · u0 = 0. Then there exists ε > 0 such that, if

‖u0‖Hk(R3) ≤ ε,

then (1.1) has a unique global solution u ∈ L∞(0, ∞; Hk(R3)) satisfying

‖u(t)‖Hk(R3) ≤ C ε

for some constant C > 0 and for all t > 0.

As a special consequence of Proposition 1.1, we obtain (1.14). To show (1.15), we perform 
energy estimates on ‖�−σ

h u(t)‖L2 . By invoking various anisotropic inequalities, we are able to 
obtain a suitable upper bound for the nonlinear term∫

R3

�−σ
h (u · ∇u) · �−σ

h udx

≤ C ‖∇h · uh‖
1
2
L2 ‖u3‖σ− 1

2
L2 ‖∇hu3‖1−σ

L2 ‖∂3u‖L2 ‖�−σ
h u‖L2 .

As a consequence, the time integral of this bound, together with the ansatz, yields the desired 
upper bound in (1.15). In order to obtain the decay bounds in (1.16) and (1.17), we make use of 
the integral representation of (1.1),

u(t) = eν�h tu0 −
t∫

0

eν�h(t−τ)P (u · ∇u)(τ ) dτ,

where P = I − ∇�−1∇· is the Leray projection onto divergence vector fields. This represen-
tation helps facilitate the estimates of ‖u(t)‖L2 , ‖∂3u(t)‖L2 and ‖∇hu(t)‖L2 . The estimates of 
the nonlinear terms are technical and involve many anisotropic inequalities. We shall leave the 
technical details to the next section, which provides the proof of Theorem 1.1.
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2. Proof of Theorem 1.1

This section is devoted to the proofs of Theorem 1.1 and of Proposition 1.1. We need several 
tools stated in the following lemmas.

The first lemma provides an upper bound for the Lp-norm of a one-dimensional function, 
which serves as a basic ingredient for anisotropic upper bounds. A proof can be found in [19].

Lemma 2.1. Let 2 ≤ p ≤ ∞. Let s > 1
2 − 1

p
. Then, there exists a constant C = C(p, s) such that, 

for any 1D functions f ∈ Hs(R),

‖f ‖Lp(R) ≤ C ‖f ‖1− 1
s

(
1
2 − 1

p

)
L2(R)

‖�sf ‖
1
s

(
1
2 − 1

p

)
L2(R)

.

In particular, if p = ∞ and s = 1, then any f = f (x3) ∈ H 1(R) satisfies

‖f ‖L∞(R) ≤ C ‖f ‖
1
2
L2(R)

‖∂3f ‖
1
2
L2(R)

.

The second lemma provides an anisotropic upper bound for the integral of a triple product. It 
is a very powerful tool in dealing with anisotropic equations. A simple proof of this lemma can 
be found in [18].

Lemma 2.2. The following estimates hold when the right-hand sides are all bounded.∫
R3

|fgh|dx � ‖f ‖
1
2
L2‖∂1f ‖

1
2
L2‖g‖

1
2
L2‖∂2g‖

1
2
L2‖h‖

1
2
L2‖∂3h‖

1
2
L2,

∫
R3

|fgh|dx � ‖f ‖
1
4
L2‖∂1f ‖

1
4
L2‖∂2f ‖

1
4
L2‖∂1∂2f ‖

1
4
L2‖g‖

1
2
L2‖∂3g‖

1
2
L2‖h‖L2 .

The third lemma states Minkowski’s inequality. It is an elementary tool that allows us to 
estimate the Lebesgue norm with larger index first followed by the Lebesgue norm with a smaller 
index. The following version is taken from [1, p. 4] and a more general statement can be found 
in [6, p. 47].

Lemma 2.3. Let (X1, μ1) and (X2, μ2) be two measure spaces. Let f be a nonnegative measur-
able function over X1 × X2. For all 1 ≤ p ≤ q ≤ ∞, we have∥∥‖f (·, x2)‖Lp(X1,μ1)

∥∥
Lq(X2,μ2)

≤ ∥∥‖f (x1, ·)‖Lq(X2,μ2)

∥∥
Lp(X1,μ1)

.

In particular, for a nonnegative measurable function f over Rm ×Rn and for 1 ≤ p ≤ q ≤ ∞,∥∥‖f ‖Lp(Rm)

∥∥
Lq(Rn)

≤ ∥∥‖f ‖Lq(Rn)

∥∥
Lp(Rm)

.

The next lemma provides an exact Lp − Lq decay estimate for the generalized heat operator 
associated with a fractional Laplacian.
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Lemma 2.4. Let σ ≥ 0, α > 0, ν > 0, 1 ≤ p ≤ q ≤ ∞. Then

‖�σ e−ν(−�)αtf ‖Lq(Rd ) ≤ C t
− σ

2α
− d

2α

(
1
p

− 1
q

)
‖f ‖Lp(Rd ).

We introduce a few notations. We write ‖f ‖L
p
xj

with j = 1, 2, 3 for the Lp-norm with respect 

to xj on R, and ‖f ‖L
p
xj xk

with j, k = 1, 2, 3 for the Lp-norm with respect to (xj , xk) on R2. We 

also write ‖f ‖L
q
h

for ‖f ‖L
q
x1x2

to shorten the notation. In addition, the anisotropic norm

‖f ‖L
p
hL

q
x3

:= ‖‖f ‖L
q
x3

‖L
p
h

is also frequently used.
We are ready to prove the proposition and Theorem 1.1.

Proof of Proposition 1.1. First of all, any initial data u0 ∈ Hk with k ≥ 2 leads to a local-in-
time solution. This is the consequence of the standard contraction mapping principle and a local 
a priori bound on the norm ‖u‖Hk . The contraction mapping part can be verified via a standard 
procedure and can be found in many references such as the book by Majda and Bertozzi [8]. We 
focus on the global-in-time a priori bound for ‖u(t)‖Hk . Due to the norm equivalence

‖f ‖2
Hk ∼ ‖f ‖2

L2 +
3∑

m=1

‖∂k
mf ‖2

L2 (2.1)

and the uniform bound for the L2-norm of u,

‖u(t)‖2
L2 + 2ν

t∫
0

‖∇hu(τ)‖2
L2 dτ = ‖u0‖2

L2 , (2.2)

it suffices to evaluate the last part in (2.1). Applying ∂k
m to the equation in (1.1) and then taking 

the inner product with ∂k
mu yields

d

dt

3∑
m=1

‖∂k
mu‖2

L2 + 2ν

3∑
m=1

‖∇h∂
k
mu‖2

L2 = −2
3∑

m=1

∫
∂k
m(u · ∇u) · ∂k

mudx := I. (2.3)

To estimate I , we rewrite it as

I = −2
3∑

m,i,j=1

k∑
α=1

(
k

α

)∫
∂α
muj ∂j ∂

k−α
m ui ∂

k
mui dx, (2.4)

where 
(

k

α

)
= k!

α!(k−α)! is the binomial coefficient, and we have used the fact that the term with 

α = 0 vanishes due to ∇ ·u = 0. We divide the terms in (2.4) into two types, the terms with at least 
one of m and j being 1 or 2 and the terms with m = j = 3. The first type can be handled directly 
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by using the anisotropic inequalities in Lemma 2.2. Without loss of generality, we consider the 
term with j = 1 and m = 3. By Lemma 2.2, this term can be bounded by, for any 1 ≤ α ≤ k,∣∣∣∣∫ ∂α

3 u1 ∂k−α
3 ∂1ui ∂

k
3 ui dx

∣∣∣∣
≤ C ‖∂α

3 u1‖
1
2
L2 ‖∂1∂

α
3 u1‖

1
2
L2 ‖∂k−α

3 ∂1ui‖
1
2
L2 ‖∂3∂

k−α
3 ∂1ui‖

1
2
L2 ‖∂k

3 ui‖
1
2
L2 ‖∂2∂

k
3 ui‖

1
2
L2

≤ C ‖∇hu‖2
Hk ‖u‖Hk .

For the second type of terms, we have m = j = 3 and use the divergence-free condition ∂3u3 =
−∂1u1 − ∂2u2. Therefore, these terms can be bounded by∣∣∣∣∫ ∂α

3 u3 ∂k−α
3 ∂3ui ∂

k
3 ui dx

∣∣∣∣
=

∣∣∣∣∫ ∂α−1
3 (∂1u1 + ∂2u2) ∂k−α

3 ∂3ui ∂
k
3 ui dx

∣∣∣∣
≤ C ‖∂α−1

3 ∂1u1‖
1
2
L2 ‖∂α

3 ∂1u1‖
1
2
L2 ‖∂k+1−α

3 ui‖
1
2
L2 ‖∂1∂

k+1−α
3 ui‖

1
2
L2

×‖∂k
3 ui‖

1
2
L2 ‖∂2∂

k
3 ui‖

1
2
L2

+C ‖∂α−1
3 ∂2u2‖

1
2
L2 ‖∂α

3 ∂2u2‖
1
2
L2 ‖∂k+1−α

3 ui‖
1
2
L2 ‖∂1∂

k+1−α
3 ui‖

1
2
L2

×‖∂k
3 ui‖

1
2
L2 ‖∂2∂

k
3 ui‖

1
2
L2

≤ C ‖∇hu‖2
Hk ‖u‖Hk .

Thus any term of either type admits the same upper bound. Therefore,

|I | ≤ C ‖∇hu‖2
Hk ‖u‖Hk .

Inserting this upper bound in (2.3), integrating in time, adding to (2.2) and invoking the equiva-
lence, we find

‖u(t)‖2
Hk + 2ν

t∫
0

‖∇hu(τ)‖2
Hk ≤ ‖u0‖2

Hk + C0

t∫
0

‖∇hu‖2
Hk ‖u‖Hk dτ (2.5)

When the initial data u0 is taken to be sufficiently small, say

‖u0‖Hk < C−1
0 ν,

then (2.5) implies

‖u(t)‖2
Hk + ν

t∫
‖∇hu(τ)‖2

Hk ≤ ‖u0‖2
Hk ,
0
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which yields the desired global uniform bound and the stability for ‖u(t)‖Hk .
We now briefly explain the uniqueness at the H 2-level, which can be quickly established. 

Assume that u(1) and u(2) are two solutions of (1.1) in the regularity class, for T > 0,

u(1), u(2) ∈ L∞(0, T ;H 2).

The difference ̃u = u(1) − u(2) satisfies

⎧⎪⎨⎪⎩
∂t ũ + u(1) · ∇ũ + ũ · ∇u(2) = −∇p̃ + ν�hũ, x ∈R3, t > 0,

∇ · ũ = 0,

ũ(x,0) = 0,

(2.6)

where p̃ = p(1) − p(2) with p(1) and p(2) being the pressures corresponding to u(1) and u(2), 
respectively. Taking the inner product of ̃u with (2.6) yields

d

dt
‖ũ‖2

L2 + 2ν‖∇hũ‖2
L2 = −

∫
ũ · ∇u(2) · ũ dx. (2.7)

Since the dissipation involves only the horizontal dissipation, we need an anisotropic upper 
bound for the term on the right. By Hölder’s inequality and Lemma 2.1

−
∫

ũ · ∇u(2) · ũ dx ≤ ‖ũ‖2
L4

hL2
x3

‖∇u(2)‖L2
hL∞

x3

≤ C ‖ũ‖L2‖∇hũ‖L2 ‖∇u(2)‖
1
2
L2 ‖∂3∇u(2)‖

1
2
L2

≤ ν‖∇hũ‖2
L2 + C(ν)‖u(2)‖2

H 2‖ũ‖2
L2

Incorporating this upper bound in (2.7) yields

d

dt
‖ũ‖2

L2 + ν‖∇hũ‖2
L2 ≤ C(ν)‖u(2)‖2

H 2‖ũ‖2
L2,

which leads to the uniqueness due to u(2) ∈ L∞(0, T ; H 2). This completes the proof of Proposi-
tion 1.1. �
Proof of Theorem 1.1. The proof focuses on the global bounds in (1.6), (1.7), (1.8) and (1.9). 
As pointed out in the introduction, the framework of the proof is the bootstrapping argument. 
Assume that u0 ∈ H 4 ∩ H−σ

h satisfies

‖u0‖H 4 + ‖u0‖H−σ
h

+ ‖∂3u0‖H−σ
h

≤ ε (2.8)

for sufficiently small ε > 0. We make the ansatz that, for t < T ,
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‖u(t)‖H 4 ≤ C0 ε, (2.9)

‖�−σ
h u(t)‖L2 ≤ C0 ε, (2.10)

‖u(t)‖L2,‖∂3u(t)‖L2 ≤ C0 ε(1 + t)−
σ
2 , (2.11)

‖∂1u(t)‖L2 ,‖∂2u(t)‖L2 ≤ C0 ε(1 + t)−
σ
2 − 1

2 (2.12)

for suitably selected C0 > 0. We then show via (1.1), (2.8), (2.9), (2.10), (2.11) and (2.12) that

‖u(t)‖H 4 ≤ C0

2
ε, (2.13)

‖�−σ
h u(t)‖L2 ≤ C0

2
ε, (2.14)

‖u(t)‖L2 ,‖∂3u(t)‖L2 ≤ C0

2
ε(1 + t)−

σ
2 , (2.15)

‖∂1u(t)‖L2 ,‖∂2u(t)‖L2 ≤ C0

2
ε(1 + t)−

σ
2 − 1

2 . (2.16)

The bootstrapping argument then assesses that T = ∞, and (2.13), (2.14), (2.15) and (2.16) hold 
for all t < ∞.

As in the statement and proof of Proposition 1.1, if

‖u0‖H 4 ≤ C1 ν

for some pure constant C1 > 0, then, for all time t > 0,

‖u(t)‖H 4 ≤ ‖u0‖H 4 .

As a special consequence, if

ε ≤ C1ν and ‖u0‖H 4 ≤ ε,

then, for C0 ≥ 2,

‖u(t)‖H 4 ≤ ‖u0‖H 4 ≤ ε ≤ C0

2
ε,

which is (2.13). We now show (2.14). Applying �−σ
h to (1.1) and dotting with �−σ

h u, we obtain

d

dt
‖�−σ

h u‖2
L2 + 2ν‖�1−σ

h u‖2
L2 = −2

∫
�−σ

h (u · ∇u) · �−σ
h udx

= M. (2.17)

M can be written as

M = −2
∫

�−σ
h (u1∂1u + u2∂2u) · �−σ

h udx − 2
∫

�−σ
h (u3∂3u) · �−σ

h udx. (2.18)
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Clearly the first two terms in (2.18) are better than the last term in (2.18) in the sense that they 
contain the favorable horizontal derivatives. Therefore, the worst term is

M3 := −
∫

�−σ
h (u3∂3u1) · �−σ

h u1 dx.

We set

1

2
+ σ

2
= 1

q
or q = 2

1 + σ
.

Clearly, for 3
4 ≤ σ < 1, we have

1 < q < 2.

By Hölder’s inequality, the Hardy-Littlewood-Sobolev inequality and Lemma 2.3,

|M3| ≤ ‖�−σ
h (u3∂3u1)‖L2 ‖�−σ

h u1‖L2

=
∥∥∥‖�−σ

h (u3∂3u1)‖L2
h

∥∥∥
L2

x3

‖�−σ
h u1‖L2

=
∥∥∥‖u3∂3u1‖L

q
h

∥∥∥
L2

x3

‖�−σ
h u1‖L2 (2.19)

≤
∥∥∥‖u3∂3u1‖L2

x3

∥∥∥
L

q
h

‖�−σ
h u1‖L2

≤
∥∥∥‖u3‖L∞

x3
‖∂3u1‖L2

x3

∥∥∥
L

q
h

‖�−σ
h u1‖L2

≤ ‖u3‖
L

2
σ
h L∞

x3

‖∂3u1‖L2
hL2

x3
‖�−σ

h u1‖L2 .

The first part on the right-hand side can be further bounded as follows. By Hölder’s inequality 
with σ2 = 1

4 + 2σ−1
4 ,

‖u3‖
L

2
σ
h L∞

x3

≤ C

∥∥∥∥‖u3‖
1
2
L2

x3
‖∂3u3‖

1
2
L2

x3

∥∥∥∥
L

2
σ
h

≤ C

∥∥∥∥‖u3‖
1
2
L2

x3

∥∥∥∥
L

4
2σ−1
h

∥∥∥∥‖∂3u3‖
1
2
L2

x3

∥∥∥∥
L4

h

≤ C ‖∂3u3‖
1
2
L2 ‖u3‖

1
2

L

2
2σ−1
h L2

x3

≤ C ‖∇h · uh‖
1
2
L2 ‖u3‖

1
2

L2
x3

L

2
2σ−1
h

≤ C ‖∇h · uh‖
1
2
L2 ‖u3‖σ− 1

2
L2 ‖∇hu3‖1−σ

L2 .

Thus we have obtained the following bound
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|M3| ≤ C ‖∇h · uh‖
1
2
L2 ‖u3‖σ− 1

2
L2 ‖∇hu3‖1−σ

L2 ‖∂3u1‖L2 ‖�−σ
h u1‖L2 .

Similarly, the first two terms in (2.18) can be bounded by

− 2
∫

�−σ
h (u1∂1u + u2∂2u) · �−σ

h udx

≤ C ‖∂3u1‖
1
2
L2 ‖u1‖σ− 1

2
L2 ‖∇hu1‖1−σ

L2 ‖∂1u‖L2 ‖�−σ
h u‖L2

+ C ‖∂3u2‖
1
2
L2 ‖u2‖σ− 1

2
L2 ‖∇hu2‖1−σ

L2 ‖∂2u‖L2 ‖�−σ
h u‖L2 .

Integrating in time in (2.17) yields

‖�−σ
h u‖2

L2 + 2ν

t∫
0

‖�1−σ
h u‖2

L2dτ ≤ N, (2.20)

where

N : = C

t∫
0

‖∂3u1‖
1
2
L2 ‖u1‖σ− 1

2
L2 ‖∇hu1‖1−σ

L2 ‖∂1u‖L2 ‖�−σ
h u‖L2 dτ

+ C

t∫
0

‖∂3u2‖
1
2
L2 ‖u2‖σ− 1

2
L2 ‖∇hu2‖1−σ

L2 ‖∂2u‖L2 ‖�−σ
h u‖L2 dτ

+ C

t∫
0

‖∇h · uh‖
1
2
L2 ‖u3‖σ− 1

2
L2 ‖∇hu3‖1−σ

L2 ‖∂3u1‖L2 ‖�−σ
h u1‖L2 dτ.

We then invoke the ansatz in (2.9) through (2.12) to bound N .

N ≤ C

t∫
0

(
C0ε(1 + τ)−

σ
2

)σ (
C0ε(1 + τ)−

σ+1
2

)2−σ

C0ε dτ

+ C

t∫
0

(
C0ε(1 + τ)−

σ+1
2

) 1
2
(
C0ε(1 + τ)−

σ
2

)σ− 1
2

·
(
C0ε(1 + τ)−

σ+1
2

)1−σ

C0ε(1 + τ)−
σ
2 C0ε dτ

= C C3
0ε3

t∫
0

(1 + τ)−
σ
2 −1 dτ + C C3

0ε3

t∫
0

(1 + τ)−
σ
2 − 3

4 dτ (2.21)

≤C C3
0ε3, (2.22)
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where we have used the fact that the time integrals in (2.21) are bounded for any 3
4 ≤ σ < 1. If 

we choose ε > 0 to be sufficiently small such that

CC0ε ≤ 1

4
, (2.23)

then (2.22) and (2.23) implies

N ≤ 1

4
C2

0ε2.

Inserting this bound in (2.20) yields

‖�−σ
h u‖2

L2 ≤ 1

4
C2

0ε2.

This completes (2.14).
To prove (2.15), we represent (1.1) in the integral form

u(t) = eν�htu0 −
t∫

0

eν�h(t−τ)P (u · ∇u)(τ ) dτ , (2.24)

where P denotes the Leray projection. Taking the L2-norm of (2.24) and noticing the bounded-
ness of P on L2 functions, we have

‖u(t)‖L2 ≤ ‖eν�htu0‖L2 +
t∫

0

‖eν�h(t−τ)(u · ∇u)(τ )‖L2 dτ. (2.25)

The linear part in (2.25) can be easily bounded. In fact, by Lemma 2.4,

‖eν�htu0‖L2 ≤ C (1 + t)−
σ
2

(
‖u0‖H−σ

h
+ ‖u0‖L2

)
≤ C0

4
ε(1 + t)−

σ
2 , (2.26)

where C0 is selected to satisfy C0 ≥ 4C. We bound the nonlinear part. Writing u · ∇u = u1∂1u +
u2∂2u + u3∂3u, we realize that the worst terms are u3∂3u1 and u3∂3u2, which would yield the 
worst decay rate. We should estimate them first. By Lemma 2.1 and Lemma 2.4,

t∫
0

‖eν�h(t−τ)u3∂3u1(τ )‖L2 dτ

≤
t∫
‖‖eν�h(t−τ)u3∂3u1(τ )‖L2

h
‖L2

x3
dτ
0
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≤
t∫

0

‖(t − τ)−
1
2 ‖u3∂3u1(τ )‖L1

h
‖L2

x3
dτ

≤
t∫

0

(t − τ)−
1
2

∥∥∥‖u3(τ )‖L2
h
‖∂3u1(τ )‖L2

h

∥∥∥
L2

x3

dτ

≤
t∫

0

(t − τ)−
1
2 ‖u3(τ )‖L∞

x3
L2

h
‖∂3u1(τ )‖L2

x3
L2

h
dτ

≤
t∫

0

(t − τ)−
1
2 ‖u3(τ )‖L2

hL∞
x3

‖∂3u1(τ )‖L2 dτ

≤
t∫

0

(t − τ)−
1
2 ‖u3(τ )‖

1
2

L2
hL2

x3

‖∂3u3(τ )‖
1
2

L2
hL2

x3

‖∂3u1(τ )‖L2 dτ

≤
t∫

0

(t − τ)−
1
2 ‖u3(τ )‖

1
2

L2
hL2

x3

‖(∂1u1 + ∂2u2)(τ )‖
1
2

L2
hL2

x3

‖∂3u1(τ )‖L2 dτ.

Invoking the ansatz in (2.9) through (2.12) yields

t∫
0

‖eν�h(t−τ)u3∂3u1(τ )‖L2 dτ

≤ C2
0 ε2

t∫
0

(t − τ)−
1
2 (1 + τ)−

σ
4 (1 + τ)−

σ
4 − 1

4 (1 + τ)−
σ
2 dτ

= C2
0 ε2

t∫
0

(t − τ)−
1
2 (1 + τ)−σ− 1

4 dτ

≤

⎧⎪⎨⎪⎩
C2

0 ε2 (1 + t)
1
4 −σ if σ < 3

4

C2
0 ε2 (1 + t)− 1

2 if σ > 3
4

C2
0 ε2 (1 + t)− 1

2 ln(1 + t) if σ = 3
4

≤ C2
0 ε2 (1 + t)−

σ
2

for any 1
2 ≤ σ < 1. If ε is taken to be small such that

C0 ε ≤ 1

128
, (2.27)

then
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t∫
0

‖eν�h(t−τ)u3∂3u1(τ )‖L2 dτ ≤ C0

128
ε (1 + t)−

σ
2 . (2.28)

Similarly,

t∫
0

‖eν�h(t−τ)u3∂3u2(τ )‖L2 dτ ≤ C0

128
ε (1 + t)−

σ
2 . (2.29)

The terms with u1∂1u or u2∂2u actually produce better decay rates. In fact,

t∫
0

‖eν�h(t−τ)u1∂1u(τ)‖L2 dτ

≤
t∫

0

‖‖e�h(t−τ)u1∂1u(τ)‖L2
h
‖L2

x3
dτ

≤
t∫

0

‖(t − τ)−
1
2 ‖u1∂1u(τ)‖L1

h
‖L2

x3
dτ

≤
t∫

0

(t − τ)−
1
2 ‖‖u1(τ )‖L2

h
‖∂1u(τ)‖L2

h
‖L2

x3
dτ

≤
t∫

0

(t − τ)−
1
2 ‖u1(τ )‖L∞

x3
L2

h
‖∂1u(τ)‖L2

x3
L2

h
dτ

≤
t∫

0

(t − τ)−
1
2 ‖u1(τ )‖L2

hL∞
x3

‖∂1u(τ)‖L2 dτ

≤
t∫

0

(t − τ)−
1
2 ‖u1(τ )‖

1
2

L2
hL2

x3

‖∂3u1(τ )‖
1
2

L2
hL2

x3

‖∂1u(τ)‖L2 dτ

≤
t∫

0

(t − τ)−
1
2 ‖u1‖

1
2
L2‖∂3u1‖

1
2
L2‖∂1u(τ)‖L2 dτ.

Invoking the ansatz in (2.9) through (2.12) yields, for any σ > 1
2 ,

t∫
‖eν�h(t−τ)u1∂1u(τ)‖L2 dτ
0
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≤ C2
0 ε2

t∫
0

(t − τ)−
1
2 (1 + τ)−

σ
4 (1 + τ)−

σ
4 (1 + τ)−

σ
2 − 1

2 dτ

= C2
0 ε2

t∫
0

(t − τ)−
1
2 (1 + τ)−σ− 1

2 dτ

≤ C2
0 ε2

(
(1 + t)−

1
2 + (1 + t)−σ

)
≤ C2

0 ε2 (1 + t)−
σ
2

≤ C0

128
ε (1 + t)−

σ
2 , (2.30)

where we have invoked (2.27). Inserting the upper bounds in (2.26), (2.28), (2.29) and (2.30) in 
(2.25), we find

‖u(t)‖L2 ≤ C0

2
ε (1 + t)−

σ
2 . (2.31)

We now estimate ‖∂3u(t)‖L2 . Applying ∂3 to (2.24) and then taking the L2-norm, we have

‖∂3u(t)‖L2 ≤ ‖eν�ht ∂3u0‖L2 +
t∫

0

‖eν�h(t−τ)∂3(u · ∇u)(τ )‖L2 dτ. (2.32)

As in (2.26), we have

‖eν�ht ∂3u0‖L2 ≤ C (1 + t)−
σ
2

(
‖∂3u0‖H−σ

h
+ ‖u0‖L2

)
≤ C0

4
ε (1 + t)−

σ
2 . (2.33)

To estimate the second part in (2.32), we write

∂3(u · ∇u) = ∂3u1 ∂1u + u1∂3∂1u + ∂3u2∂2u + u2∂3∂2u

+∂3u3∂3u + u3∂33u (2.34)

and realize that u3∂33u1 and u3∂33u2 are the terms with the worst possible decay rates. We deal 
with them first.

t∫
0

‖eν�h(t−τ)u3 ∂33u(τ)‖L2 dτ

≤
t∫ ∥∥∥‖eν�h(t−τ)u3 ∂33u(τ)‖L2

h

∥∥∥
L2

x3

dτ
0
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≤ C

t∫
0

(t − τ)−
1
2

∥∥∥‖u3 ∂33u(τ)‖L1
h

∥∥∥
L2

x3

dτ

≤ C

t∫
0

(t − τ)−
1
2

∥∥∥‖u3‖L2
h
‖∂33u(τ)‖L2

h

∥∥∥
L2

x3

dτ

≤ C

t∫
0

(t − τ)−
1
2 ‖u3‖L2

hL∞
x3

‖∂33u‖L2 dτ

≤ C

t∫
0

(t − τ)−
1
2 ‖u3‖

1
2
L2 ‖∂3u3‖

1
2
L2 ‖∂33u‖L2 dτ

≤ C

t∫
0

(t − τ)−
1
2 ‖u3‖

1
2
L2 ‖∂1u1 + ∂2u2‖

1
2
L2 ‖∂3u‖

2
3
L2 ‖∂4

3 u‖
1
3
L2 dτ.

We now invoke the ansatz in (2.9) through (2.12) to obtain, for 3
4 ≤ σ < 1,

t∫
0

‖eν�h(t−τ)u3 ∂33u(τ)‖L2 dτ

≤ C C2
0 ε2

t∫
0

(t − τ)−
1
2 (1 + τ)−

σ
4 (1 + τ)−

1
4 − σ

4 (1 + τ)−
σ
3 dτ

= C C2
0 ε2

t∫
0

(t − τ)−
1
2 (1 + τ)−

5
6 σ− 1

4 dτ

≤ C C2
0 ε2 (1 + t)−

5
6 σ+ 1

4

≤ C C2
0 ε2 (1 + t)−

σ
2 .

The last inequality is exactly where we need σ ≥ 3
4 . That is, σ ≥ 3

4 is imposed to ensure that

−5

6
σ + 1

4
≤ −σ

2
.

The other terms in (2.34) can be dealt with similarly. For example, the first term can be bounded 
by

t∫
‖eν�h(t−τ)∂3u1 ∂1u(τ)‖L2 dτ
0
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≤
t∫

0

∥∥∥‖eν�h(t−τ)∂3u1 ∂1u(τ)‖L2
h

∥∥∥
L2

x3

dτ

≤ C

t∫
0

(t − τ)−
1
2

∥∥∥‖∂3u1 ∂1u(τ)‖L1
h

∥∥∥
L2

x3

dτ

≤ C

t∫
0

(t − τ)−
1
2

∥∥∥‖∂3u1‖L2
h
‖∂1u(τ)‖L2

h

∥∥∥
L2

x3

dτ

≤ C

t∫
0

(t − τ)−
1
2 ‖∂3u1‖L2

hL∞
x3

‖∂1u(τ)‖L2 dτ

≤ C

t∫
0

(t − τ)−
1
2 ‖∂3u1‖

1
2
L2 ‖∂33u1‖

1
2
L2 ‖∂1u(τ)‖L2 dτ

≤ C

t∫
0

(t − τ)−
1
2 ‖∂3u1‖

5
6
L2 ‖∂4

3 u1‖
1
6
L2 ‖∂1u(τ)‖L2 dτ

≤ C C2
0 ε2

t∫
0

(t − τ)−
1
2 (1 + τ)−

5
12 σ (1 + τ)−

1
2 − σ

2 dτ

≤ C C2
0 ε2

t∫
0

(t − τ)−
1
2 (1 + τ)−

11
12 σ− 1

2 dτ

≤ C C2
0 ε2 (1 + t)−

11
12 σ .

Therefore,

t∫
0

‖eν�h(t−τ)∂3(u · ∇u)(τ )‖L2 dτ ≤ C C2
0 ε2 (1 + t)−

σ
2

≤ C0

4
ε (1 + t)−

σ
2 , (2.35)

when ε is take to be sufficiently small. Combining (2.33) and (2.35) yields

‖∂3u(t)‖L2 ≤ C0

2
ε (1 + t)−

σ
2 . (2.36)

(2.31) and (2.36) together verify (2.15).
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It remains to prove (2.16). Applying ∇h to (2.24) and then taking the L2-norm, we have

‖∇hu(t)‖L2 ≤ ‖∇he
ν�htu0‖L2 +

t∫
0

‖∇he
ν�h(t−τ)(u · ∇u)(τ )‖L2 dτ. (2.37)

As in (2.26), we have, for ε sufficiently small,

‖∇he
ν�htu0‖L2 ≤ C (1 + t)−

σ+1
2

(
‖u0‖H−σ

h
+ ‖u0‖L2

)
≤ C0

4
ε (1 + t)−

σ+1
2 .

To estimate the second part in (2.37), we first apply Lemma 2.4 to obtain

t∫
0

‖∇he
ν�h(t−τ)(u · ∇u)(τ )‖L2 dτ

≤ C

t∫
0

(t − τ)−
1
2 ‖eν�h(t−τ)(u · ∇u)(τ )‖L2 dτ. (2.38)

To distinguish between the horizontal and the vertical derivatives, we write u · ∇u = u1∂1u +
u2∂2u + u3∂3u. We remark that we cannot directly invoke the same estimates as those in (2.25). 
For example, if we use the bound

‖eν�h(t−τ)u3∂3u‖L2 ≤ C (t − τ)−
1
2

∥∥∥‖u3∂3u‖L1
h

∥∥∥
L2

x3

as before, the integrand in (2.38) would involve (t − τ)−1, which is not integrable! To avoid this, 
we perform different estimates. Let q satisfy

1

q
= 1

2
+ σ

2
or q = 2

1 + σ
.

For 3
4 ≤ σ < 1, we have 1 < q < 2. We bound the worst term u3∂3u in (2.38). Applying 

Lemma 2.4 yields,

t∫
0

(t − τ)−
1
2 ‖eν�h(t−τ)u3∂3u(τ)‖L2 dτ

=
t∫

0

(t − τ)−
1
2

∥∥∥‖eν�h(t−τ)u3∂3u(τ)‖L2
h

∥∥∥
L2

x3

dτ

≤
t∫
(t − τ)−

1+σ
2

∥∥∥‖u3∂3u(τ)‖L
q
h

∥∥∥
L2

x3

dτ.
0
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We then bound 
∥∥∥‖u3∂3u(τ)‖L

q
h

∥∥∥
L2

x3

as in (2.19) to obtain

∥∥∥‖u3∂3u(τ)‖L
q
h

∥∥∥
L2

x3

≤ C ‖∇h · uh‖
1
2
L2 ‖u3‖σ− 1

2
L2 ‖∇hu3‖1−σ

L2 ‖∂3u‖L2 .

The term with u3∂3u in (2.38) is thus bounded by, for any 3
4 ≤ σ < 1,

t∫
0

‖∇he
ν�h(t−τ)u3∂3u(τ)‖L2 dτ

≤ C

t∫
0

(t − τ)−
1+σ

2 ‖∇h · uh‖
1
2
L2 ‖u3‖σ− 1

2
L2 ‖∇hu3‖1−σ

L2 ‖∂3u‖L2 dτ

≤ C C2
0 ε2

t∫
0

(t − τ)−
1+σ

2 (1 + τ)−( 3
2 −σ)( 1

2 + σ
2 ) (1 + τ)−

σ
2 (σ+ 1

2 ) dτ

= C C2
0 ε2

t∫
0

(t − τ)−
1+σ

2 (1 + τ)−
3
4 − σ

2 dτ

≤ C C2
0 ε2 (1 + t)−

1+σ
2

≤ 1

128
C0 ε (1 + t)−

1+σ
2 .

The terms with u1∂1u and u2∂2u in (2.38) can be bounded similarly and they admit the same 
upper bound. Therefore, we have verified that

‖∇hu(t)‖L2 ≤ C0

2
ε (1 + t)−

1+σ
2 .

This completes the proof of Theorem 1.1. �
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