
Available online at www.sciencedirect.com
ScienceDirect

J. Differential Equations 267 (2019) 5809–5850

www.elsevier.com/locate/jde

An approximating approach for boundary control of 

optimal mixing via Navier-Stokes flows

Weiwei Hu ∗, Jiahong Wu

Department of Mathematics, Oklahoma State University, Stillwater, OK 74078, United States

Received 11 December 2018; accepted 12 June 2019
Available online 2 July 2019

Abstract

The present work focuses on an approximating control design for optimal mixing of a non-dissipative 
scalar via Navier-Stokes flows in an open bounded and connected domain � ⊂ R2. The objective is to 
achieve optimal mixing at a given final time T > 0, via the active control of the flow velocity through the 
Navier slip boundary control, where Sobolev norm for the dual space (H 1(�))′ of H 1(�) is adopted for 
quantifying mixing. Both passive and active scalars governed by the transport equation will be investigated. 
Our current approach will lead to a more transparent optimality system for characterizing the optimal so-
lution compared to our previous work [12]. This is achieved by first introducing a small diffusivity to the 
transport equation and then establishing a rigorous analysis of convergence of the approximating control 
problem to the original one as the diffusivity converges to zero. Moreover, uniqueness of the optimal solu-
tion is obtained.
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1. Introduction

Consider a scalar field that is advected by an incompressible flow in an open bounded and 
connected domain � ⊂R2, with a sufficiently smooth boundary �. The transport equation is used 
to describe the mass distribution or scalar concentration, where molecular diffusion is assumed 
to be negligible. Consider the flow velocity induced by control inputs acting tangentially on the 
boundary of the domain through the Navier slip boundary conditions as addressed in [12]. Our 
motivation is based on the observation that moving walls accelerate mixing compared to fixed 
walls; see, e.g., [5–7,24]. The objective is to design an optimal Navier slip boundary control that 
optimizes mixing at a given final time T > 0. The system of equations reads

∂t θ + v · ∇θ = 0, (1.1)

∂tv − ν�v + v · ∇v + ∇p = ξθe2, (1.2)

∇ · v = 0, (1.3)

where θ is the mass distribution or scalar concentration, v is the velocity of the flow, ν > 0
is the viscosity, and p is the pressure. For the convenience of notation, we set ξ = 0 for the 
passive transport and ξ = 1 for the active transport, via buoyancy-driven flows modeled by the 
2D Boussinesq approximation. The Navier slip boundary conditions are given by [19],

v · n|� = 0 and (2νn ·D(v) · τ + αv · τ)|� = g · τ, (1.4)

where n and τ denote the outward unit normal and tangential vectors with respect to the domain 
�, and D(v) = (1/2)(∇v + (∇v)T ). The friction between the fluid and the wall is proportional 
to −v with the positive coefficient of proportionality α. The nonhomogeneous boundary term g
with g ·n|� = 0, is the control input, which is employed to generate the velocity field for mixing. 
The initial condition is given by

(θ(0), v(0)) = (θ0, v0). (1.5)

With the help of divergence-free condition (1.3) and no-penetration boundary condition v ·n|� =
0 in (1.4), it is easy to verify that; see, e.g., [3,8], any Lp-norm of θ is conserved, i.e.,

‖θ(t)‖Lp(�) = ‖θ0‖Lp(�), t ≥ 0, p ∈ [1,∞]. (1.6)

Throughout this paper, we use (·, ·) and 〈·, ·〉, without ambiguity, for the L2-inner products 
as well as the duality in the interior of the domain � and on the boundary �, respectively. The 
symbol C denotes a generic positive constant, which is allowed to depend on the domain as well 
as on indicated parameters.

1.1. Boundary control for optimal mixing

As discussed in our previous work [12], we study the vortex-enhanced mixing since it is 
widely recognized that mixing can be enhanced by introducing strong streamwise vortices [4,
26,27]. Consider the optimal control problem as follows: For a given T > 0, find a control g
minimizing the cost functional
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J (g) = 1

2
‖θ(T )‖2

(H 1(�))′ +
γ

2
‖g‖2

Uad
− ζ

2

T∫
0

‖∇ × v‖2
L2 dt, (P)

where ∇ × v = ∂1v2 − ∂2v1 stands for the vorticity, ζ > 0 is the regularization parameter for 
vorticity, Uad is the set of admissible controls, and the parameter γ > 0 is chosen to establish 
the relative weight depending on the first and the third term. However, it is also true that the 
long-time dynamics may be dominated by strong coherent vortices that can possibly slow down 
mixing. Therefore, parameter ζ can be used to test the sensitivity of mixing rate with respect to 
vorticity. Soblev norm ‖ · ‖(H 1(�))′ is adopted to quantify the degree of mixedness because of the 
property of weak convergence [18,23,25], which is defined by

‖f ‖(Hs(�))′ = sup
φ∈Hs(�)

|(f,φ)((Hs(�))′,H s(�))|
‖φ‖Hs

, f ∈ (Hs(�))′ for s > 0, (1.7)

where (f, φ)((Hs(�))′,H s(�)) = ∫
�

f φ̄ dx. We have the Gelfand triple

Hs(�) ⊂ L2(�) ⊂ (Hs(�))′, s > 0,

with the embeddings being continuous and compact. The space Hs(�) may be defined as the 
domain of an operator �s equipped with the norm ‖ · ‖Hs , where � is self-adjoint, positive 
and unbounded in L2(�). Correspondingly, the space (Hs(�))′ can be identified as the domain 
of �−s equipped with the norm ‖ · ‖(Hs(�))′ , and hence �2s ∈ L(Hs(�), (Hs(�))′). In this 
paper, we continue to adopt ‖ · ‖(H 1(�))′ for qualifying mixing as in [9,12]. In particular, we set 
� =A−1/2, where A is given by

Aφ = (−� + I )φ, φ ∈ D(A) = {φ ∈ H 2(�) : ∂φ

∂n
|� = 0}. (1.8)

Then D(�) = D(A1/2) = H 1(�) and D(�−1) = D(A−1/2) = (H 1(�))′.
To set up the abstract formulation for the velocity field, we use the same notations as defined 

in [12]

V s
n (�) = {v ∈ Hs(�) : div v = 0, v · n|� = 0}, s ≥ 0,

V s
n (�) = {g ∈ Hs(�) : g · n|� = 0}, s ≥ 0.

1.2. Preliminary results

To solve problem (P ), it is crucial to identify the set of admissible controls Uad , which is 
usually chosen to establish the well-posedness of problem (P ) and the existence of an optimal 
solution. In fact, derivation of Uad requires a more in-depth analysis in studying differentiability 
properties of the control-state map. In the current approach, the first-order optimality conditions 
for solving the minimum of J subject to model (1.1)–(1.4) will be derived by using the variational 
inequality, that is, if u is an optimal solution of problem (P1), then

J ′(u) · (g − u) ≥ 0, ∀g ∈ Uad, (1.9)
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where J ′(u) ·g stands for the Gâteaux derivative of J with respect to u in every direction g ∈ Uad . 
As a first step to carry out (1.9), one needs the map u 
→ (θ, v) to be Gâteaux differentiable, which 
gives rise to the following major difficulties [12].

Due to zero diffusivity and the nonlinear coupling v ·∇θ in the transport equation, establishing 
the well-posedness of the Gâteaux derivative of θ with respect to u, i.e., θ ′(u) · g, for g ∈ Uad , 
requires supt∈[0,T ] ‖∇θ‖L2(�) < ∞, which in turn demands the flow velocity to satisfy

T∫
0

‖∇v‖L∞(�) dτ < ∞. (1.10)

Therefore, the initial condition and the control input for system (1.1)–(1.5) have to be identified 
such that (1.10) holds. As shown in our recent work [12], for boundary control the time regularity 
on the boundary data has to be imposed on the cost functional J . Furthermore, establishing 
the a priori estimate (1.10) needs a sharp estimate on the state space so that the compatibility 
conditions for the boundary and initial data can be possibly avoided. The a priori estimate (1.10)
becomes the major obstruction since ‖∇v‖L∞ can not be bounded by ‖v‖H 2 based on Sobolev 
embedding in 2D domain [8,12,13]. Utilizing spectral decomposition analysis in [12], we were 
able to establish the existence of an optimal Navier slip boundary control to problem (P) for 
(θ0, v0) ∈ (L∞ ∩H 1) ×H 1 and the first-order optimality conditions for solving such a controller 
in both passive and active cases. This indicates that the compatibility conditions for initial and 
boundary data are not required for Navier slip boundary control, and hence the control input can 
act only on a portion of the boundary �. In addition, vorticity can be clearly addressed on the 
boundary using Navier slip boundary conditions. However, due to (1.10) the time derivative of 
control input was imposed on the cost functional in order to obtain the Gâteaux differentiability of 
(θ, v) with respect to u. For computational convenience, the first derivative ∂u/∂t was employed 
rather than the lower order fractional time derivatives. The set of admissible controls was chosen 
to be

Uad =
{
u ∈ L2(0, T ;V 1/2+δ

n (�)) : ∂u

∂t
∈ L2(0, T ;V 0

n (�))

}
, ∀δ > 0, (1.11)

equipped with the norm

‖u‖Uad
= ‖u‖

L2(0,T ;V 1/2+δ
n (�))

+ ‖∂u

∂t
‖L2(0,T ;V 0

n (�)).

As a consequence, the second derivative ∂2u
∂t2 appears in the optimality conditions, and therefore 

it is intractable to characterize the features of the optimal velocity field [12, Theorems 4.6 and 
5.5].

1.3. An approximating control approach

In this paper, we propose an approximating control strategy to lower the regularity required 
on the boundary data, which is applicable for solving more general optimal control problems 
governed by the semi-dissipative systems. A dynamical system is called semi-dissipative if the 
system is dissipative in some variables, but not in others [3].



W. Hu, J. Wu / J. Differential Equations 267 (2019) 5809–5850 5813
To relax the regularity required on the boundary data, we consider an approximating control 
approach by adding a small diffusion term ε�θ , for ε > 0, to the transport equation, and then 
establish a rigorous analysis of convergence of the approximating control problem to the original 
one as the diffusivity approaches to zero. The approximating control problem is formulated as 
follows: For a given T > 0, find a control gε minimizing the cost functional

Jε(gε) = 1

2
‖θε(T )‖2

(H 1(�))′ +
γ

2
‖gε‖2

Uεad
− ζ

2

T∫
0

‖∇ × vε‖2
L2(�)

dt, (Pε)

subject to an approximating system governed by

∂t θε + vε · ∇θε = ε�θε, ε > 0, (1.12)

∂tvε + vε · ∇vε + ∇p = ν�vε + ξθεe2, ξ ∈ {0,1}, (1.13)

with the Neumann boundary condition is imposed on the scalar equation

ε
∂θε

∂n
|� = 0 (1.14)

and the Navier slip boundary conditions

vε · n|� = 0 and (2νn ·D(vε) · τ + αvε · τ)|� = gε · τ. (1.15)

The initial condition is given by

(θε(0), vε(0)) = (θ0, v0) ∈ L∞(�) × V 1
n (�). (1.16)

With a small diffusivity in (1.12), it is possible to prove the existence of an optimal control to 
problem (Pε) for

gε ∈ Uεad = L2(0, T ;V 0
n (�)).

Moreover, the Gâteaux derivative J ′
ε(gε) · hε , for hε ∈ Uεad , is well-defined, and thus the varia-

tional inequality (1.9) can be established without involving the time derivatives of gε . It is also 
worth to point out that although the set of the admissible controls Uεad has low regularity in time 
and space, the optimal control g∗

ε solved from the resulting optimality system usually gains reg-
ularity [12]. The key is to investigate the relation between the approximating control problem 
(Pε) and the original one (P ). This approach has been applied to solve the passive mixing via 
Stokes flows in [10]. Although the parabolic regularization of the transport equation is standard, 
new and significant challenges are encountered in the treatment of the active scalar case when 
ξ = 1.

The outline of the rest of this paper is as follows. In Section 2 we first address the well-
posedness of the nonhomogeneous Navier slip boundary value problem (1.1)–(1.5) with low 
regularity on the boundary data. Next we analyze the convergence of the approximating system 
governed by (1.12)–(1.16) to the original one governed by (1.1)–(1.5). In Section 3 and Sec-
tion 4 we establish the existence of an optimal solution to the approximating control problem 



5814 W. Hu, J. Wu / J. Differential Equations 267 (2019) 5809–5850
(Pε) and derive the first-order necessary conditions of optimality by using a variational inequal-
ity. Then we show that the optimal solution (g∗

ε , v
∗
ε , θ∗

ε ) to problem (Pε) strongly converges to 
some (g∗, v∗, θ∗) as ε → 0, which turns out to be the optimal solution to the original problem 
(P ). In Section 5, we present the sufficient conditions on the parameters ζ , γ , and T , to obtain 
the uniqueness of the optimal solution (g∗, v∗, θ∗).

2. Well-posedness of the nonhomogeneous Navier slip boundary value problems

We first discuss the global well-posedness of the nonhomogeneous Navier slip boundary value 
problem (1.1)–(1.5) with low regularity on the boundary data. First recall the Stokes problem 
with Navier slip boundary conditions

− ν�v + ∇p = 0, (2.1)

∇ · v = 0, (2.2)

v · n|� = 0 and (2νn ·D(v) · τ + αv · τ)|� = g · τ. (2.3)

The following results and lemmas are provided in [11,12,14] and the references cited therein. To 
be self-contained, we present the complete statements.

Lemma 2.1. Assume that � is an open bounded and connected domain with boundary � ∈ C1,1. 
Let g ∈ H−1/2(�). Then, there exists the pressure unique up to a constant such that

‖v‖2
H 1 + ‖p‖2

L2 ≤ c‖g‖2
H−1/2(�)

. (2.4)

Moreover, if � ∈ C2,1 and g ∈ V
1/2
n (�), then (v, p) ∈ V 2

n (�) × H 1(�) and

‖v‖2
H 2 + ‖p‖2

H 1 ≤ c‖g‖2
H 1/2(�)

. (2.5)

Lemma 2.2. Let � ⊂R2 be an open bounded and connected domain with boundary � ∈ C2. Let 
v, u ∈ C2(�) ∩ C1(�) satisfying the Navier boundary conditions (1.4). Then

∫
�

�v · ψ dx = −2
∫
�

D(v) ·D(ψ)dx +
∫
�

(
1

ν
g · τ)(ψ · τ) dx −

∫
�

α

ν
(v · τ)(ψ · τ) dx. (2.6)

In particular, when ψ = v, we have

∫
�

�v · v dx = −2
∫
�

|D(v)|2 dx +
∫
�

(
1

ν
g · τ)(v · τ) dx −

∫
�

α

ν
(v · τ)2 dx. (2.7)

In addition, if letting ω = ∇ × v, then by [12, Lemma 2.2] we get

ω = (2κ − α

ν
)(v · τ) + 1

ν
g · τ on �, (2.8)
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where κ denotes the curvature of �. If each component of � is parameterized by arc length s, 
then ∂n

∂τ
= dn

ds
= κτ .

Define the bilinear form

a0(v,ψ) = 2(D(v),D(ψ)) + α

ν
〈v,ψ〉, v,ψ ∈ V 1

n (�).

By Korn and Poincare’s inequalities and trace theorem, it is easy to check that

c1‖v‖2
H 1 ≤ a0(v, v) ≤ c2‖v‖2

H 1,

for some constants c1, c2 > 0. Thus a0(·, ·) is H 1-coercive. Define the operator A : V 1
n (�) →

(V 1
n (�))′ by

(Av,ψ) = a0(v,ψ).

The Lax-Milgram Theorem implies that A ∈L(V 1
n (�), (V 1

n (�))′). This also allows us to identify 
A as an operator acting on V 0

n (�) with the domain

D(A) = {v ∈ V 1
n (�) : ψ 
→ a0(v,ψ) is L2-continuous}.

According to (2.6), A = −P� is the Stokes operator associated with the Navier slip boundary 
conditions, where P is the Leray projector on L2(�) on the space V 0

n (�) [22, p. 13]. Note that A
is self-adjoint, strictly positive, and hence the fractal powers of A are well-defined. It immediately 
follows that for v ∈ V 1

n (�)

c1‖A1/2v‖L2 ≤ ‖D(v)‖L2 ≤ c2‖A1/2v‖L2 . (2.9)

Moreover, it is proven in [12, Proposition 2.7] that the domains of Aσ for 0 ≤ σ ≤ 1 can be 
identified as follows

D(Aσ ) = V 2σ
n (�), 0 ≤ σ <

3

4
, (2.10)

and D(Aσ ) = {v ∈ V 2σ
n (�) : (2νn ·D(v) · τ + αv · τ)|� = 0}, 3

4
< σ ≤ 1.

Furthermore, the Poincaré inequality holds

‖Aαv‖L2 ≤ λ
α−β
1 ‖Aβv‖L2, 0 ≤ α ≤ β ≤ 1. (2.11)

To address the nonhomogeneous boundary value problem, we define the Navier slip boundary 
operator N : L2(�) → V 0

n (�) by

Ng = v ⇐⇒ a0(v,ψ) = 〈1

ν
g,ψ〉, ψ ∈ V 1

n (�).

Based on (2.6) in Lemma 2.2, v = Ng satisfies the Stokes problem (2.1)–(2.3) and
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N∗Aψ = 1

ν
ψ |�, ψ ∈ D(A). (2.12)

Moreover, by Lemma 2.1 and (2.10)

N : L2(�) → V
3/2
n (�) ⊂ V

3/2−ε
n (�) =D(A3/4−ε/2), ε > 0,

and thus

A3/4−ε/2N ∈ L(L2(�),V 0
n (�)). (2.13)

By virtue of (2.4) and (2.10) it is also true that

A1/2N ∈ L(H−1/2(�),V 0
n (�)). (2.14)

Making a change of variable, we can rewrite the solution to the nonhomogeneous boundary 
value problem (1.2)–(1.5) by using the variation of parameters formula

v(t) = e−νAtv0 +
t∫

0

e−νA(t−τ)P (v · ∇v)dτ +
t∫

0

e−νA(t−τ)P (ξθe2) dτ + (Lg)(t), (2.15)

where e−νAt , t ≥ 0, is an analytic semigroup generated by −vA on V 0
n (�) and L in (2.15) is 

given by

(Lg)(t) =
t∫

0

νAe−νA(t−τ)Ng(τ) dτ. (2.16)

The following properties hold for analytic semigroups (cf. [20, p. 74, Theorem 6.13], [15, Propo-
sition 0.1]),

e−νAt ∈ L
(
V 0

n (�),L2(0, T ;D(A1/2))
)

, (2.17)

‖(νA)σ e−νAt‖ ≤ M0t
−σ e−ωt , σ ≥ 0, (2.18)

for M0 ≥ 1, ω > 0. Also,

t∫
0

e−νA(t−τ) · dτ : continuous L2(0, T ;V 0
n (�)) → L2(0, T ;D(A)) (2.19)

and

t∫
0

e−νA(t−τ) · dτ : continuous L2(0, T ;V 0
n (�)) → C([0, T ];D(A1/2)). (2.20)
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For v · n|� = 0, the regularity properties of L can be derived by following the similar ap-
proaches as in (cf. [1, Theorem 3.1.4, Theorem 3.1.8], [15, Lemmas 3.2.2–3.2.3], and [21, 
Theorems 2.5–2.6]). For 0 ≤ s < 1/2,

L ∈ L
(
L2(0, T ;V 2s

n (�) ∩ Hs(0, T ;V 0
n (�)),

L2(0, T ;V 2s+3/2
n (�)) ∩ Hs+3/4(0, T ;V 0

n (�)
)
. (2.21)

For 1/2 < s ≤ 1, (2.21) holds if g(0) = 0. With the help of (2.14), (2.10), and (2.19) we get

L ∈ L
(
L2(0, T ;V −1/2

n (�)),L2(0, T ;V 1
n (�))

)
. (2.22)

Furthermore, the L2(0, T ; ·)-adjoint operator L∗ of L is given by

(L∗ψ)(t) =
T∫

t

νN∗Ae−νA(τ−t)ψ(τ) dτ = (

T∫
t

e−νA(τ−t)ψ(τ) dτ)|�. (2.23)

Slightly modifying the proof in [1, Theorem 3.1.9] yields

L∗∈ L
(
L2(0, T ;V 2s

n (�)) ∩ Hs(0, T ;V 0
n (�)),L2(0, T ;V 2s+3/2

n (�)) ∩ Hs+3/4(0, T ;V 0
n (�))

)
,

(2.24)

for 0 ≤ s ≤ 1. The results in (2.21) and (2.24) are obtained by using the regularity of N
given by (2.13), the properties of an analytic semigroup given by (2.17)–(2.20), and the in-
termediate derivative theorem, based on the similar procedures as in the proofs of (cf. [15, 
Lemmas 3.2.2–3.2.3], [1, Theorem 3.1.4 and Theorem 3.1.8], and [21, Theorems 2.5–2.6]).

Now we are in a position to discuss the well-posedness of the nonhomogeneous Navier slip 
boundary value problem (1.1)–(1.5) with different initial data.

Let

S = L2(0, T ;V 1/2+δ
n (�)) ∩ H 1/4+2/δ(0, T ;V 0

n (�)), ∀δ > 0, (2.25)

equipped with the norm

‖g‖S = ‖g‖
L2(0,T ;V 1/2+δ

n (�))
+ ‖g‖H 1/4+2/δ(0,T ;V 0

n (�)). (2.26)

The following theorem provides a sharper estimate on the boundary data in order to establish the 
well-posedness of (1.1)–(1.5) compared to [12, Theorem 4.1 and Theorem 5.2], where the first 
order time derivative is required on g.

Theorem 2.3. Consider the nonhomogeneous boundary value problem (1.1)–(1.5).

(1) If (θ0, v0) ∈ L∞(�) × V 1
n (�), g ∈ S , then for any T > 0, there exists a unique global solu-

tion to (1.1)–(1.5) satisfying

(θ, v) ∈ L∞(0, T ;L∞(�)) × (C([0, T ];V 1
n (�)) ∩ L2(0, T ;V 2

n (�)), (2.27)
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and

‖θ‖L∞(0,T ;L∞(�)) + ‖v‖L∞(0,T ;H 1(�)) + ‖v‖L2(0,T ;H 2(�)) + ‖∂v

∂t
‖L2(0,T ;L2(�))

≤ C(‖θ0‖L∞,‖v0‖H 1,‖g‖S , T ). (2.28)

(2) If (θ0, v0) ∈ H 1(�) × V 1
n (�) and g ∈ S , then for any T > 0, there exists a unique global 

solution to (1.1)–(1.5) satisfying

(θ, v) ∈ L∞(0, T ;H 1(�)) × (C([0, T ];V 1
n (�)) ∩ L2(0, T ;V 2

n (�))), (2.29)

‖θ‖L∞(0,T ;H 1(�)) + ‖v‖L∞(0,T ;H 1(�)) + ‖v‖L2(0,T ;H 2(�)) + ‖∂v

∂t
‖L2(0,T ;L2(�))

≤ C(‖θ0‖H 1,‖v0‖H 1,‖g‖S , T ), (2.30)

and (1.10).

Proof. It suffices to prove these results hold for the active scalar case, i.e., ξ = 1.
Part (1). The proof for (2.27) with homogeneous Naiver slip boundary conditions has been 

established in [11, Theorem 1.1], where to show the existence of a unique solution, one needs

T∫
0

‖v‖H 2 dt < ∞. (2.31)

For g �= 0, it suffices to identify the regularity of the boundary datum g such that

Lg ∈ L∞(0, T ;V 1
n (�)) ∩ L2(0, T ;V 2

n (�)). (2.32)

Applying the variation of parameters formula (2.15) and the regularity of L given by (2.21), we 
obtain

‖Lg‖L2(0,T ;V 2
n (�))∩H 1(0,T ;V 0

n (�)) ≤ ‖g‖S , (2.33)

where L2(0, T ; V 2
n (�)) ∩ H 1(0, T ; V 0

n (�)) ⊂ C([0, T ]; V 1
n (�)) by [16, Theorem 3.1, p. 19]. 

Thus (2.32) follows immediately.
Part (2). To complete the proof for (2), we make use of the results in [12, Theorem 5.2] for 

(θ0, v0) ∈ H 1(�) × V 1
n (�). It remains to show that

T∫
0

‖∇(Lg)‖L∞ dt < ∞,

for g ∈ S . Using Agmon’s inequality for d = 2 together with (2.21) yields
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T∫
0

‖∇(Lg)‖L∞ dt ≤ C
√

T (

T∫
0

‖Lg‖2
H 2+ε dt)1/2 ≤ C

√
T ‖g‖S , (2.34)

for some 0 < ε < 1/2 and ε ≤ δ. �
Next theorem establishes the global well-posedess of the approximating system (1.12)–(1.16). 

The proof can be easily carried out using the variation of parameters formula together with energy 
estimates for (vε, θε).

Theorem 2.4. Consider the approximating system (1.12)–(1.16).

(1) If (θε0, vε0) ∈ L∞(�) × V 1
n (�) and gε ∈ L2(0, T ; V 0

n (�)), there exists a unique weak solu-
tion (θε, vε) satisfying

(θε, vε) ∈(
C([0, T ];L∞(�)) ∩ L2(0, T ;H 1(�))

)
× (

C([0, T ];V 1/2
n (�)) ∩ L2(0, T ;V 3/2

n (�))
)
. (2.35)

Moreover, if (θε0, vε0) ∈ L∞(�) × V 1
n (�) and gε ∈ S , then

(θε, vε)∈
(
C([0, T ];L∞(�)) ∩ L2(0, T ;H 1(�))

)×(
C([0, T ];V 1

n (�)) ∩ L2(0, T ;V 2
n (�))

)
.

(2.36)

(2) If (θε0, vε0) ∈ H 1(�) × V 1
n (�) and gε ∈ S , then

(θε, vε)∈
(
C([0, T ];H 1(�)) ∩ L2(0, T ;H 2(�))

) × (
C([0, T ];V 1

n (�)) ∩ L2(0, T ;V 2
n (�))

)
(2.37)

and

‖θε‖L∞(0,T ;H 1(�)) + √
ε‖θε‖L2(0,T ;H 2(�)) + ‖∂θε

∂t
‖L2(0,T ;L2(�))

+ ‖vε‖L∞(0,T ;H 1(�)) + ‖vε‖L2(0,T ;H 2(�)) + ‖∂vε

∂t
‖L2(0,T ;L2(�))

≤ C(‖θε0‖H 1,‖vε0‖H 1,‖gε‖S , T ). (2.38)

2.1. Convergence of the approximating system

This section addresses the convergence issues of the approximating system (1.12)–(1.16) to 
the original system (1.1)–(1.5).

Proposition 2.5. Assume that (θε0, vε0) = (θ0, v0) ∈ L∞(�) × V 1
n (�) and gε = g ∈ S . Let 

(θε, vε) and (θ, v) be the corresponding solutions to the approximating system (1.12)–(1.16)
and the original system (1.1)–(1.5), respectively. Then for any T > 0,
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‖θε − θ‖(H 1(�))′ → 0 uniformly in t ∈ [0, T ], as ε → 0, (2.39)

‖vε − v‖L2 → 0 uniformly in t ∈ [0, T ], as ε → 0, (2.40)

and

T∫
0

‖A1/2vε − A1/2v‖2
L2 → 0 as ε → 0. (2.41)

The proof utilizes the Yudovich techniques and the Osgood inequality as in [11, Theorem 1.2]. 
We present the necessary details for the convenience of the reader. The following Osgood type 
inequality will be used, which can be found in [11, Lemma 2.5].

Lemma 2.6. Let T > 0 and I = [0, T ). Let f ≥ 0 be a measurable function on I . Let A ≥ 0 and 
B ≥ 0, and A, B ∈ L1(I ). Let M > 0 be a fixed constant. Assume that f satisfies, for t ∈ I ,

df

dt
≤ Af +Bf (lnM − lnf ).

Then, for t ∈ I ,

f (t) ≤ f (0)e
− ∫ t

0 B(τ )dτ

M1−e
− ∫ t

0 B(τ )dτ

e
∫ t

0 A(s)e
∫ t
s B(τ )dτ ds . (2.42)

Especially, f (0) = 0 implies f (t) = 0 for t ∈ I .

Proof of Proposition 2.5. Let � = θε − θ , P = pε − p and V = vε − v. Then

∂t� + v · ∇� + V · ∇θε = ε�θε, (2.43)

∂tV + v · ∇V + V · ∇vε = −∇P + ν�V + ξ��e2, (2.44)

with boundary conditions

V · n|� = 0 and (2νn ·D(V ) · τ + αV · τ)|� = 0. (2.45)

The initial condition is given by

(�(0),V (0)) = (0,0).

Define η and ηε by

�η = θ in �,
∂η

∂n
+ η = 0 on �, (2.46)

�ηε = θε in �,
∂ηε

∂n
+ ηε = 0. on �. (2.47)

There exist unique solutions to equations (2.46)–(2.47). Let H = ηε − η. Then

�H = � in �,
∂H

∂n
+ H = 0 on �. (2.48)
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Taking the inner product of the velocity equation with V yields

1

2

d

dt
‖V ‖2

L2 = ν

∫
�

�V · V dx +
∫
�

ξ��e2 · V dx −
∫
�

V · ∇vε · V dx. (2.49)

By Lemma 2.2,

∫
�

�V · V dx = −2
∫
�

|D(V )|2 dx −
∫
�

α(V · τ)2 dx

and

|
∫
�

V · ∇vε · V dx| ≤ ‖∇vε‖L2‖V ‖2
L4 ≤ C‖∇vε‖L2‖V ‖L2‖∇V ‖L2

≤ ν

4
(2

∫
�

|D(V )|2 dx +
∫
�

α(V · τ)2 dx) + C‖∇vε‖2
L2‖V ‖2

L2 .

Moreover,

|
∫

ξ��e2 · V dx| ≤ ξ‖∇V ‖L2‖∇H‖L2 ≤ ξ
ν

4
(2

∫
�

|D(V )|2 +
∫
�

α(V · τ)2 dx) + Cξ‖∇H‖2
L2 .

Thus,

d

dt
‖V ‖2

L2 + ν(2
∫
�

|D(V )|2 +
∫
�

α(V · τ)2 dx) ≤ C‖∇vε‖2
L2‖V ‖2

L2 + Cξ‖∇H‖2
L2 . (2.50)

Taking the inner product of the scalar equation (2.43) with H yields

d

dt
‖∇H‖2

L2 =
∫
�

v · ∇(�H)H dx +
∫
�

V · ∇θεH dx −
∫
�

ε(�θε)H dx. (2.51)

Using (2.48), we have the first term on the right hand side of (2.51) satisfy

|
∫
�

v · ∇(�H)H dx| = |
∫
�

v · ∇((�H)H)dx −
∫
�

(�H)v · ∇H dx|

= |−
∫
�

∂k∂kH(v · ∇H)dx|

= |
∫

∂kH(∂kv · ∇H + v · ∇∂kH)dx −
∫

∂H

∂n
(v · ∇H)dx|
� �
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= |
∫
�

∂kH∂kv ·∇H dx + (H,v ·∇H)(H 1/2(�),H−1/2(�))|

≤ |
∫
�

∇H · ∇v · ∇H dx| + ‖∇H‖L2‖v · ∇H‖L2, (2.52)

where

‖∇H‖L2‖v · ∇H‖L2 ≤ C‖v‖L∞‖∇H‖2
L2 ≤ C‖v‖H 2‖∇H‖2

L2 . (2.53)

To estimate the first term on the right hand side of (2.52), we employ Yudovich’s method. Recall 
that by Sobolev’s embedding inequality, for any 2 ≤ q < ∞,

‖∇v‖Lq(�) ≤ C(�)q ‖∇v‖L2(�) + C(�)q ‖∇∇v‖L2

≤ C(�)q ‖∇v‖L2 + C(�)q ‖v‖H 2,

which gives

sup
q≥2

‖∇v‖Lq

q
≤ C ‖v‖H 2 . (2.54)

For any 2 < q < ∞, by Hölder’s inequality,

|
∫
�

∇H · ∇v · ∇H dx| ≤ ‖∇H‖L2 ‖∇v‖Lq ‖∇H‖
L

2q
q−2

≤ ‖∇H‖L2 ‖∇v‖Lq ‖∇H‖1− 2
q

L2 ‖∇H‖
2
q

L∞ .

Let M ≡ ‖∇H‖L∞ . Then for any 2 < r < ∞,

M ≡ ‖∇H‖L∞ ≤ C ‖∇∇H‖Lr ≤ C‖θ‖Lr < ∞.

Thus by (2.54), for any 2 < q < ∞,

|
∫
�

∇H · ∇v · ∇H dx| ≤ C M
2
q ‖∇H‖2(1− 1

q
)

L2 ‖∇v‖Lq

≤ C q‖v‖H 2 M
2
q ‖∇H‖2− 2

q

L2

= C ‖v‖H 2 ‖∇H‖2
L2

(
qM

2
q ‖∇H‖− 2

q

L2

)
.

By taking q = 2 ln(M/‖∇H‖L2), we obtain the minimizer of qM
2
q ‖∇H‖− 2

q

2 , that is,

L
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min
2≤q<∞qM

2
q ‖∇H‖− 2

q

L2 = 2e
(
lnM − ln‖∇H‖L2

)
.

Consequently,

|
∫
�

∇H · ∇v · ∇H dx| ≤ C‖v‖H 2‖∇H‖2
L2(lnM − ln‖∇H‖L2). (2.55)

For the second term of the right hand of (2.51), we have

|
∫
�

V · ∇θεH dx| = |
∫
�

V · ∇(θεH)dx −
∫
�

θεV · ∇H dx|

≤ ‖θε‖L∞(‖V ‖2
L2 + ‖∇H‖2

L2). (2.56)

The third term of the right hand of (2.51) satisfies

−ε

∫
(�θε)H dx = −ε

∫
(��)H dx − ε

∫
(�θ)H dx

= −ε

∫
�2 dx − ε

∫
θ�H dx, (2.57)

where the second term on the right hand is bounded by

ε

∫
θ�dx ≤ ε

2

∫
�2 dx + ε

2

∫
θ2 dx. (2.58)

Finally, combining (2.51) with (2.52)–(2.58) gives

d

dt
‖∇H‖2

L2 + ε

2
‖�‖2

L2 ≤ C‖v‖H 2‖∇H‖2
L2(ln M̃ − ln‖∇H‖L2)

+ ‖θε‖L∞(‖V ‖2
L2 + ‖∇H‖2

L2) + ε

2
‖θ‖2

L2, (2.59)

which, together with (2.50), yields

d

dt
(‖∇H‖2

L2 + ‖V ‖2
L2) ≤ C‖∇vε‖2

L2‖V ‖2
L2 + Cξ‖∇H‖2

L2

+ C‖v‖H 2‖∇H‖2
L2(ln M̃ − ln‖∇H‖L2)

+ ‖θε‖L∞(‖V ‖2
L2 + ‖∇H‖2

L2) + ε

2
‖θ‖2

L2 . (2.60)

Let Y(t) = δ + ‖V ‖2
L2 + ‖∇H‖2

L2 for any small δ > 0. Then Y(t) satisfies

d

dt
Y ≤ C(ξ + ‖∇vε‖2

L2 + ‖θε‖L∞)Y + C‖v‖H 2Y(ln M̃ − lnY) + ε

2
‖θ0‖2

L2, (2.61)
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for any ε > 0. By Osgood inequality (2.42) and (2.28), letting ε, δ → 0 yields ‖V ‖2
L2 +

‖∇H‖2
L2 → 0 uniformly in t ∈ [0, T ], and hence (2.39)–(2.40) hold. (2.41) follows immediately 

from (2.50). �
To establish the convergence of the adjoint systems later on, we shall need a stronger conver-

gence of θε to θ . To this end, we let (θ0, v0) ∈ H 1(�) × V 1
n (�) in the following result.

Proposition 2.7. Assume that (θε0, vε0) = (θ0, v0) ∈ H 1(�) × V 1
n (�) and gε = g ∈ S . Let 

(θε, vε) and (θ, v) be the corresponding solutions to the approximating system (1.12)–(1.16)
and the original system (1.1)–(1.5), respectively. Then for any T > 0,

‖θε − θ‖L2 → 0, uniformly in t ∈ [0, T ], as ε → 0, (2.62)

‖vε − v‖H 1 → 0, uniformly in t ∈ [0, T ], as ε → 0, (2.63)

T∫
0

‖Avε − Av‖2
L2 dt → 0, as ε → 0. (2.64)

Proof. The convergence results (2.62)–(2.64) can be established by applying L2-estimate for �
and H 1-estimate for V together with the regularity result (2.29). Taking the inner product of 
equation (2.43) with � gives

1

2

d

dt
‖�‖2

L2 ≤ ‖V ‖L∞‖∇θε‖L2‖�‖L2 + ε‖�θε‖L2‖�‖L2

≤ C‖AV ‖L2‖∇θε‖L2‖�‖L2 + ε‖�θε‖L2‖�‖L2

≤ ν

8
‖AV ‖2

L2 + C(‖∇θε‖2
L2 + 1)‖�‖2

L2 + ε2

2
‖�θε‖2

L2, (2.65)

which implies

‖�‖2
L2 ≤ ν

4

T∫
0

‖AV ‖2
L2 dt + C

T∫
0

(‖∇θε‖2
L2 + 1)‖�‖2

L2 dt + ε2

T∫
0

‖�θε‖2
L2 dt. (2.66)

To estimate 
∫ T

0 ‖AV ‖L2 dt , we employ the following variation of parameters formulation for V

V (t) = e−νAtV (0) −
t∫

0

e−νA(t−τ)P (v · ∇V + V · ∇vε) dτ +
t∫

0

e−νA(t−τ)P (ξ�e2) dτ,

(2.67)

where V (0) = 0. According to (2.19)–(2.20) we get
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‖A1/2V ‖2
L2 + ν

T∫
0

‖AV ‖2
L2 dt ≤ C

T∫
0

‖P (v · ∇V + V · ∇vε)‖2
L2 dt + Cξ2

T∫
0

‖�‖2
L2 dt

≤ C

T∫
0

(‖v‖2
L4‖∇V ‖2

L4 + ‖V ‖2
L∞‖∇vε‖2

L2) dt + Cξ2

T∫
0

‖�‖2
L2 dt

≤ C

T∫
0

‖v‖L2‖A1/2v‖L2‖A1/2V ‖L2‖AV ‖L2 dt

+ C

T∫
0

‖A1/2V ‖3/2
L2 ‖AV ‖1/2

L2 ‖A1/2vε‖2
L2 dt + Cξ2

T∫
0

‖�‖2
L2 dt

≤ C(

T∫
0

‖v‖2
L2‖A1/2v‖2

L2‖A1/2V ‖2
L2 dt)1/2(

T∫
0

‖AV ‖2
L2 dt)1/2

+ C(

T∫
0

‖A1/2V ‖2
L2‖A1/2vε‖8/3

L2 )3/4(

T∫
0

‖AV ‖2
L2 dt)1/4 + Cξ2

T∫
0

‖�‖2
L2 dt

≤ C

T∫
0

‖v‖2
L2‖A1/2v‖2

L2‖A1/2V ‖2
L2 dt + ν

4

T∫
0

‖AV ‖2
L2 dt

+ C

T∫
0

‖A1/2V ‖2
L2‖A1/2vε‖8/3

L2 dt + ν

4

T∫
0

‖AV ‖2
L2 dt + Cξ2

T∫
0

‖�‖2
L2 dt. (2.68)

Note from (2.38) that ε
∫ T

0 ‖�θε‖2
L2 dt < ∞. Thus combining (2.66) with (2.68) and letting 

ε → 0 yield

‖�‖2
L2 + ‖A1/2V ‖2

L2 + ν

4

T∫
0

‖AV ‖2
L2 dt ≤ C

T∫
0

‖v‖2
L2‖A1/2v‖2

L2‖A1/2V ‖2
L2 dt

+ C

T∫
0

‖A1/2V ‖2
L2‖A1/2vε‖8/3

L2 dt + C

T∫
0

(‖∇θε‖2
L2 + 1 + ξ2)‖�‖2

L2 dt

≤
T∫

0

C(‖v‖2
L2‖A1/2v‖2

L2 + ‖A1/2vε‖8/3
L2 + ‖∇θε‖2

L2 + 1 + ξ2)(‖�‖2
L2 + ‖A1/2V ‖L2) dt.

(2.69)



5826 W. Hu, J. Wu / J. Differential Equations 267 (2019) 5809–5850
By Poincaré inequality (2.11), ‖v‖L2 ≤ λ
−1/2
1 ‖A1/2v‖L2 , where λ1 > 0 is the lowest eigenvalue 

of A. According to (2.28) and (2.38), ‖A1/2v‖L2 , ‖A1/2vε‖L2 and ‖∇θε‖L2 are bounded. Apply-
ing Gronwall inequality to (2.69), we obtain ‖�‖L2 = ‖A1/2V ‖L2 = 0 and 

∫ T

0 ‖AV ‖2
L2 dt = 0. 

This completes the proof. �
3. Existence of an optimal solution in control space with low regularity

In this section we establish the existence of an optimal solution to problems (P ) and (Pε) for 
g ∈ Uad, where

Uad = L2(0, T ;V 0
n (�)). (3.1)

Recall the definition of a weak solution to (1.1)–(1.5).

Definition 3.1. For (θ0, v0) ∈ L∞(�) × V 1
n (�) and g ∈ L2(0, T ; V 0

n (�)), (θ, v) ∈ C([0, T ], 
(H 1(�))′) × C([0, T ]; V 0

n (�)) ∩ L2(0, T ; V 1
n (�)) is said to be a weak solution of equation 

(1.1)–(1.5), if (θ, v) satisfies

(
∂θ

∂t
, φ) − (vθ,∇φ) = 0, ∀φ ∈ H 1(�), (3.2)

(
∂v

∂t
,ψ) + 2ν(D(v),D(ψ)) + α〈v,ψ〉 + (v · ∇v,ψ) = 〈g,ψ〉 + (ξPθe2,ψ), ∀ψ ∈ V 1

n (�).

(3.3)

The existence of a weak solution to (3.2)–(3.3) is proven in [11, Propositions 3.1-3.2], which 
satisfies

(θ, v) ∈ L∞(0, T ;L∞(�)) × (
C([0, T ];V 1/2

n (�)) ∩ L2(0, T ;V 3/2
n (�))

)

and

‖θ‖L∞(0,T ;L∞(�)) + ‖v‖L∞(0,T ;H 1/2(�)) + ‖v‖L2(0,T ;H 3/2(�)) + ‖∂v

∂t
‖L2(0,T ;L2(�))

≤ C(‖θ0‖L∞,‖v0‖H 1,‖g‖Uad
, T ). (3.4)

However, in the active scalar case the uniqueness can not be obtained for the boundary data with 
such low regularity, as the a priori estimate (2.31) on velocity does not hold.

Theorem 3.2. Assume that (θ0, v0) ∈ L∞(�) ×V 1
n (�). There exists an optimal solution g∗ ∈ Uad

to problem (P).

Proof. The proof follows the similar procedures as in [12, Theorm 5.3]. We provide a com-
plete one for the convenience of the reader. Since J is bounded from below, we can choose a 
minimizing sequence {gm} ⊂ Uad such that

lim
m→∞J (gm) = inf

g∈Uad
J (g). (3.5)
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This also indicates that {gm} is uniformly bounded in Uad, and hence there exists a weakly con-
vergent subsequence, still denoted by {gm}, such that

gm → g∗ weakly in L2(0, T ;V 0
n (�)). (3.6)

Correspondingly, by (3.4) we can extract subsequences {vm} and {θm} such that

vm → v∗ weakly in L2(0, T ;H 3/2(�)), (3.7)

∂vm

∂t
→ ∂v∗

∂t
weakly in L2(0, T ;H−1/2(�)), (3.8)

and

θm → θ∗ weakly∗ in L∞(0, T ;L∞(�)), (3.9)

where by the compactness theorem [22, Theorem 2.2, p. 186], it follows that

vm → v∗ strongly in L2(0, T ;V 0
n (�)). (3.10)

Next we verify that (θ∗, v∗) is the weak solution based on Definition 3.1. Note that gm and 
(θm, vm) satisfy

(
∂θm

∂t
,φ) − (vmθm,∇φ) = 0, φ ∈ H 1(�), (3.11)

(
∂vm

∂t
,ψ) + 2ν(D(vm),D(ψ)) + α〈vm,ψ〉 + (vm · ∇vm,ψ)

= 〈g,ψ〉 + (ξθme2,ψ), ψ ∈ V 1
n (�), (3.12)

with (θm, vm) = (θ0, v0). Let (ϕ, �) be a vector of continuously differentiable function on [0, T ]
with (ϕ(T ), �(T )) = (0, 0). For each (φ, ψ) ∈ H 1(�) × V 1

n (�), we multiply (3.11) by ϕ and 
(3.12) by �, respectively, and then integrate by parts. After integrating the first term by parts for 
each equation, we get

−
T∫

0

(θm,φϕ̇) dt −
T∫

0

(vmθm,∇φϕ)dt = (θ0, φϕ(0)), (3.13)

−
T∫

0

(vm,ψ�̇)dt + 2ν(D(vm),D(ψ)) + α〈vm,ψ〉 + (vm · ∇vm,ψ�̇)

= 〈gm,ψ〉 + (θme2,ψ) + (v0,ψ�(0)). (3.14)

Since φϕ̇ ∈ L1(0, T ; L1(�)), it is straightforward to pass to the limit in the first term of the left 
hand side of (3.13) with the help of (3.9). To estimate the second term of the left hand side of 
(3.13), we use the convergence results (3.9)–(3.10) and get
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|
T∫

0

∫
�

(vmθm) · ∇(φϕ)dx dt −
T∫

0

∫
�

(v∗θ∗) · ∇(φϕ)dx dt |

≤ |
T∫

0

∫
�

(vmθm) · ∇(φϕ) − (v∗θm) · ∇(φϕ)dx dt |

+ |
T∫

0

∫
�

(v∗θm) · ∇(φϕ) − (v∗θ∗) · ∇(φϕ)dx dt |

≤
T∫

0

‖vm − v∗‖L2‖θm‖L∞‖∇φ‖L2 |ϕ|dt + |
T∫

0

∫
�

(θm − θ∗)v∗ · ∇(φϕ)dx dt |,

where

T∫
0

‖vm − v∗‖L2‖θm‖L∞‖∇φ‖L2 |ϕ|dt

≤ ‖vm − v∗‖L2(0,T ;V 0
n (�))‖θ0‖L∞‖∇φ‖L2‖ϕ‖L2(0,T ) → 0. (3.15)

Further note that v∗ · ∇(φϕ) ∈ L1(0, T ; L1(�)), and hence by (3.9)

|
T∫

0

∫
�

(θm − θ∗)v∗ · ∇(φϕ)dx dt | → 0. (3.16)

Passing to the limit in (3.11) yields

−
T∫

0

(θ∗, φϕ̇) dt −
T∫

0

(v∗θ∗,∇φϕ) = (θ0, φϕ(0)), φ ∈ H 1(�). (3.17)

To show

(vm · ∇vm,ψ�̇) → (v∗ · ∇v∗,ψ�̇), ψ ∈ V 1
n (�),

we write

(vm · ∇vm,ψ�) =
∫
�

vim∂i(vjmψj�)dx −
∫
�

vimvjm∂i(ψj�)dx

= −
∫
�

vimvjm∂i(ψj�)dx.
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Since {gm} is uniformly bounded in L2(0, T ; V 0
n (�)), by (3.4) {vm} is uniformly bounded in 

L2(0, T ; H 3/2(�)). Further utilizing (3.10) we have

|
T∫

0

∫
�

vimvjm∂i(ψj�)dx dt −
T∫

0

∫
�

v∗
i v∗

j ∂i(ψj�)dx dt |

≤ |
T∫

0

∫
�

(vim − v∗
i )vjm∂i(ψj�)dx dt | + |

T∫
0

∫
�

v∗
i (vjm − v∗

j )∂i(ψj�)dx dt |

≤
T∫

0

‖vm − v∗‖L2‖vm‖L∞‖∇ψ‖L2 |�|dt + |
T∫

0

‖v∗
i ‖L∞‖vjm − v∗

j ‖L2‖∂iψj‖L2 |�|dt |

≤ ‖vm − v∗‖L2(0,T ;V 0
n (�))‖vm‖L2(0,T ;H 1+ε(�))‖∇ψ‖L2‖�‖L∞(0,T )

+ ‖v∗
i ‖L2(0,T ;H 1+ε(�))‖vm − v∗‖L2(0,T ;V 0

n (�))‖∇ψ‖L2‖�‖L∞(0,T ) → 0, 0 < ε ≤ 1/2,

Moreover, it is straightforward to verify that (θ∗(0) − θ0, φϕ(0)) = 0 for any φ ∈ H 1(�) and 
(v∗(0) − v0, ψ�(0)) = 0 for any ψ ∈ V 1

n (�). Thus (θ∗(0), v∗(0)) = (θ0, v0). Finally, using the 
weakly lower semicontinuity property of norms defined in J yields

J (g∗) ≤ lim
m→∞ infJ (gm).

This completes the proof. �
Since the existence of an optimal controller to problem (P ) is independent of ε, the existence 

of an optimal controller to problem (Pε) can be obtained in a similar fashion.

Theorem 3.3. Assume that (θ0, v0) ∈ L∞(�) ×V 1
n (�). There exists an optimal solution g∗

ε ∈ Uad

to problem (Pε).

4. Optimality system of problem (Pε) and its convergence

In this section we derive the first-order necessary optimality conditions for problem (Pε) by 
using a variational inequality (cf. [16]), that is, if gε is an optimal solution of problem (Pε), then

J ′
ε(gε) · (fε − gε) ≥ 0, fε ∈ Uad. (4.1)

We first present the following two lemmas to address the linearized problem of (1.12)–(1.16) and 
its adjoint system.

Lemma 4.1. Assume (θ0, v0) ∈ L∞(�) × V 1
n (�) and g ∈ Uad . Let yε = (v′

ε(gε) · hε), zε =
θ ′
ε(gε) · hε , and qε = p′

ε(g) · hε be the Gâteaux derivatives of vε , θε , and pε with respect to 
gε in every direction hε in Uεad

, respectively. Then (yε, zε) is the solution of the linearized prob-
lem
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∂zε

∂t
− ε�zε + yε · ∇θε + vε · ∇zε = 0 in �, (4.2)

∂yε

∂t
− ν�yε + yε · ∇vε + vε · ∇yε + ∇qε = ξzεe2 in �, (4.3)

∇ · yε = 0 in �, (4.4)

with the Neumann boundary condition

ε
∂zε

∂n
|� = 0 (4.5)

and the Navier slip boundary conditions

yε · n|� = 0 and (2νn ·D(yε) · τ + αyε · τ)|� = hε · τ. (4.6)

The initial condition is given by (zε(0), yε(0)) = (0, 0). Moreover,

(zε, yε)∈
(
L∞(0, T ;L2(�)) ∩ L2(0, T ;H 1(�))

)
×

(
L∞(0, T ;V 1/2

n (�)) ∩ L2(0, T ;V 3/2
n (�))

)
.

(4.7)

The regularity result (4.7) can be easily derived by using the variation of parameters formula, 
with the help of the regularity of hε ∈ L2(0, T ; V 0

n (�)) and the regularity of θε and vε given by 
(2.35).

Lemma 4.2. The adjoint state (ρε, ȳε, q̄ε) associated with the cost functional Jε in (Pε) satisfies

− ∂ρε

∂t
− ε�ρε − vε · ∇ρε − ξ ȳε · e2 = 0 in �, (4.8)

− ∂ȳε

∂t
− ν�ȳε + (∇vε)

T ȳε − vε · ∇ȳε + ∇q̄ε = θε∇ρε + ζ∇⊥(∇ × vε) in �, (4.9)

∇ · ȳε = 0 in �, (4.10)

with the Neumann boundary condition

ε
∂ρε

∂n
|� = 0 (4.11)

and the Navier slip boundary conditions

ȳε · n|� = 0 and (2νn ·D(ȳε) · τ + αȳε · τ)|� = −ζ∇ × vε. (4.12)

The final time condition is given by

(ρε(T ), ȳε(T )) = (�−2θε(T ),0). (4.13)

Moreover, for (θε, vε) satisfying (2.35), we have
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(ρε, ȳε) ∈(L∞(0, T ;L∞(�) ∩ H 1(�)) ∩ L2(0, T ;H 2(�)))

×
(
L∞(0, T ;V 1/2

n (�)) ∩ L2(0, T ;V 3/2
n (�))

)
. (4.14)

Since ρε(T ) = �−2θε(T ) ∈ H 2(�), the compatibility condition for final and boundary data 
is required to hold, i.e., ε ∂ρε(T )

∂n
|� = 0. This is indeed true because of (1.8) that �−2θε(T ) =

A−1θε(T ) satisfies the Neumann boundary condition (4.11). The regularity property (4.14) holds 
due to θε∇ρε ∈ L2(0, T ; L2(�)), ∇⊥(∇ × vε) ∈ L2(0, T ; H−1/2(�)), and (2.8) that ∇ × vε |� =
(2κ − α

ν
)(vε · τ) + 1

ν
gε · τ ∈ L2(0, T ; V 0

n (�)). As a result of the trace theorem [17, Theorem 2.1, 
p. 9],

ȳε |� ∈ H 1/2(0, T ;V 1
n (�)). (4.15)

We now turn to derive the optimality system of problem (Pε) by employing the variational 
inequity (4.1), and then prove its convergence as ε → 0. First, rewrite the cost functional Jε as

Jε(gε) = 1

2
(�−2θε(T ), θε(T )) + γ

2

T∫
0

〈gε, gε〉dt − ζ

2

T∫
0

(∇ × vε,∇ × vε) dt. (P ′
ε)

Then the variational inequality (4.1) becomes

J ′
ε(gε) · hε = (�−2θε(T ), zε(T ))+γ

T∫
0

〈gε,hε〉dt − ζ

2

T∫
0

(∇ × vε,∇ × wε)dt ≥ 0, hε ∈ Uεad
.

(4.16)

Theorem 4.3. Let (θ0, v0) ∈ L∞(�) × V 1
n (�). Assume that g∗

ε is an optimal controller of prob-
lem (Pε). If (vε, θε) is the corresponding solution of (1.12)–(1.16) and (ρε, yε) is the solution of 
the adjoint equations (4.8)–(4.13) associated with (vε, θε), then

g∗
ε = − 1

γ
ȳε ∈ H 3/4(0, T ;V 3/2

n (�)). (4.17)

Proof. Multiplying (4.2) by ρε and integrating the first term with respect to t give

−
T∫

0

(
∂

∂t
ρε, zε

)
dt + (ρε(T ), zε(T ) −

T∫
0

(ε�ρε, zε)

+
T∫

0

(yε · ∇θε, ρε) dt −
T∫

0

(vε · ∇ρε, zε) dt = 0.

Based on the adjoint equation (4.8) and the final condition (4.13), we have
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(�−2θε(T ), zε(T )) = (ρε(T ), zε(T )) = −
T∫

0

(ξ ȳε · e2, zε) dt −
T∫

0

(yε · ∇θε, ρε) dt

= −
T∫

0

(ξzεe2, ȳε) dt +
T∫

0

(yε, θε∇ρε) dt. (4.18)

Thus (4.16) becomes

J ′(gε) · hε = −
T∫

0

(ξzεe2, ȳ) dt +
T∫

0

(y, θε∇ρε + ζ∇⊥(∇ × vε)) dt + γ

T∫
0

〈gε,hε〉dt

− ζ(2κ − α)

T∫
0

〈vε · τ, yε · τ 〉dt − ζ

T∫
0

〈gε · τ, yε · τ 〉dt, (4.19)

where by (4.9) we get

T∫
0

(yε, θε∇ρε + ζ∇⊥(∇ × vε)) dt

=
T∫

0

(
dyε

dt
, ȳε) dt +

T∫
0

[(−ν�yε, ȳε) + 〈hε, ȳ〉 + 〈yε · τ, ζ((2κ − α)vε · τ + hε · τ)〉

+ ((yε · ∇)vε + (vε · ∇)yε, ȳε) + (∇qε, ȳε)]dt

=
T∫

0

(ξzεe2, ȳε) dt +
T∫

0

〈hε, ȳε〉dt +
T∫

0

〈yε · τ, ζ((2κ − α)vε · τ + hε · τ 〉dt. (4.20)

Therefore, combining (4.19) with (4.20) follows

J ′(g∗
ε ) · hε =

T∫
0

〈hε, ȳε〉dt + γ

T∫
0

〈hε, g
∗
ε 〉dt ≥ 0, ∀h ∈ Uad,

which implies

g∗
ε = − 1

γ
ȳε |�. (4.21)

According to (4.15), we have g∗
ε ∈ H 1/2(0, T ; V 1

n (�)). Let (θ∗
ε , v∗

ε ) be the optimal solution to 
(1.13)–(1.16) associated with g∗

ε . Then by a bootstrap argument and (2.36) in Theorem 2.4 (2), 
we have v∗

ε ∈ L2(0, T ; V 2
n (�)), thus
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∇⊥(∇ × v∗
ε ) ∈ L2(0, T ;L2(�)) (4.22)

and ∇ × v∗
ε |� = (2κ − α

ν
)(v∗

ε · τ) + 1
ν
g∗

ε · τ ∈ H 1/2(0, T ; V 1
n (�)). Moreover, θ∗

ε (T ) ∈ L∞(�). 
With the help of the final condition (4.13), we get

(ρ∗
ε , ȳ∗

ε ) ∈(L∞(0, T ;L∞(�) ∩ H 1(�)) ∩ L2(0, T ;H 2(�)))

×
(
L∞(0, T ;V 1

n (�)) ∩ L2(0, T ;V 2
n (�))

)
(4.23)

and

‖ρ∗
ε ‖L∞(0,T ;L∞(�)) + ‖ρ∗

ε ‖L∞(0,T ;H 1(�)) + √
ε‖ρ∗

ε ‖L2(0,T ;H 2(�)) + ‖∂ρ∗
ε

∂t
‖L2(0,T ;L2(�))

+ ‖ȳ∗
ε ‖L∞(0,T ;H 1(�)) + √

ν‖ȳ∗
ε ‖L2(0,T ;H 2(�)) + ‖∂ȳ∗

ε

∂t
‖L2(0,T ;L2(�))

≤ C(‖�−2θ∗
ε (T )‖L2 ,‖g∗

ε ‖S , T ). (4.24)

As a result of (4.21) and (4.23)–(4.24),

g∗
ε ∈ H 3/4(0, T ;V 3/2

n (�)),

which completes the proof. �
4.1. Convergence of the adjoint system

This section is concerned with the convergence of the optimality system of the approximating 
problem (Pε) to that of problem (P ). Recall that the convergence of the approximating sys-
tem (1.12)–(1.16) to the original system (1.1)–(1.5) has been established in Proposition 2.7. To 
establish the convergence of the adjoint system (4.8)–(4.13), we need θ0 ∈ L∞(�) ∩ H 1(�).

Lemma 4.4. For (θε0, vε0) = (θ0, v0) ∈ (L∞(�) ∩ H 1(�)) × V 1
n (�) and g ∈ S , the solution to 

the adjoint problem (4.8)–(4.13) of the approximating system (1.12)–(1.16), associated with cost 
functional Jε , weakly converges to the following problem

− ∂ρ

∂t
− v · ∇ρ − ξ ȳ · e2 = 0 in �, (4.25)

− ∂ȳ

∂t
− ν�ȳ + (∇v)T ȳ − (v · ∇)ȳ + ∇q̄ = θ∇ρ + ζ∇⊥(∇ × v) in �, (4.26)

∇ · ȳ = 0 in �, (4.27)

with the Navier slip boundary conditions

ȳ · n|� = 0 and (2νn ·D(ȳ) · τ + αȳ · τ)|� = −ζ∇ × v (4.28)

and the final time condition
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(ρ(T ), ȳ(T )) = (�−2θ(T ),0), (4.29)

where (θ, v) is the solution to (1.1)–(1.5) corresponding to (θ0, v0) and g.

Proof. First of all, in light of Theorem 2.4, for (θ0, v0) ∈ (L∞(�) ∩H 1(�)) ×V 1
n (�) and g ∈ S

we have

(θ, v) ∈ L∞(0, T ; (L∞(�) ∩ H 1(�)) × (L∞(0, T ;V 1
n (�)) ∩ L2(0, T ;V 2

n (�)), (4.30)

thus ∇⊥(∇ × v) ∈ L2(0, T ; V 0(�)) and ∇ × v|� = (2κ − α
ν
)(v · τ) + 1

ν
g · τ ∈ S . Combining 

these with the final condition (4.29), we get

(ρ, ȳ) ∈ L∞(0, T ;L∞(�) ∩ H 1(�)) ×
(
L∞(0, T ;V 1

n (�)) ∩ L2(0, T ;V 2
n (�))

)
. (4.31)

Based on (4.30)–(4.31) it is easy to check that

T∫
0

‖v · ∇ρ‖2
L2 dt ≤

T∫
0

‖v‖2
L∞‖∇ρ‖2

L2 dt ≤
T∫

0

‖Av‖2
L2‖∇ρ‖2

L2 dt

≤ sup
t∈[0,T ]

‖∇ρ‖2
L2

T∫
0

‖Av‖2
L2 dt < ∞,

and hence, by (4.25)

∂ρ

∂t
∈ L2(0, T ;L2(�)). (4.32)

Moreover,

T∫
0

‖θ∇ρ‖2
L2 dt ≤

T∫
0

‖θ‖2∞‖∇ρ‖2
L2 dt ≤ sup

t∈[0,T ]
‖θ0‖2

L∞ sup
t∈[0,T ]

‖∇ρ‖2
L2T < ∞.

Next we show that the solution (ρε, ȳε, q̄ε) to the adjoint problem (4.8)–(4.13) of the approx-
imating system converges to some (ρ̃, ỹ, q̃) as ε → 0. According to the estimate (4.24) there 
exists a subsequence {(ρε, ȳε)} in terms of ε, such that

∇ρε → ∇ρ̃ weakly* in L∞(0, T ;L2(�)), as ε → 0, (4.33)

∂ρε

∂t
→ ∂ρ̃

∂t
weakly in L2(0, T ;L2(�)), as ε → 0, (4.34)

and
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�ȳε → �ỹ weakly in L2(0, T ;V 0
n (�)), as ε → 0, (4.35)

∇ȳε → ∇ỹ weakly in L2(0, T ;V 1
n (�)), as ε → 0, (4.36)

∂ȳε

∂t
→ ∂ỹ

∂t
weakly in L2(0, T ;L2(�)), as ε → 0, (4.37)

ȳε → ỹ strongly in H 1−δ/2(0, T ;V 2−δ
n (�)), 0 < δ < 2, as ε → 0, (4.38)

∇q̄ε → ∇q̃ weakly in L2(0, T ;L2(�)), as ε → 0.

It follows immediately from (4.22) and (4.38) that

∇⊥(∇ × vε) → ∇⊥(∇ × v) weakly in L2(0, T ;L2(�)),

∇ × vε |� → ∇ × v|� strongly in H 1/4−δ/2(0, T ;V 1/2−δ
n (�)), 0 < δ < 1/2.

It remains to prove the weak convergence of the product terms vε · ∇ρε , (∇vε)
T ȳε , vε · ∇ȳε and 

θε∇ρε , respectively. For φ ∈ L2(0, T ; H 1(�)), we have

|
T∫

0

∫
�

(vε · ∇ρε − v · ∇ρ̃)φ dx dt | ≤ |
T∫

0

∫
�

(vε − v) · ∇ρεφ dxdt |

+ |
T∫

0

∫
�

|v · ∇(ρε − ρ̃)φ dx dt |, (4.39)

where by Proposition 2.7 and (4.24),

|
T∫

0

∫
�

(vε − v) · ∇ρεφ dxdt | = |
T∫

0

∫
�

(vε − v) · ∇(ρεφ) − (vε − v)ρε · ∇φ dxdt |

= |
T∫

0

∫
�

(vε − v)ρε · ∇φ dxdt |

≤ sup
t∈[0,T ]

‖vε − v‖L2

T∫
0

‖ρε‖L∞‖∇φ‖L2 dt

≤ sup
t∈[0,T ]

‖vε − v‖L2 sup
t∈[0,T ]

‖ρε‖L∞‖∇φ‖L2(0,T ;L2(�))

√
T → 0, as ε → 0.

Moreover, from (4.30),

T∫
0

‖vφ‖L2 dt ≤
T∫

0

‖v‖L4‖φ‖L4 dt ≤
T∫

0

‖A1/2v‖L2‖∇φ‖L2 dt

≤ ( sup
t∈[0,T ]

‖A1/2v‖L2)(

T∫
‖∇φ‖2

L2 dt)1/2
√

T < ∞. (4.40)
0
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With the help of (4.33), we get

|
T∫

0

∫
�

v · ∇(ρε − ρ̃)φ dx dt | → 0, as ε → 0.

Therefore,

(vε · ∇)ρε → (v · ∇)ρ weakly in L2(0, T ;L2(�)), as ε → 0. (4.41)

For ψ ∈ L2(0, T ; H 1(�)), using the similar approaches as in the estimate of (4.39) together with 
(4.35)–(4.36) yields

(vε · ∇)ȳε → (v · ∇)ỹ weakly in L2(0, T ;V 0
n (�)).

Furthermore, based on (2.38) in Theorem 2.4 (2) and Proposition 2.7, it is easy to verity that 
‖∇vε · ψ‖L2(0,T ;L1(�)) < ∞, indenpendent of ε, ỹ · ψ ∈ L1(0, T ; L2(�)), and

|
T∫

0

∫
�

((∇vε)
T ȳε − (∇v)T ỹ) · ψ dx dt | = |

T∫
0

∫
�

((ȳε − ỹ) · ∇vε · ψ + ỹ · (∇vε − ∇v) · ψ dx dt |

≤ ‖ȳε − ỹ‖L2(0,T ;L∞(�)) sup
t∈[0,T ]

‖∇vε‖L2‖ψ‖L2(0,T ;L2(�))

+ sup
t∈[0,T ]

‖A1/2vε − A1/2v‖L2‖ỹ‖L2(0,T ;H 1(�))‖ψ‖L2(0,T ;H 1(�)) → 0, as ε → 0,

(4.42)

where we used (4.38) to obtain ‖ȳε − ỹ‖L2(0,T ;L∞(�)) ≤ ‖ȳε − ỹ‖L2(0,T ;H 2−δ(�)) → 0 for 0 <
δ < 1. Thus (4.42) yields

(∇vε)
T ȳε → (∇v)T ỹ weakly in L2(0, T ;V 0

n (�)), as ε → 0.

To show the weak convergence of θε∇ρε , we have

|
T∫

0

∫
�

(θε∇ρε − θ∇ρ̃)ψ dx dt | ≤ |
T∫

0

∫
�

(θε − θ)∇ρε · ψ dxdt | + |
T∫

0

∫
�

θ(∇ρε − ∇ρ̃) · ψ dx dt |,

(4.43)

where
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|
T∫

0

∫
�

(θε − θ)∇ρε · ψ dxdt | = |
T∫

0

∫
�

(θε − θ)∇ · (ρεψ) − (θε − θ)ρε∇ · ψ dxdt |

= |
T∫

0

(∫
�

(θε − θ)(ρεψ) · ndx −
∫
�

∇(θε − θ) · (ρεψ)dx
)
dt |

= |
T∫

0

∫
�

∇(θε − θ) · (ρεψ)dx dt |. (4.44)

By (2.38) and (4.30) there exists a subsequence {θε} associated with {vε} satisfying

θε → θ weakly* in L∞(0, T ;H 1(�)).

Employing the similar idea in the estimates of (4.40) gives ρεψ ∈ L1(0, T ; L2(�)). Thus (4.44)
converges to 0 as ε → 0. The second term on the right hand side of (4.43) converges to 0 due to 
(4.33) and θψ ∈ L1(0, T ; L2(�)). Therefore,

θε∇ρε → θ∇ρ̃ weakly in L2(0, T ;L2(�)), as ε → 0. (4.45)

Lastly, based on (2.29) in Theorem 2.3 (2) and (2.37) in Theorem 2.4 (2), it is clear that ∂θ
∂t

, ∂θε

∂t
∈

L2(0, T ; L2(�)). By virtue of Aubin-Lions Lemma, we get θ, θε ∈ C([0, T ], L2(�)). Further 
utilizing Proposition 2.7 gives

θε(T ) → θ(T ) strongly in L2(�), as ε → 0, (4.46)

and hence the final condition

ρε(T ) = �−2θε(T ) → ρ̃(T ) = �−2θ(T ) strongly in L2(�), as ε → 0. (4.47)

As a result, (ρ̃, ỹ, q̃) is the weak solution to the linear system (4.25)–(4.29) corresponding to 
(θ, v, q̄) and θ(T ). Due to the uniqueness of the solution, we obtain (ρ̃, ỹ, q̃) = (ρ, ȳ, q̄) and 
this completes the proof. �
4.2. Convergence of the optimality system

Let (g∗
ε , v∗

ε , θ∗
ε ) be an optimal solution for (Pε), which solves the optimality system consisted 

of (1.1)–(1.5), (4.25)–(4.29), and the optimality condition (4.53). Then the following results hold.

Theorem 4.5. Assume (θ0, v0) ∈ (L∞(�) ∩ H 1(�)) × V 1
n (�). Let (g∗

ε , v∗
ε , θ∗

ε ) be an optimal 
solution for (Pε). Then there exists an optimal solution (g∗, v∗, θ∗) such that

g∗
ε → g∗ strongly in H 3/4−δ/2(0, T ;V 3/2−δ

n (�)), ∀δ > 0, as ε → 0,

‖v∗ − v∗‖H 1 → 0 uniformly in t ∈ [0, T ], as ε → 0, (4.48)
ε
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T∫
0

‖Av∗
ε − Av∗‖2

L2 dt → 0, as ε → 0, (4.49)

and

‖θ∗
ε − θ∗‖L2 → 0 uniformly in t ∈ [0, T ],as ε → 0. (4.50)

Moreover, (g∗, v∗, θ∗) is an optimal solution to problem (P ).

Proof. Step 1: We first show the convergence of the optimal pair to problem (Pε) as ε → 0. 
According to (4.17), there exists a subsequence {g∗

ε } in terms of ε such that

g∗
ε → g∗ weakly in L2(0, T ;V 3/2

n (�),

D
3/4
t g∗

ε → D
3/4
t g∗ weakly in L2(0, T ;V 0

n (�)),

which give

g∗ ∈ H 3/4(0, T ;V 3/2
n (�)) (4.51)

and

g∗
ε → g∗ strongly in H 3/4−δ/2(0, T ;V 3/2−δ

n (�)), ∀δ > 0. (4.52)

Note that the regularity of the optimal controller guarantees a unique weak solution to (3.2)–(3.3)
since the estimate (2.31) for velocity holds. Slightly modifying the proof of Proposition 2.7 by 
adding the nonhomogeneous term gε − g to the right hand side of (2.45), we can show that there 
exists a subsequence {(θε, vε)} corresponding to {gε} satisfying (4.48)–(4.50) where (θ∗, v∗) is 
the solution corresponding to g∗.

Step 2: We claim that (g∗, v∗, θ∗) is an optimal pair to problem (P ). Since (g∗
ε , v

∗
ε , θ∗

ε ) is an 
optimal pair to problem (Pε), we have

‖�−1θ∗
ε (T )‖2

L2 +
T∫

0

‖g∗
ε ‖2

L2 dt ≤ ‖�−1θε(T )‖2
L2 +

T∫
0

‖g‖2
L2 dt,

for any g ∈ Uad , where θε is the solution of (1.12) associated with (g, vε). Letting ε → 0, based 
on (4.48)–(4.50) we get

‖�−1θ∗(T )‖2
L2 +

T∫
0

‖g∗‖2
L2 dt ≤ ‖�−1θ(T )‖2

L2 +
T∫

0

‖g‖2
L2 dt,

for any g ∈ Uad . Thus, (g∗, v∗, θ∗) is an optimal pair to problem (P ). In particular, the infJ can 
be reached by setting g = g∗. �
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We proceed to prove that any optimal solution to problem (P ) is given by (1.1)–(1.5), 
(4.25)–(4.29), and the optimality condition (4.53).

Theorem 4.6. Assume (θ0, v0) ∈ (L∞(�) ∩H 1(�)) ×V 1
n (�). If (g∗, v∗, θ∗) is an optimal pair to 

problem (P ), where (g∗, θ∗, v∗) satisfies the system (1.1)–(1.5) and (ρ∗, ȳ∗) is the corresponding 
solution to the adjoint system (4.25)–(4.29), then g∗ is given by

g∗ = − 1

γ
ȳ∗|�. (4.53)

Proof. Let (g∗, v∗, θ∗) be any optimal solution to the problem (P ). Applying the construction 
shown in [2, Theorem 5] and [10, Theorem 5.5], we first impose a penalization on problem 
(Pε) in oder to establish a relation between g∗ and the optimal solution to the new defined cost 
functional. For a given ε > 0, consider the following minimization problem

min{Jε(g) + 1

2

T∫
0

‖g − g∗‖2
L2(�)

dt}. (P̂ε)

If let (ĝε, v̂ε, θ̂ε) be the optimal solution to problem (P̂ε), then

Jε(ĝε) + 1

2

T∫
0

‖ĝε − g∗‖2
L2 dt ≤ Jε(g) + 1

2

T∫
0

‖g − g∗‖2
L2 dt, (4.54)

for any g ∈ L2(0, T ; V 0
n (�)). As proved in Theorem 4.5, there exists a subsequence {(ĝε, v̂ε, θ̂ε)}

in terms of ε, satisfying

ĝε → ĝ∗ strongly in L2(0, T ;V 0
n (�)), as ε → 0, (4.55)

θ̂ε(T ) → θ̂∗(T ) strongly in (H 1(�))′, as ε → 0.

Passing to the limit in (4.54) gives

J (ĝ∗) + 1

2

T∫
0

‖ĝ∗ − g∗‖2
L2 dt ≤ J (g) + 1

2

T∫
0

‖g − g∗‖2
L2(�)

dt, (4.56)

for all g ∈ L2(0, T ; V 0
n (�)). In particular, setting g = g∗ yields

J (ĝ∗) + 1

2

T∫
0

‖ĝ∗ − g∗‖2
L2(�)

dt ≤ J (g∗), (4.57)

which indicates that



5840 W. Hu, J. Wu / J. Differential Equations 267 (2019) 5809–5850
T∫
0

‖ĝ∗ − g∗‖2
L2 dt = 0.

Therefore, ĝ∗ = g∗, and hence (θ̂∗, v̂∗) = (θ∗, v∗). According to (4.55) we have

ĝε → g∗ strongly in L2(0, T ;V 0
n (�)), as ε → 0. (4.58)

Following the procedures as in the proof of Theorem 4.3, we derive the optimality condition for 
problem (P̂ε) given by

ȳ∗
ε |� + γ ĝ∗

ε + ĝ∗
ε − g∗ = 0. (4.59)

Letting ε → 0 and using (4.58) yield

lim
ε→0

ȳ∗
ε |� + γg∗ + g∗ − g∗ = 0. (4.60)

Finally, with the help of strong convergence of ȳ∗
ε in (4.38), we obtain

g∗ = − 1

γ
lim
ε→0

ȳ∗
ε |� = − 1

γ
ȳ∗|�,

which completes the proof. �
5. Uniqueness of the optimal solution to problem (P )

In the last section we address the uniqueness of the optimal controller to problem (P ). The 
main result is given by the following theorem.

Theorem 5.1. Let (θ0, v0) ∈ (L∞(�) ∩ H 1(�)) × V 1
n (�). For a given ζ > 0, if T > 0 is suf-

ficiently small and γ > 0 is sufficiently large, then there exists at most one optimal controller 
g ∈ Uad to problem (P ). In the passive scalar case, i.e., ξ = 0, the small condition on T is not 
needed.

Proof. Assume that there are two pairs of optimal solutions to problem (P ), denoted by 
(gi, vi, θi), i = 1, 2. Then G = g1 − g2, ϑ = θ1 − θ2, W = v1 − v2, and P = p1 − p2 satisfy

∂ϑ

∂t
+ v1 · ∇ϑ + W · ∇θ2 = 0, (5.1)

∂W

∂t
− ν�W + v1 · ∇W + W · ∇v2 + ∇P = ξϑe2, (5.2)

with the Navier slip boundary conditions

W · n|� = 0 and (2νn ·D(W) · τ + αW · τ)|� = G (5.3)
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and initial condition (ϑ(0), W(0)) = (0, 0). Moreover, the corresponding solutions to the adjoint 
problem (4.25)–(4.29) are denoted by (ρi, ȳi ), i = 1, 2. Let Y = ȳ1 − ȳ2, � = ρ1 − ρ2 and Q =
q̄1 − q̄2 satisfy

− ∂�

∂t
− v1 · ∇� − W∇ρ2 − ξY · e2 = 0, (5.4)

− ∂Y

∂t
− ν�Y + (∇v1)

T Y + (∇W)T ȳ2 − (v1 · ∇)Y − W∇ȳ2 + ∇Q

= θ1∇� + ϑ∇ρ2 + ζ∇⊥(∇ × W), (5.5)

with the Navier slip boundary conditions

Y · n|� = 0 and (2νn ·D(Y ) · τ + αY · τ)|� = −ζ∇ × W (5.6)

and the final time condition (�(T ), Y(T )) = (�−1ϑ(T ), 0). Then

G = 1

γ
Y |�. (5.7)

The goal is to show that G = 0. To this end, we first apply a priori estimates for ϑ , Y , �, and 
W , respectively. Estimates (2.28) and (2.30) established in Theorem 2.3 will be often used in the 
following proof. For convenience, we set C = C(‖θ0‖L∞∩H 1, ‖v0‖H 1, ‖g‖S , T ). Without loss of 
generality, we set ν = 1 in the rest of this paper.

Step 1. We first establish the estimates on ϑ and W . Taking the inner product of (5.1) with ϑ
yields

‖ϑ‖L2 ≤
T∫

0

‖W‖L∞‖∇θ2‖L2 dt ≤ sup
t∈[0,T ]

‖∇θ2‖L2

T∫
0

‖W‖H 1+δ dt, (5.8)

where we set 0 < δ < 1/2. To estimate 
∫ T

0 ‖W‖H 1+δ dt , we use the variation of parameters for-
mula for W and get

W(t) =
T∫

0

e−A(t−τ)P [−(v1 · ∇W + W · ∇v2) + ξϑe2]dτ + (LG)(t). (5.9)

Let I0 = −(v1 ·∇W +W ·∇v2) +ξϑe2. In light of (2.18) and Young’s inequality for convolution, 
we get

T∫
0

‖A1/2+δ/2W‖L2 dt ≤
T∫

0

‖
t∫

0

A1/2+δ/2e−A(t−τ)PI0 dτ‖L2 dt

+
T∫

‖
t∫
A1/2+δ/2Ae−A(t−τ)PNG(τ)dτ‖L2 dt
0 0
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≤ M0

T∫
0

t−(1/2+δ/2)e−ωt dt

T∫
0

‖I0‖L2 dt + M0

T∫
0

t−(3/4+δ)e−ωt dt

T∫
0

‖A3/4−δ/2NG‖L2 dt

≤ C(

T∫
0

‖I0‖L2 dt +
T∫

0

‖G‖L2(�) dt), (5.10)

where

T∫
0

‖I0‖L2 dt ≤
T∫

0

‖v1 · ∇W‖L2 dt +
T∫

0

‖W · ∇v2‖L2 dt + ξ

T∫
0

‖ϑ‖L2 dt

≤ C

T∫
0

‖v1‖L∞‖A1/2W‖L2 dt + C

T∫
0

‖A1/4W‖L2‖A3/4v2‖L2 dt + ξ

T∫
0

‖ϑ‖L2 dt

≤ C

⎡
⎣(

T∫
0

‖Av1‖2
L2 dt)1/2 + (

T∫
0

‖Av2‖2
L2) dt)1/2

⎤
⎦ (

T∫
0

‖A1/2W‖2
L2 dt)1/2 + ξ

T∫
0

‖ϑ‖L2 dt.

(5.11)

Combining (5.9) with (5.10)–(5.11) yields

sup
t∈[0,T ]

‖ϑ‖L2 ≤C

T∫
0

‖W‖L∞ ≤ C[(
T∫

0

‖A1/2W‖2
L2 dt)1/2 + ξ

T∫
0

‖ϑ‖L2 dt +
T∫

0

‖G‖L2(�) dt]

≤ C[(
T∫

0

‖A1/2W‖2
L2 dt)1/2 + ξT sup

t∈[0,T ]
‖ϑ‖L2 + √

T (

T∫
0

‖G‖2
L2(�)

dt)1/2].

For ξ = 1, set T sufficiently small such that CξT < 1. Then

sup
t∈[0,T ]

‖ϑ‖L2 ≤ C[(
T∫

0

‖A1/2W‖2
L2 dt)1/2 + √

T (

T∫
0

‖G‖2
L2(�)

dt)1/2], (5.12)

and hence

T∫
0

‖ϑ‖2
L2 ≤ C(T

T∫
0

‖A1/2W‖2
L2 dt + T 2

T∫
0

‖G‖2
L2(�)

dt). (5.13)

Now applying L2-estimate for W and combining (5.13) give
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1

2

d‖W‖2
L2

dt
+ ‖A1/2W‖2

L2 + α‖W‖2
L2(�)

≤ ‖W‖L4‖v2‖L4‖A1/2W‖L2

+ ξ‖ϑ‖L2‖W‖L2 + ‖G‖L2(�)‖W‖L2(�)

≤ C‖W‖1/2
L2 ‖A1/2W‖3/2

L2 ‖v2‖1/2
L2 ‖A1/2v2‖1/2

L2

+ ξ‖ϑ‖L2‖W‖L2 + ‖G‖L2(�)‖W‖L2(�)

≤ C‖W‖2
L2‖v2‖2

L2‖A1/2v2‖2
L2 + 3

4
‖A1/2W‖2

L2

+ Cξ‖ϑ‖2
L2 + 1

16
‖A1/2W‖2

L2 + C‖G‖2
L2(�)

+ 1

16
‖A1/2W‖2

L2 .

Thus

sup
t∈[0,T ]

‖W‖2
L2 +

T∫
0

‖A1/2W‖2
L2 dt ≤ C(‖θ0‖H 1,‖v0‖H 1,‖g‖S)T sup

t∈[0,T ]
‖W‖2

L2

+ Cξ

T∫
0

‖ϑ‖2
L2 + C

T∫
0

‖G‖2
L2(�)

.

Again for ξ = 1, with the help of (5.13) we set T sufficiently small and obtain

sup
t∈[0,T ]

‖W‖2
L2 +

T∫
0

‖A1/2W‖2
L2 dt ≤ C(ξT 2 + 1)

T∫
0

‖G‖2
L2(�)

dt). (5.14)

Further applying the optimality condition (5.7), the trace theorem, and (2.10) gives

T∫
0

‖G‖2
L2(�)

dt ≤ C
1

γ 2

T∫
0

‖Y‖2
H 1/2 dt = C

1

γ 2

T∫
0

‖A1/4Y‖2
L2 dt. (5.15)

Therefore, (5.14) becomes

sup
t∈[0,T ]

‖W‖2
L2 +

T∫
0

‖A1/2W‖2
L2 dt ≤ C(ξT 2 + 1)

1

γ 2

T∫
0

‖A1/4Y‖2
L2 dt. (5.16)

Step 2. We proceed to estimate 
∫ T

0 ‖A1/4Y‖2
L2 dt . Again utilizing the variation of parameters 

formula for solving Y backward in time yields
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Y =
t∫

T

eA(t−τ)P [(∇v1)
T Y + (∇W)T ȳ2 − (v1 · ∇)Y − W∇ȳ2

− θ1∇� − ϑ∇ρ2 − ζ∇⊥(∇ × W)]dτ

+
t∫

T

(−A)eA(t−τ)N(−ζ∇ × W)|� dτ.

Replacing t by T − t follows

Y(T − t, x) = −
t∫

0

e−A(t−τ)P [(∇v1)
T Y + (∇W)T ȳ2 − (v1 · ∇)Y − W∇ȳ2 − θ1∇� − ϑ∇ρ2

− ζ∇⊥(∇ × W)]dτ +
t∫

0

Ae−A(t−τ)N(−ζ∇ × W)|� dτ

and

T∫
0

‖A1/4Y‖2
L2 dt ≤

T∫
0

‖
t∫

0

A1/4e−A(t−τ)P [(∇v1)
T Y − (v1 · ∇)Y − ζ∇⊥(∇ × W)]dτ‖2

L2 dt

+
T∫

0

‖
t∫

0

A1/4e−A(t−τ)P [(∇W)T ȳ2 − W∇ȳ2]dτ‖2
L2 dt

+
T∫

0

‖
t∫

0

A1/4e−A(t−τ)P (θ1∇�)dτ‖2
L2 dt

+
T∫

0

‖
t∫

0

A1/4e−A(t−τ)P (ϑ∇ρ2) dτ‖2
L2 dt

+
T∫

0

‖
t∫

0

A1/4Ae−A(t−τ)N(ζ∇ × W |�)(τ ) dτ‖2
L2 dt

= I1 + I2 + I3 + I4 + I5. (5.17)

It is straightforward to verify that
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I1 =
T∫

0

‖
t∫

0

A1/4e−A(t−τ)P [(∇v1)
T Y − (v1 · ∇)Y − ζ∇⊥(∇ × W)]dτ‖2

L2 dt

=
T∫

0

‖
t∫

0

A3/4e−A(t−τ)A−1/2P [(∇v1)
T Y −(v1 · ∇)Y −ζ∇⊥(∇ × W)]dτ‖2

L2 dt (5.18)

≤ C(

T∫
0

(t−3/4e−ωt )p dt)2/p(

T∫
0

‖A−1/2P [(∇v1)
T Y − (v1 · ∇)Y

− ζ∇⊥(∇ × W)]‖q

L2 dt)2/q (5.19)

≤ C(

T∫
0

‖A−1/2P [(∇v1)
T Y − (v1 · ∇)Y − ζ∇⊥(∇ × W)]‖q

L2 dt)2/q, (5.20)

where from (5.18) to (5.19) we used Young’s inequality for evolution with 1
p

+ 1
q

= 1 + 1
2 , 

1 < p < 4/3, and 4/3 < q < 2. Moreover,

T∫
0

‖A−1/2(∇v1)
T Y‖q

L2 dt ≤
T∫

0

(
sup

ψ∈V 1
n (�)

| ∫
�

Y · ∇v1 · ψ dx|
‖ψ‖H 1

)q
dt

=
T∫

0

(
sup

ψ∈V 1
n (�)

| ∫
�

Y · ∇(v1 · ψ) − v1 · (Y · ∇)ψ dx|
‖ψ‖H 1

)q
dt

≤
T∫

0

(
sup

ψ∈V 1
n (�)

‖A1/4Y‖L2‖v1‖1/2
L2 ‖A1/2v1‖1/2

L2 ‖∇ψ‖L2

‖ψ‖H 1

)q
dt

≤ C sup
t∈[0,T ]

‖v1‖q/2
L2 sup

t∈[0,T ]
‖A1/2v1‖q/2

L2

T∫
0

‖A1/4Y‖q

L2 dt

≤ CT 1−q/2 sup
t∈[0,T ]

‖v1‖q/2
L2 sup

t∈[0,T ]
‖A1/2v1‖q/2

L2 (

T∫
0

‖A1/4Y‖2
L2 dt)q/2.

Similarly,

T∫
0

‖A−1/2(v1 · ∇)Y‖q

L2 dt ≤
T∫

0

(
sup

ψ∈V 1
n (�)

| ∫
�
(v1 · ∇)Y · ψ dx|

‖ψ‖H 1

)q
dt

=
T∫ (

sup
ψ∈V 1

n (�)

| ∫
�

v1 · ∇(Y · ψ) − Y · (v1 · ∇)ψ dx|
‖ψ‖H 1

)q
dt
0
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≤
T∫

0

(
sup

ψ∈V 1
n (�)

‖A1/4Y‖L2‖v1‖1/2
L2 ‖A1/2v1‖1/2

L2 ‖∇ψ‖L2

‖ψ‖H 1

)q
dt

≤CT 1−q/2 sup
t∈[0,T ]

‖v1‖q/2
L2 sup

t∈[0,T ]
‖A1/2v1‖q/2

L2 (

T∫
0

‖A1/4Y‖2
L2 dt)q/2,

and

T∫
0

‖A−1/2P [ζ∇⊥(∇ × W)]‖q

L2 dt ≤ CT 1−q/2ζ q(

T∫
0

‖A1/2W‖2
L2 dt)q/2.

Therefore,

I1 ≤ CT 2/q−1‖v1‖L2 sup
t∈[0,T ]

‖A1/2v1‖L2

T∫
0

‖A1/4Y‖2
L2 dt + CT 2/q−1ζ 2

T∫
0

‖A1/2W‖2
L2 dt.

(5.21)

Next invoking (5.16) we get

I2 =
T∫

0

‖
t∫

0

A1/4e−A(t−τ)P [(∇W)T ȳ2 − W∇ȳ2]dτ‖2
L2 dt

≤ C(

T∫
0

t−1/4e−ωt dt)2

T∫
0

‖P [(∇W)T ȳ2 − W∇ȳ2]‖2
L2 dt

≤ C sup
t∈[0,T ]

‖ȳ2‖2
L∞

T∫
0

‖A1/2W‖2
L2 dt + C

T∫
0

‖W‖L2‖A1/2W‖L2‖∇ȳ2‖L2‖Aȳ2‖L2 dt

≤ C sup
t∈[0,T ]

‖ȳ2‖2
L∞

T∫
0

‖A1/2W‖2
L2 dt

+ sup
t∈[0,T ]

‖W‖L2 sup
t∈[0,T ]

‖∇ȳ2‖L2(

T∫
0

‖A1/2W‖2
L2)

1/2(

T∫
0

‖Aȳ2‖2
L2 dt)1/2

≤ C(ξT 2 + 1)
1

γ 2

T∫
0

‖A1/4Y‖2
L2 dt. (5.22)

To estimate I3, we have for 0 < ε < 1/2,
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I3 ≤ C

T∫
0

‖
t∫

0

A3/4+ε/2e−A(t−τ)A−1/2−ε/2P (θ1∇�)dτ‖2
L2 dt

≤ C(

T∫
0

t−(3/4+ε/2)e−ωt dt)2

T∫
0

‖A−1/2−ε/2P (θ1∇�)‖2
L2 dt

≤ C

T∫
0

( sup
ψ∈V 1+ε

n (�)

| ∫
�

θ1∇� · ψ dx|
‖ψ‖H 1+ε

)2 dt

= C

T∫
0

( sup
ψ∈V 1+ε

n (�)

| ∫
�

θ1∇ · (�ψ) − θ1�∇ · ψ dx|
‖ψ‖H 1+ε

)2 dt

= C

T∫
0

( sup
ψ∈V 1+ε

n (�)

| ∫
�

∇θ1 · (�ψ) − θ1(�ψ) · ndx|
‖ψ‖H 1+ε

)2 dt

≤ C

T∫
0

( sup
ψ∈V 1+ε

n (�)

‖∇θ1‖L2‖�‖L2‖ψ‖L∞

‖ψ‖H 1+ε

)2 dt

≤ C

T∫
0

‖∇θ1‖2
L2‖�‖2

L2 dt ≤ C sup
t∈[0,T ]

‖∇θ1‖2
L2

T∫
0

‖�‖2
L2 dt. (5.23)

Following the similar idea, we obtain

I4 ≤ C(

T∫
0

t−(3/4+ε/2)e−ωt dt)2

T∫
0

‖A−1/2−ε/2P (ϑ∇ρ2)‖2
L2 dt

≤ C

T∫
0

( sup
ψ∈V 1+ε

n (�)

| ∫
�

ϑ∇ρ2 · ψ dx|
‖ψ‖H 1+ε

)2 dt ≤ C

T∫
0

( sup
ψ∈V 1+ε

n (�)

‖ϑ‖L2‖∇ρ2‖L2‖ψ‖L∞

‖ψ‖H 1+ε

)2 dt

≤ C sup
t∈[0,T ]

‖∇ρ2‖2
L2

T∫
0

‖ϑ‖2
L2 dt. (5.24)

Lastly,

I5 ≤ (

T∫
t−3/4e−ωt dt)2

T∫
‖A1/2N(ζ∇ × W |�)‖2

L2 dt (5.25)
0 0
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≤ C

T∫
0

‖ζ∇ × W‖2
H−1/2(�)

dt (5.26)

≤ Cζ

T∫
0

‖A1/2W‖2
L2 dt. (5.27)

From (5.25) to (5.26) we used (2.14). Let T be small enough and γ be large enough. Then 
combining (5.17) with (5.21)–(5.24) and (5.27) yields

T∫
0

‖A1/4Y‖2
L2 dt ≤C(

T∫
0

‖�‖2
L2 dt +

T∫
0

‖ϑ‖2
L2 dt + ζ

T∫
0

‖A1/2W‖2
L2 dt). (5.28)

Now we estimate ‖�‖L2 by taking the inner product of (5.4) with �, which yields

−1

2

d‖�‖2
L2

dt
≤ ‖W∇ρ2�‖L2 + ξ‖Y‖L2‖�‖L2

≤ C‖W‖L∞‖∇ρ2‖L2‖�‖L2 + ξ‖Y‖L2‖�‖L2,

or

−d‖�‖L2

dt
≤ C‖W‖L∞‖∇ρ2‖L2 + ξ‖Y‖L2 . (5.29)

Taking the integral of (5.29) from t to T and making using of

‖�(T )‖L2 = ‖�−2ϑ(0)‖L2 ≤ C sup
t∈[0,T ]

‖ϑ‖L2

together with (5.12) and (5.15) follow that

‖�‖L2 ≤ C sup
t∈[0,T ]

‖∇ρ2‖L2

T∫
0

‖W‖L∞ dt + ξ

T∫
0

‖Y‖L2 dt + C sup
t∈[0,T ]

‖ϑ‖L2

≤ C sup
t∈[0,T ]

‖∇ρ2‖L2(

T∫
0

‖A1/2W‖2
L2 dt)1/2

+ Cξ
√

T (

T∫
0

‖A1/4Y‖2
L2 dt)1/2 + C

√
T

1

γ
(

T∫
0

‖A1/4Y‖2
L2 dt)1/2

≤ C sup
t∈[0,T ]

‖∇ρ2‖L2(

T∫
‖A1/2W‖2

L2 dt)1/2
0
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+ C(ξ + 1

γ
)
√

T (

T∫
0

‖A1/4Y‖2
L2 dt)1/2. (5.30)

Combining (5.28) with (5.13), (5.15), and (5.30) follows

T∫
0

‖A1/4Y‖2
L2 dt ≤ C(

T∫
0

‖�‖2
L2 dt +

T∫
0

‖ϑ‖2
L2 dt + ζ

T∫
0

‖A1/2W‖2
L2 dt)

≤ C
(
T

T∫
0

‖A1/2W‖2
L2 dt + (ξ + 1

γ
)2T 2

T∫
0

‖A1/4Y‖2
L2 dt

)

+ C
(
T

T∫
0

‖A1/2W‖2
L2 dt + T 2

γ 2

T∫
0

‖A1/4Y‖2
L2 dt

) + Cζ

T∫
0

‖A1/2W‖2
L2 dt

= C(2T + ζ )

T∫
0

‖A1/2W‖2
L2 dt + C

(
(ξ + 1

γ
)2 + 1

γ 2

)
T 2

T∫
0

‖A1/4Y‖2
L2 dt. (5.31)

By virtue of (5.16) we get

T∫
0

‖A1/4Y‖2
L2 dt ≤C(2T + ζ )(ξT 2 + 1)

1

γ 2

T∫
0

‖A1/4Y‖2
L2 dt

+ C
(
(ξ + 1

γ
)2 + 1

γ 2

)
T 2

T∫
0

‖A1/4Y‖2
L2 dt. (5.32)

Finally, for given ζ > 0, if γ is sufficiently large and T is sufficiently small such that

C

(
(2T + ζ )(ξT 2 + 1)

1

γ 2 + (
(ξ + 1

γ
)2 + 1

γ 2

)
T 2

)
< 1, (5.33)

then 
∫ T

0 ‖A1/4Y‖2
L2 = 0, and hence Y = 0 and G = 0. Moreover, (5.16) indicates that W = 0. 

As a consequence of (5.12) and (5.30), we have ϑ = 0 and � = 0. The uniqueness of the optimal 
solution to problem (P ) is obtained. In addition, from (5.33) it is easy to see that if ξ = 0, then 
the small condition on T is not required. �
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