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Abstract

Physical experiments and numerical simulations have demonstrated that
background magnetic fields stabilize electrically conducting fluids. This paper
establishes these observations as mathematically rigorous facts on a 2D mag-
netohydrodynamic (MHD) system. This system is anisotropic with the velocity
equation involving only the vertical dissipation. Flows governed by the 2D
Navier—Stokes equations with only vertical dissipation are not known to be
stable. Under the influence of a background magnetic field, the velocity field
is shown here to stabilize and decay in time through the coupling and the inter-
action. Mathematically we reduce the MHD system concerned here to a system
of degenerate and damped wave equations and exploit the smoothing and stabi-
lizing effects of the wave structure. We are able to prove that any perturbation
near a background magnetic field remains asymptotically stable. In addition,
certain explicit large time behavior is also established.

Keywords: magnetohydrodynamic equations, partial dissipation, stability, wave
equations

Mathematics Subject Classification numbers: 35A01, 35B35, 35Q35, 76D09.

1. Introduction

The stabilization and smoothing effect of a background magnetic field on electrically conduct-
ing fluids has been observed in physical experiments and numerical simulations, and demon-
strated in theoretical analysis (see, e.g., [1-3, 15, 16]). In addition, the stabilization effect of a
strong magnetic field has been employed in the development of magnetic polymers and paints
(see, e.g., [23]). One goal of this paper is to understand the mechanism of the stabilization and
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establish the observations as a mathematically rigorous fact on a system modeling the electri-
cally conducting fluids. We consider the following 2D incompressible magnetohydrodynamic
(MHD) system

Ou+u-Vu-+VP=v0ou-+b-Vb+ 0\b,
ob+u-Vb+nb=>b-Vu+ Ou,
V-u=V-b=0,

u(x,0) = ug(x), b(x,0) = bo(x),

(1.1)

where u denotes the velocity field, b the magnetic field and P the pressure, and v > 0 and 7
are the viscosity and the damping coefficient, respectively. Here the velocity u obeys a degen-
erate Navier—Stokes equation with only vertical dissipation v0,;u and with a Lorentz forcing
term. The magnetic field b satisfies the induction equation. The extra two terms 0, and 0,u
are created when we write the original magnetic field as the sum of a background magnetic
field and a perturbation, namely (1, 0) 4 b. The system focused here governs the motion of the
perturbation near a background magnetic field.

The justification for including only one-directional dissipation in (1.1) is two fold. The
first is that the Laplacian dissipation in some partial differential equation systems modeling
fluids reduces to the degenerate case in certain physical regimes and after suitable scaling.
One prominent example is Prandtl’s boundary layer equation. The second justification is to
demonstrate the smoothing and stabilization effect of the magnetic field. Mathematically only
one directional dissipation in the Navier—Stokes equations makes the stability problem much
more difficult. Without the coupling with the magnetic field, the velocity of the Navier—Stokes
equation with only vertical dissipation

Ou+u-Vu+VP=vdpu, xeR> >0, (12)

V-u=0. '
is not known to be stable near the trivial solution. Some physically relevant infinite energy
solutions of (1.2) can grow rather rapidly [8]. One expects the solution of (1.2) in the Sobolev
space setting to be unstable, but a proof is currently lacking. When there is no dissipation at
all, the 2D Euler equation

Qu+u-Vu+VP=0, xeR>® >0,
V-u=0.

can generate solutions that grow exponentially or even double exponentially in time (see, e.g.,
[10, 22, 50]). In contrast, solutions to the 2D Navier—Stokes equations with full dissipation
Qu-+u-Vu+VP=vAu, xeR>® >0,
V-u=0.
in the Sobolev spaces are always asymptotically stable with explicit decay rates (see [30, 32]).
Since the partially dissipated Navier—Stokes equation itself alone is not known to be stable,
we must seek the stabilizing effect from the magnetic field in order to achieve any stability.

The two terms in (1.1) related to the magnetic field, namely b - Vb and 0, b, do not appear to be
helpful at first glance, but the smoothing and damping effect would emerge when we convert
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the MHD system in (1.1) into an equivalent form. To do so, we first apply the Helmholtz—Leray
projection operator

P:=1-VA~'V.
to eliminate the pressure term to obtain
O = vOnu + 01b + Ny, Ny =P(—u-Vu—+b-Vb). (1.3)

By separating the linear terms from the nonlinear ones in (1.1), the equation of b can be written
as

b = —nb + Oyu+ Na, No=—u-Vb+b-Vu. (1.4)

Differentiating (1.3) and (1.4) in time and making several substitutions, we find

{Bnu — (V0 — MO — (On1u + Nrdrnu) = N3, (15)

Oub — (V02 — n)Oib — (O11b + nvdnb) = Ny,
where N3 and N4 are given by
N3 = (O, + )N + O Ny, N4y = (0, — v02)N, + O1N;.

Surprisingly, both u and b are found to satisfy nonhomogeneous wave equations with exactly
the same linear parts. Clearly, (1.5) exhibits much more regularization than its original coun-
terpart in (1.1). Similarly, the equations of the vorticity w = V X u and the current density
Jj =V x b given by

{a,w+u.w:u822w+b-Vj+81j, (16)

Oj+u-Vj+nj=b-Vw+ Q+ dw,
with
Q = 201b1(0ruy + O1uz) — 201u1(02b1 + 01b7)

can also be converted into the following system of wave equations

(1.7)

Opw — (V02 — MOw — (011w + Nrdnw) = Ns,
Ouj — WOn —n)0,j— (O11j+ nvonj) = Ne,

where Ns and Ng are given by

Ns =0 +n)(—u-Vw+b-Vj)+0(b-Vw—u-Vj+ Q),
Ne = (0, —vOn)b-Vw—u-Vj+ Q)+ 0i(—u-Vw+b-V)).
Again w and j share the same wave structure as that for # and b. In particular, (1.5) and (1.7)

brings in the much-need horizontal regularization even though it is lacking in the original
system (1.1).
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Our first effort is devoted to understanding how the wave structure affects the regularity and
large-time behavior. For simplicity, we consider the linearized portion of (1.5), namely

Oput — (V0 — )0 — (O11u + nronu) = 0,
Oub — (W0 — m)Ob — (011D + nronb) = 0,

(1.8)
V-u=V-b=0,
u(x,0) = uo(x),  b(x,0) = bo(x)
or equivalently, the linearization of the original system
Ot = vOyu + O01b,
Ob = —nb+ 0yu,
o= (1.9)

V-u=V-b=0,
u(x,0) = up(x), b(x,0) = by(x).

The goal here is to obtain all possible regularization due to the dissipation and dispersion effects
and to provide a sharp large-time decay rate. To give a precise statement of our result, we define
a Fourier multiplier operator @,

Of (&) = VO ). (1.10)

A very important class of  is the fractional Laplacian operator (—A)” with v € R, which can
be defined in terms of the Fourier transform,

(FAYf(©) = €7 F ).
It is clear that the norm in the standard homogeneous Sobolev space H* with s € Ris given by
1 Nl = 123 F 2.

For the sake of conciseness, we shall write [|(f, 2)||7, for [ £ |7, + [Ig]|7..

Theorem 1.1. Consider the linearized system (1.8). Let ® be a given Fourier multiplier
operator. Assume the initial data (ug, by) satisfies

Dugy, Dby, VOuy, VPby, 90nPugy € L?, V-uy=V-by=0.

Let (u, b) be the corresponding solution of (1.8). Then (u, b) obeys the following regularization
and decay estimates.

(a) (u,b) is uniformly bounded for all time with the following explicit bounds,
2
5
10:@b) 32 + ) 196 + 20262 + S92

t
+/ (40]10:0-9b|17> + 300, @b 1> + 1|01 b7 + vi?(|0:9b]|7,) dr
0

< Cw,n) ([|@boll;2 + (|01 (o, bo)| 12 + [|02@bol]}2) - (1.11)

and
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2
5
[0:@ut|72 + L[ @uvF2 + 2010, Buo) 2 + S92 0u(o)

t
+/ (41/H8287<I>u\|22 + 377||87<I>u\|iz + 77||81<I>u||i2 + 1/772||82<I>u\|22) dr
0
< C,n) ([|@uol|?2 + (|01 @uo, bo) |72 + [|02Puol|72 + |00 Pugl|72) . (1.12)

Especially, for any s € R and for ® = (—A)3, we have the uniform bounds in Sobolev
(or L?) spaces,

2
5
106+ 15O + 21060 + S |0:b0),

t
T / (4110:0,5]1%, + 30]|0:bIR, + nIOBIR, + vPl|Osb]2, ) dr

< Cw,n ([bollFs + 1101 (o, bo) |17, + [|0aboll 7 ) - (1.13)

and
2 772 2 2 5 2
10Nz + 4 lu@lls + 20101u®I s + S1v]|020@)][

+ [ @100l + 300l + ol + vl o
< Cw,n (luollFs + 101 o, bo)|IF + [[0au01 s + [|O020][,) - (1.14)
(b) (u,b) obeys the following decay properties, as t — o,
(140 (102672 + [ 26OI72 + [VEBO)F2) — 0.
(1 + || VOu(t)|7, — 0.
In particular, the following pointwise estimates hold,
10:@b(D)]| 2 + [ @b(D)| 12 + [[VOL(@)|| 12
< Cw.m) (| @boll,2 + 03B, bo)| 2 + [920bol12) (1 +07F. (1.15)
and

IVDu(®)| 2 < Cvs ) (| Do, bo)l| 2 + | B(Tutg, Vho)|| 12 + [| 822 Buto|12) (1 + 1) 2.
(1.16)

When ® = (—A)2, we obtain, as t — 0o,

(40 (|03 + 16O + VD)) = 0,
(1 +0|[Vu@®|[}, — 0.
which especially imply
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106 |5 + 1O + V5O 5
< Cwm) (1ol + 101 Gt0, bo) s + [|Doboll ) (1 + 172
and

V@) < Cm) ([ t0r bl s + 11(V a0, Vo) g + [[Faatt0] ) (1 + 172

We notice from the statement of theorem 1.1 that u and b obey slightly different reg-
ularization upper bounds and exhibits slightly different large-time behavior. When (uy, bo),
(Vug, Vby) and Orup are all in the homogeneous Sobolev space H* for a real number s, then
b, Vb and 9,b are all bounded uniformly in H* and their H*-norms are all square time inte-
grable. The H’-norms of b, Vb and 0,b all decay faster than the rate (1 + t)’%. However, the
H*-norm of u itself is not known to be square time integrable and we do not have a decay rate
for it. Another remark is that, if the initial data is more regular, we can establish higher time
regularity estimates and decay bounds for ||0, Vu(t)|| s

Next we explore the large-time behavior of the frequency piece of the solution (u, b) to
(1.8) that is supported away from the origin. We take advantage of the wave structure in (1.8)
to derive energy inequalities that imply an exponential decay rate for the frequency piece away
from the origin. These inequalities also allow us to conclude that if the Fourier transform of
the initial data (ug, by) is supported away from the origin, then the solution («, b) decay expo-
nentially in time. To state our result precisely, we define a Fourier cutoff function. Let a > 0
be arbitrarily fixed and define

P R e (1.17)
o if ¢ <a '

Theorem 1.2. Consider the linearized system in (1.8). Assume that the initial data (u, by)
satisfies

Uuop, b(), Vuo, Vbo, 822140 S Lz, AV uy = V- b() =0.
Then (u, b) decays exponentially in time in the following sense

[0:(xu)(D)|| 12 + [(@x)D| 1 < Cwom) ([ ((Pu0), ($5b0)) |1
+ (| 022 (utg) | 12) €, (1.18)

[0:(xb)(D) || 12 + [[(D*D)D |1 < Cw, (D * uo), (P % bo))||gre™ ", (1.19)
where H' denotes the inhomogeneous H'-norm and ¢y > 0 is a constant.

Theorems 1.1 and 1.2 tell us about how much regularity we can extract from the wave
structure and how fast the solution decays. To deal with the full nonlinear system in (1.1), we
take full advantage of the smoothing and stabilization effect generated by the wave structure
to control the nonlinearity. We are able to establish the following nonlinear stability and large-
time behavior result.

Theorem 1.3. Letnand v > 0. Consider (1.1) with the initial data (uy, by) € H*(R?), and
V -ug =V - by = 0. Then there exists a constant € = £(v,n) > 0 such that, if

lluol[ 2 + llboll g2 < €,
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then (1.1) has a unique global classical solution (u, b) satisfying, for any t > 0,
t
@17 + 6@I72 +/ (0wl 72 + 1|2ull 32 + [IB]l52) d7 < €2
0

for some universal constant. In addition, the solution obeys the following large-time decay
estimates, for some constant C,

IVu@®|2 + | VBO] 2 < CA+ 072 (1.20)

Theorem 1.3 is a consequence of the smoothing and stabilization effect of the magnetic
field. In particular, the time integrability

/ [01u(p)||7, dt < Ce*
0

is not a consequence of the vertical dissipation in the velocity equation, but an exhibition of the
smoothing effect of the magnetic field. We explain why the stability for the 2D Navier—Stokes
equation with only vertical dissipation, namely (1.2) remains open and what makes the stability
problem for the MHD system solvable. It follows from (1.2) and the corresponding vorticity
equation

Ow +u-Vw =vdnw (1.21)
that the H'-norm of u is uniformly bounded,
||z < [uto]| -

The difficulty is how to control the H*-norm of u or || Vw||;2. When we estimate || Vw||;2 via
(1.21), the nonlinear term becomes an insurmountable hurdle. In fact, it follows from (1.21)
that

d
aHVuJH; +20]|0 Vw7, = — /Vw -Vu - Vw dx.
The right-hand side can be further decomposed into four terms

/Vw -Vu-Vw dx = /alul(alwf dx + /81u281w82w dx

+/82u131w32w dx+/82u2(62w)2 dx. (1.22)

Due to the lack of the horizontal dissipation, the first two terms can not be suitably bounded.
When we deal with the stability problem on the MHD system (1.1), we need to control exactly
the same nonlinearity. It is the coupling and interaction in the MHD system that allows us to
have more maneuver. When we estimate the H>-norm via the equations of the vorticity and
current density in (1.6), we also encounter the term (1.22). The idea of bounding the first two
terms in (1.22) is to replace 0,w by the equation of j,

Ow=0j+u-Vj+nj—b-Vw—0Q.
For example, the first term on the right of (1.22) would become

/Blul(ﬁlw)zdxz/31u181w(8tj—|—u-Vj+77j—b-Vw—Q)dx. (1.23)

2533



Nonlinearity 34 (2021) 2527 W Feng et al

We further shift the time derivative in the first term in (1.23), namely

/81u181w8tj dx = %/&ulaledx— /Btalulaledx— /81u1j8,81w dx. (124)

By substituting d;u; and 0w by their corresponding equations in (1.24), we find that the first
term in (1.22) is then converted to

/61u1(81w)2dx = %/6114161&1]' dx
— /81&)]61(—14 -Vuy — 0P+ vopu, +b-Vby + 01by)dx
— /61u1j81(—u -Vw +vdpw+b- Vj+ 81])dx

+/31u131w(u~Vj+77j—b~Vw—Q)dx. (1.25)

Even though the original one term is converted into fourteen terms, but all of the terms can
be bounded suitably by applying anisotropic inequalities such as the one stated in the following
lemma. The second terms on the right of (1.22) can be treated similarly. Estimating all these
terms is a tedious and long process.

Lemma 1.4. Assume that f, g, O»g, h and O\h are all in L*(R?). Then, for some constant
C>0,

1 1 1 1
/Rzlfgh\ dx < ClIf llz2llgll 21028l 2 11Rll 2 |1l 72

This lemma is taken from [6]. It is very useful in dealing with partial differential equations
with anisotropic dissipation and allows us to selectively put directional derivatives on the
components of a triple product.

To prove the stability part of theorem 1.3, we use the bootstrapping argument (see, e.g., [34,
p.21]). It starts with the definition of a suitable energy functional E(¢). We set

t t
E(H = sup {||u<7)\|§,2+\|b(r)||§,2}+zy/ Y dT—|—277/ 162 dr.
0 0

STSI

The main efforts are then devoted to proving that for some constants C,
E(r) < E(0)+ CE%(O) + CE* () + CE%(t). (1.26)

This is a long process including estimating the term (1.22) and making the substitution as in
(1.25). The bootstrapping argument applied to (1.26) allows us to conclude that, if E(0) or
l(uo, bo)|| 2 is sufficiently small, say

EQO)<e® or |[(uo,bo)||y <e
for some sufficiently small € > 0, then E(f) remains small for all time # > 0 and
E@) < Ce* (1.27)

for some constant C > 0.
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In order to prove the large-time decay estimates stated in theorem 1.3, we further show that
the solution (u, b) obtained above has the following properties,

/ [0, dt < Ce2. (1.28)
0

and
I(Vu@), Vb)) |2 < C||[(Vul(s), Vb(s))||;2 forany 0<s<t (1.29)

(1.28) is not a direct consequence of the dissipation in the velocity equation. It is shown by
taking into account of the coupling of the system. We replace 0,u by

Ou=0b+u-Vb+nb—>b-Vu

in the L?>-norm,
/ /Blu-(atb+u~Vb+77b—b-Vu)dxdt.
0

By shifting the time derivative and applying various anisotropic inequalities, we are able to
prove (1.28). The generalized monotonicity in (1.29) is established by estimating ||w/||,;» and
ljll;2 via (1.6). Then (1.27) and (1.28) together leads to the time integrability of

/0 (IVu®)|)72 + | Vb()|7.) dt < Ce*. (1.30)

(1.29) and (1.30) then fulfill the two conditions of lemma 2.1 and the desired decay estimate
in (1.20) follows as a consequence.

Finally we remark that there are substantial recent developments on fundamental issues
concerning the MHD equations such as the global regularity and stability problems. One recent
focus is on the MHD equations with only partial or fractional dissipation. Significant progress
has been made (see, e.g., [3-7, 9, 11-14, 17-21, 24-29, 31, 33, 35-49]).

The rest of this paper is divided into two sections. Section 2 presents the proofs of theorems
1.1 and 1.2 while section 3 proves theorem 1.3.

2. Proofs of theorems 1.1 and theorem 1.2

This section is devoted to proving theorems 1.1 and 1.2. The proof of theorem 1.1 makes use
of the wave structure to construct a suitable Lyapunov functional, which allows us to eliminate
some unfavorable terms. The decay estimates are obtained by using a tool lemma stated below
and the key components are the verification on the conditions of the lemma. The proof of
theorem 1.2 also involves the combination of energy estimates to form a suitable Lyapunov
functional. The frequency part of the solution that is supported away from the origin allows
the application of Poincare type inequalities.

The following lemma provides a precise decay rate for a nonnegative integrable function,
which is also monotonic in a generalized sense.

Lemma 2.1. Ler f = f(t) be a nonnegative function satisfying, for two constants ay > 0 and
ap > 0,

/mf(T)dT§a0<OO and f(t)<af(s) forany 0<s<t. (2.1)
0
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Then f(t) decays at a rate faster than (1 + 1), or
1+nf(t)—0 as t— o0.
In particular, for a; = max{2a,f0),4apa, } and for any t > 0,

f <ax(1+07"

Proof of Theorem 1.1. We start with the estimates on the norms of b. Let ® be the Fourier
multiplier defined in (1.10). Applying ® to the equation of b in (1.8) and then taking the L*-
inner product with 0,®b, we obtain after integrating by parts and invoking V - b = 0,

1d

5 q; (10:@bIE + [0 @BIIE: + ]| 0:2b]13:) + v 020,72 + 0|07 =0 (2.2)

Applying ® to the equation of b in (1.8) and then taking the L2-inner product with ®b, we have

1d
5 3 @bl + V1|02 ®b]I12) + |91 @b + |29 + /a,,@b - ®b dx = 0.

We further rewrite the last term as

/ 0y ®b - Ob dx = / (0,(0,®b - Bb) — |0,Pb[*)dx
d 2
= a(&,@b, ®b) — [|0,Pb||;2,
where we have introduced the notation for the L-inner product,

(f,g>=/f-gdx.
RZ

Therefore,

| e

. (1| @b, + v[|02Db||2, + 2(0, b, Db)) 03

+ [10196|7, + n[|8:®b]| 1> — 1|0:Pb]]7, = 0.

| =
o

Let A > 0 be a parameter to be determined later. Then, 2.2 +)2.3 yields

| e

(10:®bII7 + |0:1®b][72 + v + )| 029572 + An| @b 72 + 2X(0, b, Pb))

N —
o

t
+v[|0:0,0b[7: + (7 — V|8 Pb|7> + A|81 @7, + Npv[|8:Pb| 7> = 0. (2.4)

By Holder’s and Young’s inequality,
|0:®b]|%, + M| ®b|%, + 279, Db, Bb)
> [|8:®b|| 72 + Ml|@blI7. — 2X]|0,@b()|| 2| DB 12

1
> @b + 9ol — (5100[3: + 22 0ol )

1
> S 8PBII7: + A — 20%)]| @b | 2. (2.5)
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In particular, for A = 7, (2.5) becomes

2 1 2
10:bl|7, + %H@b\liz + g@@b, ®b) > 3 [10,2b|1> + %ll@b\liz- (2.6)

Integrating (2.4) in time and invoking (2.6), we find, for any 0 < s < 1,
2 772 2 2 5 2
10002 + @b + 20 b(0) [ + S nvl|os@bio)

t
+ / (40]10:0-®b||7> + 300, ®b||> + 1l| 01 b7 + vi? || 0:9b]|7,) dr

31 5
< 30@@b)9) [} + 1966 [} + 201 @b(5) 2 + S0 2PbO 7, 27)

where we have used the following upper bound to obtain the right-hand side

2 3 3 2
|@@BYWZ: + T I|2b) | + @2b, BhYS) < OB + - |55

Since u and b satisfy exactly the same wave equation, the bound above also holds for u,
2 n” 2 2 5 2
|0 ®Pu(n)]|7> + Z”‘I’“(OHLZ + 2[|01 Qu(D)|| 7> + E’?”HBZ‘I)u(f)HLz
t
+ / (4v/10:0-@ul|72 + 3n10-Pul72 + 0|01 Pul7: + vi*||02@ul| 7 ) dr

3n? 5
< 30@@u)s) [} + - 12u(s) [} +2/01@us) |}z + S0 02u|f. 28)
Invoking the original linearized system of (u«, b), namely (1.9) and letting r — 0, we obtain
(Oiu)(0) = vdroug + O1bo, (0:b)(0) = —nbo + Oru. (2.9)

By setting s = 01in (2.7) and (2.8), and using (2.9), we obtain the desired global bound in (1.11)
and (1.12). By taking the Fourier multiplier operator ® to be the fractional Laplacian operator,

Of = (~A)3f
and identifying the homogeneous H*-norm as the following L*>-norm,
1 s = =22 f ]2

we can then reduce (1.11)—(1.14), respectively.
Next we show the decay rates in (1.15) and (1.16). The idea is to apply lemma 2.1. We set

2
5
F(t):=|0,2b(1)|2, + %H@b(ouiz +2(012b(1)||7, + Enu||82<1>b(t)\liz

and verify that F () obeys the conditions in (2.1). It is clear from (2.7) that, for any 0 < s <
t < oo, there is a constant C independent of s and ¢ satisfying

F(t) < CF(s). (2.10)
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In addition, by taking s = 0 in (2.7) and invoking (2.9), we have
| Gulo@blis + nlorwbli: + v |osob]i:) c
0

2
< 157

5
<3 | ®bo |72 + 3(|01®(uo, bo) |72 + El/nHazq)boHiz. (2.11)

In addition, a simple L*-energy estimate on (1.9) leads to

1@, b@)]72 +2 /O W 00uu2: + | 0BT = o, bo) .
In particular,
[ 1901 < 0 o) e.12)
Adding (2.11) and (2.12) yields
/ooc F(Hdt < C(v,m) (|| o, bo)|[72 + [|01 @ (uo, bo) |72 + [|0:@bol[72) . (2.13)

(2.10) and (2.13) then verify (2.1). Lemma 2.1 then implies

A+nF@)—0 as t—o0. (2.14)
As a special consequence,

F(t) < Cw. 1) ([| Do, bo) |72 + (|01 @ (o, bo)|[72 + [10:Dbo]|72) (1 + )7,

which is (1.15). The process of showing the decay rate for b does not work for u. The reason
is that we do not have the corresponding time integrability bound (2.12) for u. We do not
know if || Pu(?)||,2 decays or not. What we can obtain is an explicit decay rate for ||V ®u(?)|| 2.
According to (1.9) and (2.14), we have

(1 +0]|012ud)|Z < C(1 + 1) (0,265 + ]| @b®)|5) =0 as  1— 0
and
[01@u(®)| 2 < |0: 26|12 + nl|@bD)]| 12
< Cw. ) (| @Guo, bo)ll,2 + 01 P, o) 2 + |82®bol2) (1 +572. (2.15)

To obtain the decay rate for 9, Pu, we apply 0»® to (1.9) and then dot with (0, Pu, 0, Pb) to
obtain

1d
5&(”32‘1’“”%2 + [|02®b||72) + v||00Pul|7> + 1l|02®b;, = 0.

Therefore, for 0 < s < ¢,
[0,@u(n)]|72 + [|0226()| 72 < [|02Qu(s)][72 + [|02Db()]|72-

Furthermore, (2.8) with s = 0, together with (2.9), gives
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/ ||82<I>u(t)\|i2 dr
0
< Cw,n) (|| Puollfz + [ VOuo[lfz + |01®bo| 72 + [[902Puoll}2) - (2.16)

Combining (2.11) and (2.16) leads to
/ ([|02@u()|7> + [|0:2b(D)||3,) dt
0
< Cw,n) (|| @uo, bo)||72 + | @(Vuo, Vo) |72 + [|002Puol[?>) -

It then follows from lemma 2.1 that

(140 ([|02Pu@)|}> + | 0:2b®D)[|7,) -0 as ¢ — oo

and
10:@ut)]172 + [[022b()II7-
< Cw,n) (@0, bo) 72 + [|2(Vuo, Vbo)|[72 + [|002Puoll;2) (1 + 07"
(2.17)
(2.15) and (2.17) yield (1.16). This completes the proof of theorem 1.1. O

We now turn to the proof of theorem 1.2.

Proof of Theorem 1.2. We make use of some of the estimates from the proof of theorem
1.1. Recall the definition of ¢ in (1.17). By taking ® to be the convolution operator ¢, namely

Of = pxf or Bf(E) = NS,
we obtain from (2.4) that
d
3,00 + 20[0:0(8 % D)|| 2 + 207 = V|0 b) |12
+ 2M|01(@ % b) |7 + 2w ||0x(d % b)||7, = 0,
where

G(t) = || 0@+ )72 + [|01(d+ B)||72 + v + n)||02( + b) |7
+ M|[(¢ % b)|| 22 + 2M(Di(¢ % b), (6 x b).

By setting A = 7, we find

d 3 vn?
260+ o@Dl + L@ bE + Tl < 0. @.18)
In particular, if we set

2
. nonvn
C: A A A~ 5
1 mln{z 3 2}
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then (2.18) yields

d

3,00+ Cr (106 %D + IV (6 b)]I12) <.
By Plancherel’s theorem and the definition of (}5,

lox bl = 18- B2 = / BRI dx

[§|Za

&7 20 !
< /§> 'T‘zww dr < 5 [V(@ D)7z

Therefore,
d 2 1 2 a 2
GO0+ C (0@ b)% + S IV@*b)F + Z 6= b2 ) <0.
If we write
. (:1 (jl 2
Cz—mln{ > 2a },
then

d
300 + CUlo@ bl + V@b + [[(@+B)][12) <. (2.19)

Clearly, for A = 7,

3 3n? 5
G0 < 311000 b}z + =@ * B2 + 101 # B2 + 237926 b2 (2:20)

For any constant C satisfying

2C, 8C, 4C
O<C0<min{ 2 2 2},

37327 5up
(2.20) implies
G018+ D) 72 + V(@ # D) |72 + (@ % D)[[72) = CoGa).
(2.19) then implies
%G(t) +CoG <0 or G() < GO)e . (2.21)

By the definition of G,
2 2 Sny 2
G(0) = [[(D(d x N2 + [|01(¢* bo) |72 + A [102(¢ % bo) |72

2
+ L1l bo)172) + 2 (@& xNO). (&% bo)).
By (1.9),
(0i(@ % b))(0) = —n(¢* bo) + 01 (¢ * uo).
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Setting A = 7 and applying Holder’s and Young’s inequalities, we have

3 3n?
GO < S @16 * O + Z3- [0 b}z + 916 bo) 2

Snv

+ =y 11026 bo)l |7 < Cov. m)I[(6 % 0. 6% bo)l - (222)

Clearly, for A = 7, G(t) admits the lower bound

G(1) = C4(||0(d xb)||72 + [[( % B)||70), (2.23)

where C4y = Cy4(v, n) is a constant. Hence, (2.21)—(2.23) lead to

10 *D)||72 + [[(B* D)1 < Cs(||(p* uo)|| 7 + [[(d % bo)||7,)e ",

which is (1.19). The proof for (1.18) is very similar and we omit the details. This completes
the proof of theorem 1.2. (]

3. Proof of theorem 1.3

This section proves theorem 1.3. This theorem consists of two main parts, the stability and the
large-time behavior estimate. Naturally our proof is divided into two main parts with the first
devoted to the stability and the second to the proof of (1.20). Due to the lack of the horizontal
dissipation in the velocity equation, the main difficulty in the proof of the stability is how to
bound the velocity nonlinear term, namely (1.22). This is the reason that the 2D Navier—Stokes
with degenerate dissipation is not known to be stable. We fully exploit the smoothing and
stabilization effect of the magnetic field to overcome this difficulty.
The proof of the decay estimate (1.20) focuses on the time integrability

.
/ 181l di < €22,
0

which is not a consequence of the vertical dissipation in the velocity equation. It is estab-
lished by making use of the regularization effect of the magnetic field through the coupling
and interaction.

In order to make efficient use of the anisotropic dissipation, we employ several anisotropic
tools to control the nonlinear terms. One of them is lemma 1.4 stated in the introduction.
Another anisotropic inequality we also use extensively is given in the following lemma. A
proof is also presented for the convenience of readers.

Lemma 3.1. The following estimates hold when the right-hand sides are all bounded.

1 1 1 1
1 ey < CIE g 100F 1 s 192 sy 1012 [ o

Consequently,

1 1
1l < CUA N 100 f 1l 10

1 1
11l < ClFN 1102 M-
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Proof. We recall the following inequality, for a one-dimensional function g € H'(R),

1 1
lgll=@ < V208l g 18| 2z, 3.1

By (3.1) and Minkowski’s inequality,

1 @y = NS @l @

1 1
<V2 z 2 o0
<VANFIG, o 121 o e

1 1
V2l mll’, . 11022 @

2 ® LE®

1 1
<V2IS g l?, | I1182f g ol

3, (R) 3, (R)

1 1 1
Haafl7, oo fll,

L3, (R) L3, (®) L3, (R)

1 1 1
<2, oI,

L3, (®) L3R L3, (R)

1 1 1 1
< 2Hf||22(]R2)HaIfHZZ(RZ)HaZfHZZ(RZ)HaIZf”zZ(RZ)

Here we have written || f || .oy With j = 1,2 to denote the L**-norm of f in terms of x; on
“J

R, and, similarly, || |2 , denotes the L*-norm. O
g

We are ready to prove theorem 1.3.

Proof of Theorem 1.3. The framework of the proof is the bootstrapping argument. We
define the energy functional to be

1 t
B0 = sup {Ju(m)|Ze + 62} + 20 / 1022 dr + 21 / 6P dr (3.2)
0 0

o<t
an show that
E(H) < E(0) + CEZ(0) + GEX1) + GE (). 3.3)

(3.3) is established by estimating the H 2_norm of (u, b). As aforementioned in the introduction,
it is extremely difficult to obtain suitable upper bounds for some of the terms such as the
nonlinear term in the momentum equation. We can only control them through the coupling
with the equation of the magnetic field. Equivalently we exploit the regularization and damping
effects of the wave structure derived from the coupling and interaction of the velocity and the
magnetic fields. The estimates of ||(u, b)|| ;2 will involves various operations such as repeated
substitutions to take the full advantage of the wave structure.

Due to the equivalence of the inhomogeneous norm ||(u, b)|| ;2 with the sum of the L>-norm
and the homogeneous norm || (u, b)|| 52, it suffices to bound the homogeneous norm ||(u, b)|| 4.
The uniform L*-bound is an easy consequence of the system in (1.1) itself. Taking the inner
product of (1.1) with (u, b), we obtain, after integrating by parts and using V- u =V - b =0,

t t
I + 160 + 20 [ ol dr+ 20 [ 613 dr = il + ol G
0 0
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To estimate the homogeneous norm ||(u, b)|| 2, we make use of the equations of the vorticity
w = V X u and the current density j = V x b, namely (1.6),

(3.5)
Oj+u-Vj+nj=b-Vw+ Q+ 0w,

{Btw—ku-Vw =vopw+b-Vj+ 01,
where Q: = 20,b1(0huy + O1uz) — 201u1(0>by + 01b). Due to
1@, D)l 2 = [[(Vw, V|12,

we focus on ||(Vw, V)| ,2. Applying the gradient V to (3.5) and taking the inner product of the
resultant with (Vw, V j), we find, after integration by parts and the divergence-free conditions,

1d

3 g IVelz + IVl + v10:VwlZ + Vil

:—/Vw-Vu-Vwdx—/Vj~Vu-dex+/Vw-Vb~dex
(3.6)

+/Vj-Vb-dex+/VQ-dex
=J+K+L+M+N.

J is the most difficult term and its estimate is long and tedious. We start with the easy terms.
Even though L and M are not exactly the same, they obviously admit the same upper bound.
To bound L, we further decompose it into four terms in order to make use of the anisotropic
dissipation,

L:/Vw-Vb~dex

= /81w81b181j dx + /Blwalbzﬁzj dx + /62w62b181j dx + /62w62b262j dx
I::lq %—lQ +—lg +—l4.

By lemma 1.4,
1 1 1
L= [ owdibin dx < €l |ovbl 107 2 [ovwl s e
b 1ol 1l
< Cllullg2 121 g Ml O2ull 72 1611 2

1 1 1
L, = /31W31b2321 dx < Cl|02jll 2 101b2| 2 107 b2 || 2 |01 || 2 || 0201 0]|

3

1 1 1 3
< Cllullg 11 g M|l 72 1611 2

where we have used the basic facts,
1012 = [|01VD] 2 < [|bllg2s (01wl = (01 V|2 < [[ul] 2,
[:01w]| 2 = [|0201 Vul| 2 < [| O] 2.
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L3 and Ly can be bounded similarly. Therefore,
1 1 1 3
L < CllullzollBll 72 1021l 721151l 7o (3.7
Similarly,
1 1 1 3
M < Cllull g 15| 52 l| B2l 5 16| o - (3.8)

We now turn to K. Again, in order to make efficient use of the anisotropic dissipation, we
decompose K into four terms,

K:—/Vj~Vu~dex
= — /81j81u181j dx — /31j3114232j dx — /azjazmau' dx — /azjazuzazj dx
=K + K> + K3 + Ky
By Holder’s inequality and lemma 3.1,
Ki = [ 1o dx < o[04 1011
) e b pnd rard i
< N0 [l [10201un | 18112 < [[Oaull o 101l 72 el 72 116 -
The other three terms K, K3 and K4 all admit the same upper bound. Therefore,
1 3 1 1
K < Cl|0aul| ja 161l palull 711211 2 (3.9)
‘We now bound N. We write out all the component terms in Q explicitly,
N = /VQ -Vjdx
= 2/ (alzblagmalzbz + alzb1a1u2812b1 — 812b182u18182b1 — 8§b181u28182b1

+ Blblﬁlazulﬁlzbz + Blblﬁfulﬁlzbz — 01b10,0,u10,0.b1 — 61b1812u28162b1

— Blzulazbl@sz — Blzuzalbz@sz + Bfulazblﬁl szl + 812u181b281 82191

— 81u18182b1812b2 — 811/!1812[72812[72 + O1u1010,b1010-b1 + 81u1812b28182b1) dx.
Even though N contains sixteen terms, but all of them can be bounded suitably using

Holder’s inequality, lemmas 1.4 and 3.1. Since the details are quite similar to those in the
estimates of K, we omit them for conciseness. The upper bound is

1 1
N < Cl|b|[3alull 2 [| o] /- (3.10)

‘We now turn to the most difficult term J. Again, we split J into four terms,
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J=—/Vw-Vu~dex

= — /81w81u181w dx — /81w81u282w dx — /Bzwazulalw dx — /82w82u282w dx
=h+h+J+ s (3.11)
As we have explained in the introduction, due to the lack of the horizontal dissipation, J; and
J, can not be bounded suitably. It is the smoothing and stabilization effect of the magnetic field
that makes it possible to control these two terms. To incorporate this effect, we make use of
the equation for the magnetic field. By replacing 0;w by the second equation in (3.5), namely
Ow=0j+u-Vj+nj—b-Vw-—0Q,
then J; is converted into five terms,
Ji = —/81u1(8,j+u-Vj+77j—b-Vw—Q)81w dx
=Ji+Ji2+ N3+ Ja+ s

We shift the time derivative in J; ;, namely
.]1,1 = —/Blulﬁ,jﬁlw dx

d
= —E/Bluljalw dx+/81(3,u1)j31w dx+/31u1j81(8tw) dx
=Ji +J2 +Js.

Replacing d,u; by the first equation of (1.1), we have

Jiio = /jalw(_al(u -Vuy) — 0P + vopiu + 01(b - Vby) + 011b1) dx
=Jui21 FJip2 s H 104 H 1125

Similarly, we replace 0w by the first equation in (3.5),

Jiis = /51M1j(—31(u -Vw) + voniw + 01(b - Vj) + 011 j) dx
=Jiis1 1132 133 + 1134
‘We thus have rewritten J; as

Sh=Jii+Jio+Ni3+Ta+Jis
=N +his+has+J2+Nhs+Jia+Jis
=Ji21 HJ22 s 24 25 s a2 1183 134
+Ja+Ji2+ i3+ Na+ s (3.12)
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We estimate the fourteen terms on the right of (3.12). By Holder’s inequality, lemmas 1.4 and
3.1,

.]1,1,2,1 = —/j@lwﬁlu-Vul dx — /j@lwu-Valul dx

1 1 1 1
S 10wl [[Orw]| 2 V|| 7 02V u || L1 22 0111
1 Lol It
+ lullz [ O10]] 2 [V Orus || |02V Oru || o111 22 101 11
1 1 1 1 1 1
S 0wl 7 [[0201ul| Gy | Orwl| 2 [ Ve[| 25 102V | 5 111 22 01l 72

1 1 1 11 1
+ Nlull 1 [[Oaull g [|O1w ]| 2 [V OV us [| 72 |02V O [| 2, 1| 2 M1 9 £

< llullzal102ull 216l 2

Applying the divergence operator V- to the first equation of 1.1 and invoking V - u = 0, we
have

0P =01(=A)"'V - (u-Vu—b-Vb) (3.13)

By substituting (3.13) into J 1 2.2,

Jii22=— /jawan(—A)*lV “(u-Vu—>b-Vb)dx

= _/jalwall(_A)_lal(“

+/j81w811(—A)‘181(b-
:—/jalwau(—A)*‘(alw
- / 1w (=AY (Do -
+ [ Jowonc-a) -
+/j81w811(—A)71(82b-

= _/jalwall(_A)il(alu'

- Vuy)dx — / 1w (=AY 1Oy (u - Vup)dx

Vby)dx + / jO1wO (=AY Du(b - Vby)dx
Vi = [ 010 (-8)" - Vo
Vuy)dx — / 1w (—A) N u - VOhuo)dx
Vbl)dx+/j81w6“(—A)"(b-V@lbl)dx
Vo + [ 00 (-8)" (b - Vosbeyds

Vup)dx — / 1w (—A) N (Dou - Vup)dx

+/j@lwﬁn(—A)"(ﬁlb-Vbl)dx+/j81w611(—A)"(82b~Vbz)dx
= _2/jalwall(—A)fl(alulalul)dx_2/jalwall(—A)fl(aluzazul)dx

+2/jalwan(—A)’l(alblalbl)dx+2/jalwé’l1(—A)’1(81b282b1)dx.
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The four terms on the right can be estimated as follows. We use Holder’s inequality, lemmas
1.4 and 3.1, and the fact that the double Riesz transform d;;A~" is bounded on L? for any
1< p<oo.

Traza S 1ISNO SN0 W] 2 9200l 511011 (— )7 @y D) 2
1112 10112 0 2 2010112 s (= ) @rausdun |
IS0 2 9l 292010l 1011 (— A) @1 drbo)
IS0 2 9l 29201111011 (— A) @rbadaby)

1 1 1 1
S 21100l 2101wl 210201011 72

X (||81u181u1||Lz + HaluzazulHLz + ||a1b181b1||L2 + HalbzazbluLZ)

1

S 11211000 2101wl 2 [|0201 | 2| Orael | o< || Oru| 2
1 1 1 1
+ 1l 100 2 | 0w | 102010 Vb 4

1 1 1 1 1 1
S 12211001 2101wl 2 [|0201 0| 2| Ovell 1 (| G201l 1 [| a2

+ 12100l 2 01wl 72 10201117, 1V B 2 [| Ab| 2
1 3 1 3
S N10aull 216 gl 72 + (| 9otl| o 161 o e 2 161 -
By lemma 1.4,
1 1 1 1
Jiios = V/j81w8221u1 dx S |01 [| 2|01 5 1020100 L 11 22 1011l >
S Ol 16| 2 ]| 2
By lemma 1.4 and Sobolev’s inequality,

Ji124 = /jalwal(b -Vb))dx = /jaw.)alb - Vb, dx + /jawjb -01Vb; dx

1 1 1 1
S 016 - Vo[ 2l L1100l A 101w]| 21920101 2
1 1 1 1
+ 16 0 Vb || 2| 210171 12 01wl 12| 0201w]|
1 1
S (IVDI1Za + 116l 1100V b || 2116 2| ]| 2 1| D2 | 2
3 3 7
S 18l el 72 M| Oau| -
The last term J; ;25 can also be bounded via lemma 1.4,

1 Lo 1
Jii2s = /j81w811b1 dx S [[0ubil| 210w 10001 2 1l 10011 2

1 3 1 1
S 19aul g 11 g Nl 221121 -
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We rewrite J; 13, as

.]1,1,3,1 = —/Bluljalu-Vw dx—/@luljuﬁle dx

=Jiis1 I3,

By Holder’s inequality, lemmas 1.4 and 3.1,
Ji311 = /Bluljalqu dx

1 1 1 1
S 10l [Vl 2 01| 2 1820w || 11| 2 1901 2

1 1 1 1 1 1
S 10vull g l|020hul| [ Ve 2| v || | G200 | 1 21101 2
< 102ull 21611 2 |72 -

By integration by parts, lemmas 1.4 and 3.1,
Ji312 = —/31u1ju -01Vw dx
= /Bllulju-Vw dx+/31u181ju~Vw dx+/81u1j81u-Vw dx
bt Lol (ol
S Mlull i ll0aul| 7 011w || 2 [Vl [0V Wl L1 1101 2

1 1 1 1 1 1
+ lluall 1 ([ O2uell 1101l 2| Oveea || |01 Ovaar[| 2 [ Vel 02V ] 12

1 1 1 1 1 1
+ (| Ovull o [|020vue]| IVl 2| Brana[| 2 1920w | 2 11| 22 19141 12
< 102ull 21611 2 |72 -

Similarly,
.]1,1,3,2 = v/@luljazzlw dx = —v/@lluljazzw dx — v/@lulaljazzw dx
1 1 1 1
S 10wl 21712 10011 |01 [| 12102011 ui ||
1 1 )
+ 10w || 51 [|0201us || 71 (101 ]| 2] Oz | 12

3 1 1 1
S 10aull g 121 g Ml 221121 -

By integration by parts, lemmas 1.4 and 3.1,
Ji133 = /31141]'31(1? -V j)dx
= —/811u1jb . VJ dx — /81u181jb . V] dx

1 1 1 1 ) .
S DI IV il 2 11 1101 2 10nu | 2 1020w || 7y + [ Ovun ||z (|| oo |01l 2 1V 12
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S 11612, 101012, 1192 1112 10071 2 Dy [ 020101 1
O 112, 1020100 2, 15112, 105D, 10012119 72
1 3 1 3
S (10l 16 Ll 2. ]
By integration by parts and lemma 1.4,
Jij34 = /31M1j311j dx = — /511141]'31]' dx — /a1u131j31]' dx
S 11007121110 1 2102001 1122 10071 2 + 11010 < 19111
< 10l 2 112l 2 1112 + (19120112, 000112, 16112
< 10sull 2 6112 12 16112
The next term in (3.12) is J; 1,1, which involves the time derivative. Its handling is easy and

it will be bounded after we take the time integral. We turn to the next term in (3.12), namely
Ji2. By lemma 1.4 and then lemma 3.1,

.]1,2 = /31u1u . Vj@lw dx

1 1 1 1
S Nl IV 7l 2|0l [ 0Fun | |01l 2 | 02010

1 1 1 1 1 1
< Nl l0aull 7 IV 1l 2 1 Oraai | 2 |02 | 75 910 | . | 020101 5
H H L L L L

< 102t 2 11l 2 |7 -

By integration by parts, V - 4 = 0, and lemma 1.4,

]1,3 = — /naluljalw dx

/n@lzuljw dx—|—/7782u231jw dx

: 2 b 2102 3 ; 2182, 12 1l 2 3
S 20wl L 1007w || el 1101l 72 + 11011l 2 10212 1 | 5 a2 || | 2 |01l £,
S 10aull 2|11 g2 [l g2

By lemmas 1.4 and 3.1,
.]1,4 = /61u1b . Vw@lw dx

1 1 1 1
S 101 || [Vl 2| 01w]| 21| 0201[| 2 15| 2 [ 915 2

1 1 1 1 1 1
S 10 g l|0200a | g [ Vel 2| 2 18201l 161 21101l 22

S 1102ull 21611 2 |l -
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J15 is written more explicitly into four pieces by the definition of Q,
.]1,5 = /81u1Q81w dx

= /81u181w (201b1(01uy + Ohuy) — 201u1(01by + 02b1)) dx

=Ji51 +N152 +J153 +J154.

By lemmas 1.4 and 3.1,

J1,5q1 = 2/81u181b181u281w dx

1 1 1 1
S 0wua ||z |01l 2| Orun || 15 |02 01 || /5 |O1D1 || 1] 01 O o | £

1 1 1 1 1 1
S 01| ;2 10201 || g |01 | 2 | Ovun || 2 | 0201w || L |01 D1 || 210101 b1 ||
po 22271 PPy Py

It is easy to check that J; 55, J; 53 and J; 54 all obey the same bound. Therefore,

Vsl S Nl Oaull g2 |16 2 lual |32

We have completed the estimates of the terms of J; in (3.12). Collecting the upper bounds
leads to

d . 1 3 1 3
<=y /Bluualw dx + Cl|0ull 2B ]| e |72 + Cll Dol 2 151 2ol 21112

1 3 1 1
+ CllOaull 2 1Dl 2 el 2 + CllBaul| 52 1512 [l 2 121l - (3.14)

We now turn to the second term J; in (3.11). As we have explained before, we need to invoke the
smoothing and regularization effect of the magnetic field in order to bound this term suitably.
By replacing Oyu, by (1.1), namely

O1uy = Oyby +u-Vby +nby — b - Vuy,

we can write
Jr = _/81(«0(8:[72 +u-Vby +nby —b- Vuy) dyw dx

=+ T+ Joz 4+ Joa.
We bound J; 5, J23 and J; 4 first. By lemmas 1.4 and 3.1,

.]2,2 = — /Blwu . Vbzazw dx

1

1
S llullz< (|02l 2|01 ]] 1 [[020160]| [ V2| 2101 V2|72

1 1 1 1
S Mull i l[0aull fy 02wl 2 |O1w]| L[| 02010 [ | Vo[ L1101V b2 ||
S 10aul| 2151 g2 2] -

By lemma 1.4,
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.]2,3 = —n/@lwbzazw dx

1 1 1 1
S 10wl 2101|211 02010| 2162|121 0152 ] 12
3 1 1 1
S 1020l g 11l 1l 2 121 -

Again, by lemmas 1.4 and 3.1,

J2’4 = /alwb . Vuzazw dx

1 1 1 1

S 1Bl ([l 2 101]] 2 [| 020160 2 [ Vata | 2101 Viaea || 2
1 1 1 1 1 1
S 16110261 102 2 [ O10 ]| 2 0201wl 2 (| Va2 || 2101 Vs |

3 1 3 1
S 1020l g 121l N1l 22 121 -

To deal with J; ;, we shift the time derivative,

.]2,1 = —/Blwatbzazw dx

= —%/Blwbzazw dx+/81(8tw)b282w dx+/81wb282(8tw)dx

=D +J212+ 213,

By invoking the vorticity equation in (3.5), we can write
Jo12 = /81(—11 -Vw +vdpw+b- Vj+ 61j)b282w dx

=21 +J2102 + 2123 +J2104.

By integration by parts, and lemmas 1.4 and 3.1,

Joip1 = /u - VwdbyOrw dx + u - Vwby0,0,w dx

1 1 1 1
S el | Vwll 210201175 920201175 101 b2 1 197 b2 72

1 1 1 1
+ lullz< [[0102w ] 2 | VWl 2|02 Vel L2 1b2 | 2 [|0162 1 2
S 110aull 2 1B 52 ull7 + 1020l Z2 115 2 ]l 2

and

.]2,1,2,2 = —l//azzwalbzazw dx — I//azzwbzalazw dx

1 1 1 1
S 100wl 2102w ]| 2 1|0205w | 5|01 5| % 1|07 b2 |, + 1152 1% [| 022w 12| 01 Daw ]| 12

1 1
S 10aull72 1Bl 52 + 162115 1016211 51 1021172

S 110aull72 [6]]2-
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Similarly,
J2’1,2,3 = —/b . Vjalbzazw dx — /b . ijzalazw dx
1 1 1 1
S bl [Vl 2110201172 1020001 22 | 01821 2 9702 2
+ 1Bl B2l oo [| V1] 2| 0102 2
1 1
S 61l 10151 g 102l 151172 + 11511 it 1016z 16121 D2t 2
< [ Oaull 16172
and

Joip4 = /Bujbzﬁzw dx
= - /aljalbzazw dx — /Bljbzalﬁzw dx

1 1 1 1 )
SN0l 10201 2210200 L 110162 122 1086212 + (162|101 ] 2 9102wl 12

1 1
S 102l 216172 + 16211 11015211 1612 D2 2

< 1102ull 21611 72-

To bound J;; 3, we invoke the vorticity equation in (3.5) again,

Joi3 = /82(—14 -Vw+vopw+b- Vj+ 01j)b281w dx
=131 +J2132 + 2133 + o134

By integration by parts, and lemmas 1.4 and 3.1,

D31 = /u - VwbdrbyO1w + u - Vwbr0,01w dx

1 1 1
S lullz< [Vl 2|1l 2 0201011 2 [|0221 12 1019252 | 12

1 1 1 1
+ lullz< [ 02010] 2 | VWl 2|02 Vel 22 1b2 | 2 [|01621 72

< 102l 2 101l 2l 2 + 1102l 72 1Bl [

J2’1,3’2 = —l//azgwazbza]w dx — l//azzwbzazalw dx
1 1 1 1
S 0wl 2| O1w]| L [|0201w]| 111|022 | /11| 010262
+ [|D2 |25 | Oraw ]| 2 [| 201w |12
SR ITER LRI 3 o 2
S 10aull 22 1611l 72161 72 + [1D21 71 (1015211 (| ol o
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Joias = — / b -V johbrdhw dx — / bV jbrydrdhw dx
< bllu |V 2101w | 9010l 18aba 2 10102 |
PN TS P X
< I 100112 0l 2o 120 151122 + 151511916 1 1B 2| Bl
< 00l 2 ] Za il 221611 + 921611,
and

D234 = /anjbzaw dx
= —/31j32b231w dx — /81jb28281w dx

1 1 1 1 )
SN0l 21101w0] 12 1|0201w]1 11102621 1, |01 0ab2 || 1> + (B2l o< (|91 | 2] G2 01w 12
1 1 1 1
S 0ol 2l 2116112 + 1162017 1101 b2 216 g2 || O] 12
A ST
< 0ol 2, 1161125 ([l 21181 22 + 1021l 21181172
Collecting the estimates for J,, we obtain

d
L< -3 /fhwbzazw dx + Cl|0aull 2 1B 42 | ull 2 + CllOaull72 5] 42

1 1 3 1 1 1
+ CllOul72 1621l 101021 7y + Clldaul ol Fo Null 161
3 1 3 1
+ CllOaull o161 7 Nl 2 10117 + CllO2tll 2 Bl 2 w1

1 3 1 1
+ Cl|O2ull 2 1B|I72 + CllO2u 2 11172 + Cll Ozl o 111 o lull 7 15 - (3.15)

The last two terms in (3.11) are J3 and J4. We now evaluate them. By lemma 1.4,
J3 = —/62w82u181w dx

1 1 1 1
S 100wl 2]|Oaus ||, [|0100ui || 5 |01 2 | 0201}
< 10aul |2l 2 (3.16)
and

J4 = —/62w82u282w dx

1
S 102wl 2| Oaua |, [|0102ua]| 2 || Oaw]| 2 [ 0200w
S N\l [l - (3.17)
Adding (3.4) and (3.6), integrating in time, and recalling the definition of £ in (3.2), we have
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E(t)<E(0)+/ (J+K+L+M+ Nydr.
0

Collecting the upper bounds in (3.7)—(3.10), (3.14)—(3.17), we find

E(r) < E0) — /Bluljalw dx + /811401j0810J0 dx (3.18)
— /81wb282w dx + /81wob0262w0 dx (3.19)
+ CEX(1) + CE (7). (3.20)

The last two terms on (3.18) come from the time integral of the first term in (3.14), and the two
terms on (3.19) are from the time integral of the first term in (3.15). The two terms on (3.20)
are obtained by integrating the aforementioned upper bounds and applying Holder’s inequality.
For example, when we integrate one of the upper bounds in (3.14), say C||dul| 2| b|| 2|12,

/CllazuHHzIIbllyzllullﬂsz CSUP Iu(T)IIHz/ 1Oaull 21D 2 dT

\T\

1 1
t 3 t 3
< ceo( [ 1oulfs ar) ([ 1613 ar)
0 0

< CEX ().

The four terms on (3.18) and (3.19) can be further bounded as follows. By Holder’s
inequality and lemma 1.4,

—/81u1j81w dx—|—/81u01j081wo dx

< Cl o]z ]|Onm]] zllazf)lulll zHJ” 2”81]HL2

1
+ Cl|O1wo | 2| Oruaon | 2”8281“01“ 2||Jo|| zHaljoHZz
< CE3 (1) + CE3(0).

By Holder’s and Sobolev’s inequalities,

- /31wb232w dx+/31wob0232wodx
< Cllbafle<[[01w]] 121|020 12 + Cllboa | |10l 2] 2ol 2
< ClbllllOwll2l| 02wl 2 + Cliboll g2 [|O1woll 22 | Bawo l 2
< CE3 (1) + CE3(0).
We have finally obtained (3.3), namely
E(r) < EW)+ CIE%(O) + GE (1) + C3E%(t). (3.21)

A bootstrapping argument applied to (3.21) would lead to the desired stability. We show, by
the bootstrapping argument, that if the initial data is sufficiently small, say
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| (uto, Do) || 2 < &,

with ¢ satisfying

1 1
42 +4C 18’ < fp:=min{ —, ——
e+ 1€ 0 min { ac, (4C3)2}
then, for any 0 < 7 < oo,
[u(0), b)) |17, < Et) < .
In fact, if we make the ansatz that, for 0 < < T,
E(1) < do,
then (3.21) implies
E() < €2 + C1e° + CEWDE() + CE2(DE(1)
<+ +c iE(r) +C iE(r)
= ! 24G, Y40,
or

1 1
EE(t) <e?+Ced or E@) <22 42CE = 550.

The bootstrapping argument then implies that 7 = oo and E(f) < . This completes the proof
for the stability part of theorem 1.3.

Next we prove the large-time behavior estimates stated in theorem 1.3, namely (1.20). We
make use of lemma 2.1. The main efforts are devoted to verifying that

f@=IVu@||z + V@7

satisfies (2.1), namely
/ f(ndr < Ce? < 0 (3.22)
0

and, forany 0 < s < ¢,
f(@ < Cf(s). (3.23)
The proof of (3.23) is relatively easy while the proof of (3.22) is more complex. Since
IVu@®||2 = [lwllz2 and  [[Vb@)I|z2 = [ jl]2,

we resort to the equations of w and jin (3.5). By taking the inner product of (3.5) with (w, j),
we find

1d . . .
3 il )+ w0+l = [ 07
:2/81b182u1jdx+2/81b181u2j dx—2/81u182b1j dx—2/81u181b2j dx.
(3.24)
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The four terms on the right-hand side can be estimated very similarly. We bound the second
term as an example. By lemma 1.4,

1 1 1 1
2/31191311421 dx < C[|01b1]| 2|01z || [ | 0201 ua | 1111 12110111 £
v 2 AN E
< g lld20allys + CllillE: lwll 210112
v . 2 2
< 110l + Cllill Nl 219112
The other three terms obey the same bound. Invoking these bounds in (3.24) yields
d . 3v 2 L2 )
o (lwllZe + 1l172) + 5 l19xwll7 +2 (77 - CIWII22I31]|22> 1l < 0. (3.25)

According to the first part of our proof, if the initial data (u, by) satisfies
| (o, Do) || 2 < €

for sufficiently small € > 0, the solution (u, b) remains small,
[u(@), b@)|| 2 < Ce.

When € > 0 is taken to be small enough such that

4
3

2 2
= Cllwll L1017 = n — Ce3 >0,
then (3.25) implies, for any 0 < s < f,
lo@Iz + 1JOI7 < w7z + 16l or f(0) < ().
We now prove (3.22). We have shown in the previous part that
[ 1ol a< e [ ol a s e (3.26)
0 0
To prove (3.22), it remains to prove

/ |O1ull7> dt < Ce2. (3.27)
0

The proof for this upper bound is not trivial. We need to take advantage of the regularization
of the magnetic field. We replace one of 0ju in (3.27) by the equation of the magnetic field

Owu=0b+u-Vb+nb—>b-Vu
and obtain
[0wul)7. = /81u Oy dx = /81u ~(Ob +u-Vb+mnb—b-Vu)dx
=N; +N, + N3 + Nj. (3.28)
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We first estimate N, N3 and N4 and then come back to N;. We write out all component terms
explicitly,

N> :/81u(qu)dx:/(81u1(uV)b1 + O1uput - Vby) dx

= /((—82u2)(u -V)bi + O1usx(u101b2 + ur0,b,)) dx
=Ny +Nyp+ Nojs.
By lemma 1.4,
Ny = /(—32M2)(M - V)b dx
1 1 1 1
< Cl|Qua| 2 [[ul| 1 02u| LIV D1 || L1101V By || [, < Cllull g2 | O2ul| 2 || 6] 2
By integration by parts and lemma 1.4,

Nyp = — /(M2(91M131b2 dx + w11 011b2)dx

1 1 1 1
< Cllua|[2|02ua || 1, | 020212 || 1, | 01 b2 5 | 0101 b2 |

1 1 1 1
+ Cllonbz|| 2| Oaua || > ua || 2l |1 22 | Oven |

< Cllull 2l O2ull g2 16| 2-

Again, by integration by parts and lemma 1.4,
W2
N2,3 = /81u2u232b2 dx = /81(52)62192 dx

= /BZ(MZ%)BIIJQ dx = /u282u281b2 dx
< Cllull gzl Oaull 2 16| 2-
Clearly,
Ny =1 / Dy b dx < Claul 2 bl < F1owa + ol
To bound N4, we again write out the component terms explicitly,

N4 = —/61u(qu)dx= —/31u1(b~V)u1 dx—/@luz(b~V)u2 dx

= /82u2(b . V)m dx — /81u2b181u2 dx — /81u2b282u2 dx
= Ns1 + Ny + Nys.

By lemma 1.4,
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N4,1 +N4,3 = /azuz(b . V)u1 dx — /81u2b282u2 dx

1 1 1 1
< Cldaua |2 (16| 2 101B]] 2 Vi || 2 102V | 2

1 1 1 1
+ Cl|Oaua | 2[|D2 || 10162 2 10112 12 | 920112 | [
< Cllullgzl|Oaull 2|16 r2-

By Sobolev’s inequality,
Niz = = [ @y ax < bl 2 orel
< ClIbll 2 [|0vua | 2 |V Orua 2 < %H@luzlliz + Cllbll7a [l 72-
We now return to estimate N;. Shifting the time integral and invoking (1.1), we obtain
Ny = /81u~8,b dx

:%/3114-19dx+/31(u-Vu—|—VP—1/822u—b-Vb—@lb)-bdx

=Ni1+Ni2+Ni3+Nig+Nis+Ng.

Ny is the time derivative term and we bound it later after we integrate it in time. To estimate
Nj,, we rewrite it into sums of component terms to reveal the terms with favorable partial
derivative such as Ohu,

Nl,z:/81(u~Vu)-bdx:/(31u~Vu)~bdx—!—/(u-VBm)-bdx
= /81u181u~bdx+/81u282u-bdx+/u1811u1b1 dx
+/u1811u2b2 dx+/u28281u~bdx
= /(—62u2)81u~b dx+/81u282u-b dx+/u1(—821u2)b1 dx
+ /(al(ulalug)bg — Ou101urby) dx + /uzazalu -b dx
= /(—82u2)81u~b dx+/81u282u-b dx+/u1(—821u2)b1 dx

— /(u181u2)61b2 dx + /82u281u2b2 dx + /uzﬁzalu - b dx.
By Sobolev’s inequality and lemma 1.4,
Nz < [|Ooua]| 2| Orul| 4 [D| 4 + [|Ovuaa | 4| O 2 D] 4

1 1 1 1
+ [luil[ gl 0wz | 2B+ + Jun|| L[| O || 2 | Orua || F2 | 0201 ua ||
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X (1016212 4 [|Oaua | 2 || Oruea || s 1Bl s + Nzl 4| O20n ]| 2] s

< Clloaull 16| 2 || -

N3 contains the pressure term P. By (3.13),
Ni3 = /GIVP-b dx = —/VP~81b dx
= —/V(—A)*v ~(u-Vu—"b-Vb)-0b dx
= —/V(—A)—lv (u-Vu)- b dx+/V(—A)"V~(b-Vb)~8lb dx
=— / V(=A) 1010,(u}) + 20,05 (uuz) + 0205(u3)) - O1b dx
+/V(—A)*1v -(b-Vb)- b dx.

By Holder’s inequality and using the fact that the singular integral operators are bounded on
L? for 1 < p < oo, namely

V(=) "0uf || < C|f [|2r, V(=) "0 flr < CIf |0,
we have

Nis < C|01@D) |2 + |02G12) | 2 + 102w | 2)[1015 ]l 2 + Cllb - Vbl 2| 018 | 2
C

<
< C(lfwnlz< [[Oru ||z + N[l | Ozul| 2) ([ 015l 2 + C|Bl| < [[ VD] 2|91 2

< Clldauz| ol 216 2 + €I
We now estimate the rest of the terms. By integration by parts,
N4 = —1//8132214 -bdx = 1//82214 -O1b dx
< Clldaul o 16| s
N5 = —/81(b-Vb)-bdx: —/(alb-Vb)-bdx—(b-81Vb)~bdx
< I |3
Nig=— /BHb -b dx < C||b|[3,.
Collecting the upper bounds for N through N, and inserting them in (3.28), we find
oz < 5 [ o b dx + Cldwulelblellule -+ o1

0172 + Clb|IFa e -

1
+ CllO2ull 1 1Bl + ClIB]152 + 5]
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Combining some of the terms and integrating in time, we obtain, for any 7 > 0,

T
/ [0hu()|2> di < 2/(6114 - b)(x, T)dx — 2/31uo by dx
0

T
+ C/O (l12ell 2161 2 el 2 =+ 1613 + N[Ol 1 |16 2

+ 10ll7 + 16172 llullFz) de
< 2(|00u(D) [ 26D 2 + 2[|Oruoll 21 bo]l 2

T
+C sup D)0 / (0| + 60| 2)de
0

SIS

T
+C(+ sup |lu(®)|;p) / (| 02u(®)|I32 + [|b(@)[|72)de
0<I<T 0

<CE +& +eh. (3.29)
Since the upper bound in (3.29) is uniformin time, we have thus verified (3.27), which, together
with (3.26), confirms (3.22). This completes the proof of theorem 1.3. O
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