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Abstract

This paper studies the global (in time) regularity problem concerning a system of equations generalizing
the two-dimensional incompressible Boussinesq equations. The velocity here is determined by the vorticity
through a more singular relation than the standard Biot–Savart law and involves a Fourier multiplier op-
erator. The temperature equation has a dissipative term given by the fractional Laplacian operator

√−�.
We establish the global existence and uniqueness of solutions to the initial-value problem of this general-
ized Boussinesq equations when the velocity is “double logarithmically” more singular than the one given
by the Biot–Savart law. This global regularity result goes beyond the critical case. In addition, we recover
a result of Chae, Constantin and Wu [8] when the initial temperature is set to zero.
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1. Introduction

Attention here is focused on the generalized Euler–Boussinesq equations of the form⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tv + u · ∇v −

2∑
j=1

uj∇vj = −∇p + θe2,

∇ · v = 0, u = Λσ P (Λ)v,

∂t θ + u · ∇θ + Λθ = 0,

(1.1)

where v = v(x, t) and u = u(x, t) are 2D vector fields depending on x = (x1, x2) ∈ R2 and
t � 0, p = p(x, t) and θ = θ(x, t) are scalar functions, e2 is the unit vector in the x2-direction
and σ � 0 is a real parameter. Here the Zygmund operator Λ = (−�)1/2, Λσ and the Fourier
multiplier operator P(Λ) are defined through the Fourier transform, namely

Λ̂σ f (ξ) = |ξ |σ f̂ (ξ) and P̂ (Λ)f (ξ) = P
(|ξ |)f̂ (ξ).

More details on such operators can be found in many books and research papers such as [34]
and [14]. We remark that (1.1) can be reformulated in terms of the vorticity ω = ∇ × v as⎧⎨⎩

∂tω + u · ∇ω = ∂x1θ,

u = ∇⊥ψ, �ψ = Λσ P (Λ)ω,

∂t θ + u · ∇θ + Λθ = 0,

(1.2)

where ω = ω(x, t) is a scalar function and ∇⊥ = (−∂x2 , ∂x1). This paper will mostly work with
the vorticity formulation.

The generalized Euler–Boussinesq system in (1.1) or (1.2) reduces to the generalized 2D Euler
equations studied by [8] when θ = 0. Furthermore, (1.1) or (1.2) generalizes the 2D incompress-
ible Boussinesq equations. The standard velocity formulation of the 2D Boussinesq equations
with fractional dissipation and fractional thermal diffusion is given by⎧⎨⎩

∂tu + u · ∇u + νΛαu = −∇p + θe2,

∇ · u = 0,

∂t θ + u · ∇θ + κΛβθ = 0

(1.3)

with the corresponding vorticity ω = ∇ × u satisfying⎧⎨⎩
∂tω + u · ∇ω + νΛαω = ∂x1θ,

u = ∇⊥ψ, �ψ = ω,

∂t θ + u · ∇θ + κΛβθ = 0,

(1.4)

where ν � 0, κ � 0, α ∈ (0,2] and β ∈ (0,2] are real parameters. Clearly (1.2) with σ = 0
and P(Λ) = I is simply (1.4) with ν = 0 and β = 1, where I denotes the identity operator.
The Boussinesq equations in (1.3) or (1.4) with α = 2 and β = 2 model geophysical fluids and
play a very important role in the study of Rayleigh–Bénard convection (see, e.g., [12,18,24,32]).
Mathematically the 2D Boussinesq equations serve as a lower dimensional model of the 3D
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hydrodynamics equations. In fact, the Boussinesq equations retain some key features of the 3D
Navier–Stokes and the Euler equations such as the vortex stretching mechanism. As pointed out
in [25], the inviscid Boussinesq equations, namely (1.3) with ν = κ = 0 can be identified with
the 3D Euler equations for axisymmetric flows (away from the symmetry axis).

The goal of this paper is to establish the global (in time) existence and uniqueness of solutions
to the initial-value problem (IVP) for (1.2) supplemented with data

ω(x,0) = ω0(x), θ(x,0) = θ0(x), x ∈R2. (1.5)

We work with a very general class of symbols P(|ξ |) for the operator P(Λ), as previously spec-
ified in the work of Chae, Constantin and Wu [8, p. 36]. More precisely, P is assumed to satisfy
the following condition.

Condition 1.1. The symbol P(|ξ |) assumes the following properties:

(1) P is continuous on R2 and P ∈ C∞(R2 \ {0});
(2) P is radially symmetric;
(3) P = P(|ξ |) is nondecreasing in |ξ |;
(4) There exist two constants C and C0 such that

sup
2−1�|η|�2

∣∣(I − �η)
nP

(
2j |η|)∣∣� CP

(
C02j

)
for any integer j and n = 1,2.

We remark that (4) in Condition 1.1 is a very natural condition on symbols of Fourier multi-
plier operators and is similar to the main condition in the Mihlin–Hörmander Multiplier Theorem
(see, e.g., [34, p. 96]). For notational convenience, we also assume that P � 0. Some special ex-
amples of P are

P(ξ) = (
log

(
1 + |ξ |2))γ with γ � 0,

P (ξ) = (
log

(
1 + log

(
1 + |ξ |2)))γ with γ � 0,

P (ξ) = |ξ |β with β � 0,

P (ξ) = (
log

(
1 + |ξ |2))γ |ξ |β with γ � 0 and β � 0.

Our motivation for this study is two fold: first, to extend the work of Chae, Constantin and
Wu [8] on the generalized 2D Euler equations to the Euler–Boussinesq system of equations,
and second, to explore how far one can go beyond the critical dissipation and still prove the
global regularity for the Boussinesq equations with fractional dissipation. The 2D Boussinesq
equations have recently attracted considerable attention and many important results on the global
well-posedness issue concerning the partial dissipation case have been established (see, e.g., [1,2,
5–7,9,13,15–17,19–23,27–31]). One of the critical cases, (1.1) or (1.2) with σ = 0 and P(Λ) = I ,
was recently shown to be globally well-posed in [21]. This paper examines for what operator P

obeying Condition 1.1, (1.1) or (1.2) is still globally well-posed. When P(|ξ |) is not the identity
operator, (1.1) involves a velocity field that is more singular than the standard velocity determined
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by the vorticity through the Biot–Savart law [25]. Our main result, Theorem 1.2, states that (1.1)
is still globally well-posed when P satisfies two explicit conditions.

Theorem 1.2. Let σ = 0. Assume the symbol P(|ξ |) obeys Condition 1.1 and

P
(
2k

)
� C

√
k for a constant C and any large integer k > 0, (1.6)

∞∫
1

1

r log(1 + r)P (r)
dr = ∞. (1.7)

Let q > 2 and let s > 2. Consider the IVP (1.2) and (1.5) with ω0 ∈ Bs
q,∞(R2) and θ0 ∈

Bs
q,∞(R2). Then the IVP (1.2) and (1.5) has a unique global solution (ω, θ) satisfying, for any

T > 0 and t � T ,

ω ∈ C
([0, T ];Bs

q,∞
(
R2)), θ ∈ C

([0, T ];Bs
q,∞

(
R2)) ∩ L1([0, T ];Bs+1

q,∞
(
R2)). (1.8)

A special consequence is the global well-posedness of (1.2) when P is a “double logarithm”,
namely

P
(|ξ |) = (

log
(
1 + log

(
1 + |ξ |2)))γ

, γ ∈ [0,1]. (1.9)

It is easy to see that P(|ξ |) given by (1.9) verifies Condition 1.1, (1.6) and (1.7). The global
well-posedness of (1.2) with P(|ξ |) given by (1.9) is given in the following corollary.

Corollary 1.3. Let q > 2 and let s > 2. Let ω0 ∈ Bs
q,∞(R2) and θ0 ∈ Bs

q,∞(R2). Assume that
σ = 0 and P(|ξ |) is given by (1.9). Then the IVP (1.2) and (1.5) has a unique global solution.

When θ ≡ 0, the result in Corollary 1.3 reduces to Theorem 1.3 for the generalized 2D Euler
in [8, p. 38]. When P is the identity operator, we reproduce the global well-posedness for one of
the critical Boussinesq equations (see [21]). We now point out the key technical ingredients in
the proof of Theorem 1.2. Since the solution class in (1.8) is very regular, the uniqueness part is
not hard to obtain and our main effort is devoted to the global existence part. To show the global
existence, we establish the desired global a priori bounds for (ω, θ). Direct energy estimates
do not yield the desired estimates mainly due to the vortex stretching term ∂x1θ . Our process of
obtaining the global bounds for ‖ω‖Bs

q,∞ and ‖θ‖Bs
q,∞ is divided into two major steps. The first

step establishes the global bound for ‖ω‖Lq , ‖θ‖
B

0,P
∞,2

and ‖ω‖L∞ , where B
0,P
∞,2 with P being the

aforementioned operator denotes a generalized inhomogeneous Besov space and its definition
is given in Appendix A. To prove the global bounds in this step, we follow the idea of [21] to
consider the combined quantity

G = ω +Rθ with R ≡ Λ−1∂x1 ,

which satisfies

∂tG + u · ∇G = −[R, u · ∇]θ, (1.10)
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where the commutator [R, u · ∇]θ = R(u · ∇θ) − u · ∇(Rθ). The advantage of (1.10) is
that it hides the vortex stretching term ∂x1θ . The trade-off is that we need to obtain suitable
bounds for the commutator. By proving suitable bounds for the commutator and making full
use of the dissipation in the equation for θ , we are able to obtain the global bound for ‖ω‖Lq ,
‖θ‖

B
0,P
∞,2

and consequently for ‖ω‖L∞ . We leave more details on these estimates in Section 2 and

Section 3.
The second major step establishes the desired global bounds for ‖ω‖Bs

q,∞ and ‖θ‖Bs
q,∞ for

s > 2. This step is further divided into two sub-steps. The first sub-step proves the global bounds
for ‖ω‖

B
β
q,∞

and ‖θ‖
B

β
q,∞

for β in the range 2
q

< β < 1. It is necessary to use the equation for

G in (1.10). As explained previously, (1.10) is more regular than the vorticity equation. The
tools employed here include Besov space techniques and a logarithmic interpolation inequality
bounding ‖∇u‖L∞ in terms of ‖ω‖Lq∩L∞ and ‖ω‖

B
β
q,∞

. The restriction of β in this range is due

to one of paraproducts decomposed from the nonlinear terms. Osgood’s inequality, together with
the condition in (1.7), yields the bounds in the first sub-step. The second sub-step takes advantage
of the regularity obtained in the first sub-step and establishes the bounds for the Besov index β1

in the range 1 < β1 < 2 − 2
q

. A repetition of this sub-step allows us to reach any index s > 2.
More details are provided in Section 4.

The rest of this paper is divided into four regular sections with an appendix. The second sec-
tion proves the aforementioned logarithmic interpolation inequality and provides estimates for
the commutator [R, u · ∇]θ in the Besov space B0

p,r and also in B0∞,r . The third section estab-
lishes global a priori bounds for ‖ω‖Lq , ‖θ‖

B
0,P
∞,2

and ω‖L∞ . The fourth section obtains global

a priori bounds for ‖ω‖Bs
q,∞ and ‖θ‖Bs

q,∞ . The fifth section outlines the proof of Theorem 1.2.
Appendix A provides the definitions of Besov type spaces and related estimates such as the
Bernstein inequality.

2. Preliminary estimates

This section presents several important estimates to be extensively used in the subsequent
sections. First, we recall some fundamental estimates for ‖�j∇u‖Lp and ‖SN∇u‖Lp from [8].
Here the Fourier localization operator �j and the identity approximation operator Sj , along with
other basic notions and techniques associate with Besov spaces, will be defined and explained
in Appendix A. Second, we prove a logarithmic interpolation inequality bounding ‖∇u‖L∞ in
terms of ‖ω‖Lq∩L∞ and the Besov norm ‖ω‖

B
β
q,∞

. Finally, we establish two estimates for the

commutator [R, u · ∇]θ in the Besov space B0
p,r and in B0∞,r .

The velocity field u in (1.1) or (1.2) is determined by the vorticity ω through a Fourier multi-
plier operator, namely

u = ∇⊥�−1Λσ P (Λ)ω.

In order to bound ω in Besov type spaces, we often need to bound ∇u in terms of ω and the basic
ingredients involved are ‖�j∇u‖Lp and ‖SN∇u‖Lp . A recent work of Chae, Constantin and Wu
[8] has provided bounds for these quantities associated with a very general Fourier multiplier
operator (see Theorem 1.2 in [8, p. 37]). More precisely, they proved the following result.
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Lemma 2.1. Assume that the symbol Q satisfies Condition 1.1 and that u and ω are related
through

u = ∇⊥�−1Q(Λ)ω.

Then, for any integer j � 0 and N � 0,

‖SN∇u‖Lp � CpQ
(
C02N

)‖SNω‖Lp, 1 < p < ∞,

‖�j∇u‖Lq � CQ
(
C02j

)‖�jω‖Lq , 1 � q �∞,

where Cp is a constant depending on p only, C0 and C are pure constants.

The next proposition provides a logarithmic type interpolation inequality that bounds
‖∇u‖L∞ . This inequality will be used in the subsequent sections.

Proposition 2.2. Assume that the symbol Q satisfies Condition 1.1 and (1.6). Let u and ω be
related through

u = ∇⊥�−1Q(Λ)ω.

Then, for any 1 � q � ∞, β > 2/q , and 1 < p < ∞,

‖∇u‖L∞ � C
(
1 + ‖ω‖Lp

) + C‖ω‖L∞ log
(
1 + ‖ω‖

B
β
q,∞

)
Q

(‖ω‖
2q

qβ−2

B
β
q,∞

)
,

where C’s are constants that depend on p, q and β only.

Proof of Proposition 2.2. For any integer N � 0, we have

‖∇u‖L∞ � ‖�−1∇u‖L∞ +
N−1∑
k=0

‖�k∇u‖L∞ +
∞∑

k=N

‖�k∇u‖L∞ .

By Bernstein’s inequality and Lemma 2.1, we have

‖∇u‖L∞ � C‖ω‖Lp + CNQ
(
2N

)‖ω‖L∞ + C

∞∑
k=N

(
2k

) 2
q ‖∇�ku‖Lq .

By Lemma 2.1,

‖∇u‖L∞ � C‖ω‖Lp + CNQ
(
2N

)‖ω‖L∞ + C

∞∑
k=N

(
2k

) 2
q Q

(
2k

)‖�kω‖Lq .

By the definition of Besov space B
β
q,∞,

‖�kω‖Lq � 2−βk‖ω‖ β .

Bq,∞



88 D. KC et al. / J. Differential Equations 257 (2014) 82–108
Therefore,

‖∇u‖L∞ � C‖ω‖Lp + CNQ
(
2N

)‖ω‖L∞ + C‖ω‖
B

β
q,∞

∞∑
k=N

(
2k

)( 2
q
−β)

Q
(
2k

)
.

Due to 2
q

− β < 0 and (1.6), we can choose ε > 0 such that

ε + 2

q
− β < 0 and Q

(
2N

)
� 2εN .

Especially, we take ε = 1
2 (β − 2

q
) to get

‖∇u‖L∞ � C‖ω‖Lp + CNQ
(
2N

)‖ω‖L∞ + C‖ω‖
B

β
q,∞

(
2N

)( 1
q
− β

2 )
.

If we choose N to be the largest integer satisfying

N � 1
β
2 − 1

q

log2

(
1 + ‖ω‖

B
β
q,∞

)
,

we then obtain the desired result in Proposition 2.2. �
We also use extensively an estimate for the commutator [R, u · ∇]θ . In order to prove this

estimate, we first state a fact given by the following lemma.

Lemma 2.3. Consider two different cases: δ ∈ (0,1) and δ = 1.

(1) Let δ ∈ (0,1) and q ∈ [1,∞]. If |x|δh ∈ L1, f ∈ B̊δ
q,∞ and g ∈ L∞, then

∥∥h ∗ (fg) − f (h ∗ g)
∥∥

Lq � C
∥∥|x|δh∥∥

L1‖f ‖
B̊δ

q,∞‖g‖L∞, (2.1)

where C is a constant independent of f , g and h.
(2) Let δ = 1. Let q ∈ [1,∞]. Let r1 ∈ [1, q] and r2 ∈ [1,∞] satisfying 1

r1
+ 1

r2
= 1. Then

∥∥h ∗ (fg) − f (h ∗ g)
∥∥

Lq � C
∥∥|x|h∥∥

Lr1 ‖∇f ‖Lq ‖g‖Lr2 . (2.2)

Here B̊δ
q,∞ denotes a homogeneous Besov space, as defined in Appendix A. (2.1) is taken

from [9] while (2.2) was obtained in [20, p. 426]. With these notions at our disposal, we are
ready to state and prove the commutator estimate.

Proposition 2.4. Let R = Λ−1∂x1 denote the Riesz transform. Assume that the symbol P satisfies
Condition 1.1 and

for any ε > 0, lim
P(|ξ |)

ε
= 0. (2.3)
|ξ |→∞ |ξ |



D. KC et al. / J. Differential Equations 257 (2014) 82–108 89
Assume that u and ω are related by

u = ∇⊥�−1Λσ P (Λ)ω

with σ ∈ [0,1). Then, for any p ∈ (1,∞) and r ∈ [1,∞],∥∥[R, u · ∇]θ∥∥
B0

p,r
� C‖ω‖Lp‖θ‖

B
σ,P∞,r

+ C‖ω‖Lp‖θ‖Lp (2.4)

and, for any r ∈ [1,∞], q ∈ (1,∞) and any ε > 0,∥∥[R, u · ∇]θ∥∥
B0∞,r

� C
(‖ω‖Lq + ‖ω‖L∞

)‖θ‖Bσ+ε∞,r
+ C‖ω‖Lq ‖θ‖Lq (2.5)

for some constant C, where the generalized Besov space B
σ,P∞,r with P being the symbol of the

operator P is defined in Appendix A, and Bσ+ε∞,r is a standard Besov space whose definition is
also provided in Appendix A.

Proof of Proposition 2.4. By the definition of B0
p,r ,

∥∥[R, u · ∇]θ∥∥
B0

p,r
=

[ ∞∑
j=−1

∥∥�j [R, u · ∇]θ∥∥r

Lp

] 1
r

.

Using the notion of paraproducts, we decompose �j [R, u · ∇]θ into three parts,

�j [R, u · ∇]θ = J1 + J2 + J3,

where

J1 =
∑

|k−j |�2

�j

(
R(Sk−1u · ∇�kθ) − Sk−1u · ∇R�kθ

)
,

J2 =
∑

|k−j |�2

�j

(
R(�ku · ∇Sk−1θ) − �ku · ∇RSk−1θ

)
,

J3 =
∑

k�j−1

�j

(
R(�ku · ∇�̃kθ) − �ku · ∇R�̃kθ

)
with �̃k = �k−1 + �k + �k+1. The Fourier transform of Sk−1u · ∇�kθ is supported in the
annulus 2kA, where A denotes a fixed annulus. R acting on this term can be represented as a
convolution with the kernel hk(x) = 2dkh(2kx) with d = 2, where h is a smooth function with
compact support. That is,

R(Sk−1u · ∇�kθ) − Sk−1u · ∇R�kθ

= hk ∗ (Sk−1u · ∇�kθ) − Sk−1u · ∇(hk ∗ �kθ).

Therefore, according to Lemma 2.3,

‖J1‖Lp � C
∥∥|x|hj

∥∥
1‖∇Sj−1u‖Lp‖∇�jθ‖L∞ . (2.6)
L
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Applying Lemma 2.1, Bernstein’s inequality and the equality∥∥|x|hj

∥∥
L1 = 2−j

∥∥|x|h(x)
∥∥

L1 = C2−j ,

we have

‖J1‖Lp � C2σjP
(
2j

)‖Sj−1ω‖Lp‖�jθ‖L∞

� C2σjP
(
2j

)‖ω‖Lp‖�jθ‖L∞ .

Similarly,

‖J2‖Lp � C2−j 2σjP
(
2j

)‖�jω‖Lp‖∇Sj−1θ‖L∞

� C2−(1−σ)jP
(
2j

)‖�jω‖Lp

∑
m�j−1

2m‖�mθ‖L∞

� C‖�jω‖Lp

∑
m�j−1

2(1−σ)mP (2j )

2(1−σ)jP (2m)
2σmP

(
2m

)‖�mθ‖L∞ .

The estimate of ‖J3‖Lp is different. We need to distinguish between low frequency and high
frequency terms. For the high frequency terms, we do not need the commutator structure. For
j = 0,1, the terms in J3 with k = −1,0,1 have Fourier transforms containing the origin in their
support and the lower bound part of Bernstein’s inequality does not apply. To deal with these low
frequency terms, we take advantage of the commutator structure and bound them by Lemma 2.3.
More precisely, for j = 0,1 and k = −1,0,1,∥∥�j

(
R(�ku · ∇�̃kθ) − �ku · ∇R�̃kθ

)∥∥
Lp

� C‖∇�ku‖Lp‖�kθ‖Lp � C‖ω‖Lp‖θ‖Lp .

For higher frequency terms, we first apply Bernstein’s inequality to obtain

‖J3‖Lp � C
∑

k�j−1

2j
∥∥R(�ku · �̃kθ)

∥∥
Lp + C

∑
k�j−1

2j‖�ku ·R�̃kθ‖Lp

� C
∑

k�j−1

2j−k‖∇�ku‖Lp‖�kθ‖L∞

� C
∑

k�j−1

2j−k‖�kω‖Lp 2σkP
(
2k

)‖�kθ‖L∞ .

Thanks to σ ∈ [0,1) and the assumption on P in (2.3), we obtain, by Young’s inequality for
series convolution,

∥∥[R, u · ∇]θ∥∥
B0

p,r
= C

[ ∞∑
j=−1

(‖J1‖r
Lp + ‖J2‖r

Lp + ‖J3‖r
Lp

)] 1
r

= C‖ω‖Lp‖θ‖ σ,P + C‖ω‖Lp‖θ‖Lp .

B∞,r
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This completes the proof of (2.4). We now prove (2.5). We shall only provide those estimates
that are different from the previous ones. As in (2.6), we still have

‖J1‖L∞ � C
∥∥|x|hj

∥∥
L1‖∇Sj−1u‖L∞‖∇�jθ‖L∞ .

But ‖∇Sj−1u‖L∞ is bounded differently here. By Lemma 2.3 and the assumption in (2.3), we
obtain, for σ ∈ [0,1) and for any ε > 0,

‖∇Sj−1u‖L∞ � ‖∇�−1u‖L∞ +
∑

0�m�j−2

‖�m∇u‖L∞

� C‖w‖Lq +
∑

0�m�j−2

2σmP
(
2m

)‖�mω‖L∞

� C‖w‖Lq + C2(σ+ε)j‖ω‖L∞ .

Consequently,

‖J1‖L∞ � C
(‖w‖Lq + ‖ω‖L∞

)
2(σ+ε)j‖�jθ‖L∞ .

The bounds for J2 and J3 can be obtained by simply setting p = ∞ in the corresponding bounds
for ‖J2‖Lp and ‖J3‖Lp above. This completes the proof of Proposition 2.4. �
3. Global a priori bounds for ‖ω‖L∞

t Lq , ‖θ‖
L1

t B
0,P
∞,2

and ‖ω‖L∞
t L∞

This section establishes global bounds for ‖ω‖L∞
t Lq , ‖θ‖

L1
t B

0,P
∞,2

and ‖ω‖L∞
t L∞ . In order to

obtain these bounds, we have to set σ = 0 and assume P satisfies Condition 1.1 and also (1.6),
even though some of the intermediate results in this section hold without σ = 0 and with P

satisfying milder conditions.

Proposition 3.1. Let σ = 0 and q > 2. Assume the symbol P satisfies Condition 1.1 and (1.6).
Let (ω, θ) be a smooth solution of (1.2) with ω0 ∈ Bs

q,∞ and θ0 ∈ Bs
q,∞. Then, for any T > 0 and

0 < t � T , ∥∥ω(t)
∥∥

Lq � C(T ), ‖θ‖
L1

t B
0,P
∞,2

� C(T ),
∥∥ω(t)

∥∥
L∞ � C(T )

for some constant C depending T and the initial norms of ω0 and θ0.

We remark that (1.6) clearly implies (2.3). In order to prove this proposition, we need the
following two lemmas.

Lemma 3.2. Let σ ∈ [0,1). Assume that the symbol P satisfies Condition 1.1 and (2.3). Let
(ω, θ) be a smooth solution of (1.2). Then, for any q ∈ [2,∞) and for any t > 0,

∥∥ω(t)
∥∥

Lq � C
(‖ω0‖Lq + ‖θ0‖Lq

)
eCt‖θ0‖Lq e

C
∫ t

0 ‖θ(τ)‖
B

σ,P
∞,2

dτ

, (3.1)

where C’s are pure constants.
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Proof of Lemma 3.2. We start with the equations satisfied by G and Rθ ,

∂tG + u · ∇G = −[R, u · ∇]θ,

∂tRθ + u · ∇Rθ + ΛRθ = −[R, u · ∇]θ. (3.2)

By the embedding B0
q,2 ↪→ Lq for q � 2 and Lemma 2.4,

∥∥ω(t)
∥∥

Lq � ‖G0‖Lq + ‖Rθ0‖Lq + 2

t∫
0

∥∥[R, u · ∇]θ∥∥
Lq dτ

� ‖G0‖Lq + ‖Rθ0‖Lq + 2

t∫
0

∥∥[R, u · ∇]θ∥∥
B0

q,2
dτ

� ‖G0‖Lq + ‖θ0‖Lq + C

t∫
0

[∥∥ω(τ)
∥∥

Lq

(∥∥θ(τ )
∥∥

B
σ,P
∞,2

+ ‖θ0‖Lq

)]
dτ,

which implies (3.1), by Gronwall’s inequality. �
The second lemma makes use of the dissipation in the θ -equation,⎧⎨⎩

∂t θ + u · ∇θ + Λθ = 0,

u = ∇⊥ψ, �ψ = Λσ P (Λ)ω,

θ(x,0) = θ0(x).

(3.3)

Lemma 3.3. Let σ ∈ [0,1). Assume that the symbol P satisfies Condition 1.1 and (2.3). Let
q ∈ (1,∞). Then, any smooth solution (ω, θ) solving (3.3) satisfies, for each integer j � 0,

2j (1−σ)‖�jθ‖L1
t L

q � 2−jσ ‖�jθ0‖Lq + CP
(
2j

)‖θ0‖L∞

t∫
0

∥∥ω(τ)
∥∥

Lq dτ, (3.4)

where C is a pure constant.

The lemma will be proven at the end of this section. With these two lemmas at our disposal,
we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. The proof uses the bounds in Lemmas 3.2 and 3.3 with σ = 0. By the
definition of B

0,P
∞,2 and the embedding B

0,P
∞,1 ↪→ B

0,P
∞,2,

‖θ‖
L1

t B
0,P
∞,2

�
t∫

0

[
N−1∑
j=−1

(
P

(
2j

))2‖�jθ‖2
L∞

] 1
2

dτ +
t∫

0

∞∑
j=N

P
(
2j

)‖�jθ‖L∞ dτ.

Thanks to the condition on P in (1.6),
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‖θ‖
L1

t B
0,P
∞,2

� t‖θ0‖L∞N +
∑
j�N

P
(
2j

)‖�jθ‖L1
t L

∞ . (3.5)

Since q ∈ (2,∞) and P satisfies (1.6), we choose ε > 0 such that

−1 + ε + 2

q
< 0,

(
P

(
2j

))2
2−jε � 1.

By Bernstein’s inequality and Lemma 3.3 with σ = 0,∑
j�N

P
(
2j

)‖�jθ‖L1
t L

∞ �
∑
j�N

P
(
2j

)
2j 2

q ‖�jθ‖L1
t L

q

� C
∑
j�N

(
P

(
2j

))22j ( 2
q
−1)(‖θ0‖Lq + ‖θ0‖L∞‖ω‖L1

t L
q

)
� C

∑
j�N

2j ( 2
q
+ε−1)(‖θ0‖Lq + ‖θ0‖L∞‖ω‖L1

t L
q

)
� C‖θ0‖Lq + C2N(−1+ε+ 2

q
)‖θ0‖L∞‖ω‖L1

t L
q .

Inserting the estimates above in (3.5) and choosing N to be the largest integer satisfying

N �
log(1 + ‖ω‖L1

t L
q )

(1 − ε − 2
q
)

+ 1

leads to

‖θ‖
L1

t B
0,P
∞,2

� C‖θ0‖L∞∩Lq + C‖θ0‖L∞ t log

(
1 +

t∫
0

∥∥ω(τ)
∥∥

Lq dτ

)
.

It then follows from this estimate and (3.1) with σ = 0 that

‖θ‖
L1

t B
0,P
∞,2

� Ct log(1 + Ct) + Ct‖θ‖
L1

t B
0,P
∞,2

, (3.6)

where C’s are constants depending on ‖θ0‖Lq and ‖θ0‖L∞ . This inequality allows us to conclude
that, for any T > 0 and t � T ,

‖θ‖
L1

t B
0,P
∞,2

� C
(
T ,‖ω0‖Lq ,‖θ0‖Lq∩L∞

)
. (3.7)

In fact, (3.7) is first obtained on a finite-time interval and the global bound is then obtained
through an iterative process. Finally we prove the global bound for ‖ω‖L∞ . By (3.4) with σ = 0
and (1.6), we have, for any integer j � 0 and any ε > 0,

2j (1−ε)‖�jθ‖L1
t L

q � ‖θ0‖Lq + C‖θ0‖L∞

t∫ ∥∥ω(τ)
∥∥

Lq dτ � C(T ). (3.8)
0
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Since q ∈ (2,∞), we can choose ε > 0 such that

2ε + 2

q
− 1 < 0.

By Bernstein’s inequality,

‖θ‖Bε∞,1
�

∑
j�−1

2(2ε+ 2
q
−1)j 2(1−ε)j‖�jθ‖Lq � C sup

j�−1
2j (1−ε)‖�jθ‖Lq .

It then follows from (3.8) that, for any t � T ,

‖θ‖L1
t B

ε∞,1
� C(T ). (3.9)

Starting with the equations of G and Rθ , namely (3.2), and applying Lemma 2.4, we have, for
any ε > 0,

‖G‖L∞ + ‖Rθ‖L∞ � ‖G0‖L∞ + ‖Rθ0‖L∞ + 2

t∫
0

∥∥[R, u · ∇]θ∥∥
B0∞,1

dτ

� ‖G0‖L∞ + ‖Rθ0‖L∞

+
t∫

0

((‖ω‖Lq + ‖ω‖L∞
)‖θ‖Bε∞,1

+ ‖ω‖Lq ‖θ‖Lq

)
dτ

� ‖G0‖L∞ + ‖Rθ0‖L∞ +
t∫

0

(‖G‖L∞ + ‖Rθ‖L∞
)‖θ‖Bε∞,1

dτ

+
t∫

0

(‖ω‖Lq ‖θ‖Bε∞,1
+ ‖ω‖Lq ‖θ‖Lq

)
dτ.

By Gronwall’s inequality, (3.9) and the global bound for ‖ω‖Lq , we have

‖ω‖L∞ � ‖G‖L∞ + ‖Rθ‖L∞ � C(T ).

This completes the proof of Proposition 3.1. �
We now provide the proof of Lemma 3.3.

Proof of Lemma 3.3. Letting j � 0 and applying �j to (3.3), multiplying by �jθ |�jθ |q−2 and
integrating over R2, we obtain, after integrating by parts,

1 d ‖�jθ‖q
Lq +

∫
�jθ |�jθ |q−2Λ�jθ dx = −

∫
�jθ |�jθ |q−2�j(u · ∇θ) dx.
q dt
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Due to the lower bound (see, e.g., [11,36])∫
�jθ |�jθ |q−2Λ�jθ dx � C2j‖�jθ‖q

Lq

and the decomposition of [�j,u · ∇]θ into five parts,

�j(u · ∇θ) = J1 + J2 + J3 + J4 + J5

with

J1 =
∑

|j−k|�2

[�j,Sk−1u · ∇]�kθ,

J2 =
∑

|j−k|�2

(Sk−1u − Sju) · ∇�j�kθ,

J3 = Sju · ∇�jθ,

J4 =
∑

|j−k|�2

�j(�ku · ∇Sk−1θ),

J5 =
∑

k�j−1

�j(�ku · ∇�̃kθ),

we obtain, by Hölder’s inequality,

1

q

d

dt
‖�jθ‖q

Lq + C2j‖�jθ‖q
Lq � ‖�jθ‖q−1

Lq

(‖J1‖Lq + ‖J2‖Lq + ‖J4‖Lq + ‖J5‖Lq

)
.

The integral involving J3 becomes zero due to the divergence-free condition ∇ · Sju = 0. The
terms on the right can be bounded as follows. To bound ‖J1‖Lq , we write [�j,Sk−1u · ∇]�kθ

as an integral,

[�j,Sk−1u · ∇]�kθ =
∫

Φj(x − y)
(
Sk−1u(y) − Sk−1u(x)

) · ∇�kθ(y)dy,

where Φj is the kernel associated with the operator �j (see Appendix A for more details). By
Lemma 2.3 and the inequality∥∥Φj(x)|x|1−σ

∥∥
L1 � 2−j (1−σ)

∥∥Φ0(x)|x|1−σ
∥∥

L1 � C2−j (1−σ),

we have

‖J1‖Lq �
∑

|j−k|�2

∥∥Φj(x)|x|1−σ
∥∥

L1‖Sk−1u‖
B1−σ

q,∞ ‖∇�kθ‖L∞

� C
∑

2−j (1−σ)‖Sk−1u‖
B1−σ

q,∞ 2k‖�kθ‖L∞ .
|j−k|�2
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Recalling that Λ1−σ u = ∇⊥�−1ΛP(Λ)ω and applying Lemma 2.1, we obtain

‖Sk−1u‖
B1−σ

q,∞ � C
∥∥Λ1−σ Sk−1u

∥∥
Lq � CP

(
2j

)‖Sk−1ω‖Lq � CP
(
2j

)‖ω‖Lq .

Therefore,

‖J1‖Lq � C2jσ P
(
2j

)‖ω‖Lq ‖�jθ‖L∞ .

By Bernstein’s inequality,

‖J2‖Lq �
∑

|j−k|�2

‖Sju − Sk−1u‖Lq ‖∇�jθ‖L∞ � C‖�ju‖Lq 2j‖�jθ‖L∞

� C‖∇�ju‖Lq ‖�jθ‖L∞

� C2jσ P
(
2j

)‖�jω‖Lq ‖�jθ‖L∞ .

We remark that we have applied the lower bound part of Bernstein’s inequality in the second
inequality above. This is valid for j � 0. Similarly,

‖J4‖Lq � C‖�ju‖Lq ‖∇Sj−1θ‖L∞ � C‖�ju‖Lq 2j‖Sj θ‖L∞

� C‖∇�ju‖Lq ‖θ‖L∞ � C2jσ P
(
2j

)‖�jω‖Lq ‖θ‖L∞ .

Thanks to σ ∈ [0,1) and the condition on P in (2.3),

‖J5‖Lq � C
∑

k�j−1

2j‖�ku‖Lq ‖�̃kθ‖L∞

� C
∑

k�j−1

2j−k‖∇�ku‖Lq ‖�kθ‖L∞

� 2jσ
∑

k�j−1

2(j−k)(1−σ)P
(
2k

)‖�kω‖Lq ‖�kθ‖L∞

� C2jσ P
(
2j

)‖ω‖Lq ‖θ‖L∞ .

Collecting the estimates above, we obtain

d

dt
‖�jθ‖Lq + C2j‖�jθ‖Lq � C2jσ P

(
2j

)‖ω‖Lq ‖θ0‖L∞ .

Integrating with respect to time yields

∥∥�jθ(t)
∥∥

Lq � e−C2j t‖�jθ0‖Lq + C2jσ P
(
2j

)‖θ0‖L∞

t∫
0

e−C2j (t−τ)
∥∥ω(τ)

∥∥
Lq dτ.

We further take the L1-norm in time to obtain
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2j‖�jθ‖L1
t L

q � ‖�jθ0‖Lq + C2jσ P
(
2j

)‖θ0‖L∞

t∫
0

∥∥ω(τ)
∥∥

Lq dτ,

which is the desired result. This completes the proof of Lemma 3.3. �
4. Global bound for ‖(ω, θ)‖Bs

q,∞

This section establishes a global bound for ‖(ω, θ)‖Bs
q,∞ .

Proposition 4.1. Assume that σ = 0 and the symbol P(|ξ |) obeys Condition 1.1, (1.6) and (1.7).
Let q > 2 and let s > 2. Consider the IVP (1.2) and (1.5) with ω0 ∈ Bs

q,∞(R2) and θ0 ∈
Bs

q,∞(R2). Let (ω, θ) be a smooth solution of (1.2). Then (ω, θ) admits a global a priori bound.
More precisely, for any T > 0 and t � T ,∥∥(

ω(t), θ(t)
)∥∥

Bs
q,∞ � C

(
s, q, T ,

∥∥(ω0, θ0)
∥∥

Bs
q,∞

)
,

where C is a constant depending on s, q, T and the initial norm.

Proof of Proposition 4.1. The proof is divided into two main steps. The first step provides
bounds for ‖ω‖

B
β
q,∞

and ‖θ‖|
B

β
q,∞

for β in the range 2
q

< β < 1 while the second step proves the

global bounds for ‖ω‖
B

β1
q,∞

and ‖θ‖
B

β1
q,∞

for 1 � β1 < 2 − 2
q

. The desired bounds in Bs
q,∞ with

s > 2 can be obtained by a repetition of the second step.
Let j � −1 be an integer. Applying �j to the equation of G, namely (3.2), multiplying by

�jG|�jG|q−2 and integrating over R2, we obtain, after integrating by parts,

1

q

d

dt
‖�jG‖q

Lq = −
∫

�jG|�jG|q−2�j(u · ∇G)dx

−
∫

�j [R, u · ∇]θ�jG|�jG|q−2 dx.

Following the notion of paraproducts, we decompose �j(u · ∇G) into five parts,

�j(u · ∇G) = J1 + J2 + J3 + J4 + J5

with

J1 =
∑

|j−k|�2

[�j,Sk−1u · ∇]�kG,

J2 =
∑

|j−k|�2

(Sk−1u − Sju) · ∇�j�kG,

J3 = Sju · ∇�jG,

J4 =
∑

�j(�ku · ∇Sk−1G),
|j−k|�2
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J5 =
∑

k�j−1

�j(�ku · ∇�̃kG).

By Hölder’s inequality,

1

q

d

dt
‖�jG‖q

Lq � ‖�jG‖q−1
Lq

(‖J1‖Lq + ‖J2‖Lq + ‖J4‖Lq + ‖J5‖Lq + ‖J6‖Lq

)
,

where J6 = �j [R, u · ∇]θ . The integral involving J3 becomes zero due to the divergence-free
condition ∇ · Sju = 0. The terms on the right can be bounded as follows. To bound ‖J1‖Lq ,
we write [�j ,Sk−1u · ∇]�kG as an integral,

[�j,Sk−1u · ∇]�kG =
∫

Φj(x − y)
(
Sk−1u(y) − Sk−1u(x)

) · ∇�kG(y)dy,

where Φj is the kernel associated with the operator �j (see Appendix A for more details). By a
standard commutator estimate (see, e.g., [10, p. 39], [36, p. 814–815]),

‖J1‖Lq � C
∑

|j−k|�2

‖∇Sk−1u‖L∞‖�kG‖Lq .

By Hölder’s and Bernstein’s inequalities,

‖J2‖Lq � C‖∇�ju‖L∞‖�jG‖Lq .

We have especially applied the lower bound part in Bernstein’s inequalities (see Proposition A.6).
The purpose is to shift the derivative ∇ from G to u. It is worth pointing out that the lower bound
does not apply when j = −1. In the case when j = −1, J2 involves only low modes and there is
no need to shift the derivative from G to u. J2 is bounded differently. When j = −1, J2 becomes

J2 = −S0(u) · ∇�1�−1G = −�−1u · ∇�1�−1G,

whose Lq -norm can be bounded by

‖J2‖Lq � C‖�−1u‖L∞‖�−1G‖Lq � C‖ω‖Lq ‖G‖Lq .

For J4 and J5, we have, by Bernstein’s inequality,

‖J4‖Lq � C
∑

|j−k|�2

‖�ku‖L∞‖∇Sk−1G‖Lq

� C
∑

|j−k|�2

‖∇�ku‖L∞
∑

m�k−1

2m−k‖�mG‖Lq ,

‖J5‖Lq � C
∑

k�j−1

2j‖�ku‖L∞‖�̃kG‖Lq

� C
∑

2j−k‖∇�ku‖L∞‖�̃kG‖Lq .
k�j−1
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Furthermore, for any β ∈ R,

‖J1‖Lq � C
∑

|j−k|�2

‖∇u‖L∞2−β(k+1)2β(k+1)‖�kG‖Lq (4.1)

� C2−β(j+1)‖G‖
B

β
q,∞

‖∇u‖L∞
∑

|j−k|�2

2β(j−k) (4.2)

� C2−β(j+1)‖G‖
B

β
q,∞

‖∇u‖L∞, (4.3)

where C is a constant depending on β only. It is clear that ‖J2‖Lq admits the same bound. For
any β < 1, we have

‖J4‖Lq � C‖∇u‖L∞
∑

|j−k|�2

∑
m<k−1

2m−k2−β(m+1)2β(m+1)‖�mG‖Lq

� C‖∇u‖L∞‖G‖
B

β
q,∞

∑
|j−k|�2

∑
m<k−1

2m−k2−β(m+1)

= C2−β(j+1)‖G‖
B

β
q,∞

‖∇u‖L∞
∑

|j−k|�2

2β(j−k)
∑

m<k−1

2(m−k)(1−β)

� C2−β(j+1)‖G‖
B

β
q,∞

‖∇u‖L∞,

where C is a constant depending on β only and the condition β < 1 is used to guarantee that
(m − k)(1 − β) < 0. For any β > −1,

‖J5‖Lq � C‖∇u‖L∞2−β(j+1)
∑

k�j−1

2(β+1)(j−k)2β(k+1)‖�̃kG‖Lq

� C2−β(j+1)‖G‖
B

β
q,∞

‖∇u‖L∞ .

‖J6‖Lq = ‖�j [R, u · ∇]θ‖Lq can be estimated as in the proof of Proposition 2.4,

‖J6‖Lq � C
(‖ω‖Lq + ‖ω‖L∞

)
2εj‖�jθ‖Lq

for any fixed ε > 0, where C is a constant depending on ε. For the purpose to be specified later,
we choose

ε > 0, β + ε < 1.

Collecting these estimates and invoking the global bounds for ‖ω‖Lq∩L∞ , we obtain, for any
−1 < β < 1,

d

dt
‖�jG‖Lq � C2−β(j+1)‖G‖

B
β
q,∞

‖∇u‖L∞ + C2εj‖�jθ‖Lq + C.

Let β̃ = β + ε < 1. By applying the process above to the equation for θ and making use of the
fact that
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∫
�jθ |�jθ |q−2Λ�jθ dx � 0,

we obtain

d

dt
‖�jθ‖Lq � C2−β̃(j+1)‖θ‖

B
β̃
q,∞

‖∇u‖L∞ .

Integrating the inequalities in time and adding them up, we obtain

X(t) � C + X(0) + C

t∫
0

(
1 + ∥∥∇u(τ)

∥∥
L∞

)
X(τ)dτ, (4.4)

where we have set

X(t) ≡ ∥∥G(t)
∥∥

B
β
q,∞

+ ∥∥θ(t)
∥∥

B
β̃
q,∞

.

By Proposition 2.2, for any 2
q

< β ,

‖∇u‖L∞ � C
(
1 + ‖ω‖Lp

) + C‖ω‖L∞P
(‖ω‖

2q
qβ−2

B
β
q,∞

)
log

(
1 + ‖ω‖

B
β
q,∞

)
� C

(
1 + ‖ω‖Lp

) + C‖ω‖L∞P
(
X(t)

2q
qβ−2

)
log

(
1 + X(t)

)
.

Inserting this inequality in (4.4) and applying Osgood’s inequality, we obtain desired bound,
for t � T , ∥∥ω(t)

∥∥
B

β
q,∞

�
∥∥G(t)

∥∥
B

β
q,∞

+ ∥∥θ(t)
∥∥

B
β̃
q,∞

= X(t) � C(T ).

We now proceed to show that, for any t � T ,

∥∥ω(t)
∥∥

B
β1
q,∞

� C(T ) for any β1 satisfying 1 < β1 < 2 − 2

q
.

The strategy is first to get the global bound for ‖θ(t)‖
B

β1
q,∞

from the equation for θ and then get

the global bound for ‖G‖
B

β1
q,∞

. As we have seen from the previous part, J4 is the only term that

requires β < 1. In the process of estimating ‖θ(t)‖
B

β1
q,∞

, the corresponding terms J̃1, J̃2, J̃5 can

be bounded the same way as before, namely

‖J̃1‖Lq ,‖J̃2‖Lq ,‖J̃5‖Lq � C2−β1(j+1)‖θ‖
B

β1
q,∞

‖∇u‖L∞ . (4.5)

‖J̃4‖Lq is estimated differently. We start with the basic bound

‖J̃4‖Lq � C
∑

‖∇�ku‖L∞
∑

2m−k‖�mθ‖Lq .
|j−k|�2 m<k−1
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Since β1 + 2
q

< 2, we can choose 2
q

< β < 1 and ε > 0 such that

β1 + 2

q
+ ε < 2β. (4.6)

By Berntsein’s inequality and Lemma 2.1,

‖∇�ku‖L∞ � C2
2k
q ‖∇�ku‖Lq � C2

2k
q P

(
2k

)‖�kω‖Lq

� C2k( 2
q
+ε)‖�kω‖Lq � C2k( 2

q
+ε−β)‖ω‖

B
β
q,∞

.

Clearly, for any β < 1,∑
m<k−1

2m−k‖�mθ‖Lq = 2−βk
∑

m<k−1

2(m−k)(1−β)2βm‖�mθ‖Lq

� C2−βk‖θ‖
B

β
q,∞

.

Therefore, according to (4.6) and the global bound in the first step,

‖J̃4‖Lq � C2−β1(j+1)‖ω‖
B

β
q,∞

‖θ‖
B

β
q,∞

2(β1+ 2
q
+ε−2β)j � C2−β1(j+1). (4.7)

Collecting the estimates in (4.5) and (4.7), we have

d

dt
‖�jθ‖Lq � C2−β1(j+1)‖θ‖

B
β1
q,∞

‖∇u‖L∞ + C2−β1(j+1).

Bounding ‖∇u‖L∞ by the interpolation inequality in Proposition 2.2 and applying Osgood in-
equality lead to the desired global bound for ‖θ‖

B
β1
q,∞

. With this bound at our disposal, we then

obtain a global bound for ‖G‖
B

β1
q,∞

by going through a similar process on the equation of G.

Therefore, for any t � T ,

‖ω‖
B

β1
q,∞

� ‖θ‖
B

β1
q,∞

+ ‖G‖
B

β1
q,∞

� C(T ).

If necessary, we can repeat the second step a few times to achieve the global bound for ω and θ

in Bs
q,∞ for any s > 2. This completes the proof of Proposition 4.1. �

5. Proof of Theorem 1.2

This section proves Theorem 1.2.

Proof of Theorem 1.2. Due to the high regularity in the class (1.8), the uniqueness of solutions
satisfying (1.8) is easy to prove. Attention here will be focused on establishing the existence of
solutions.



102 D. KC et al. / J. Differential Equations 257 (2014) 82–108
The existence part starts with the construction of a local solution through the method of suc-
cessive approximation. That is, we consider a successive approximation sequence {(ω(n), θ(n))}
solving

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ω(1) = S2ω0, θ(1) = S2θ0,

u(n) = ∇⊥�−1P(Λ)ω(n),

∂tω
(n+1) + u(n) · ∇ω(n+1) = ∂x1θ

(n+1),

∂t θ
(n+1) + u(n) · ∇θ(n+1) + Λθ(n+1) = 0,

ω(n+1)(x,0) = Sn+2ω0(x), θ(n+1)(x,0) = Sn+2θ0(x).

(5.1)

In order to show that {(ω(n), θ(n))} converges to a solution of (1.2), it suffices to prove that
{(ω(n), θ(n))} obeys the following properties:

(1) There exists a time interval [0, T1] over which {(ω(n), θ(n))} are bounded uniformly in terms
of n. More precisely, we show that

∥∥(
ω(n), θ(n)

)∥∥
Bs

q,∞ � C
(
T1,

∥∥(ω0, θ0)
∥∥

Bs
q,∞

)
,

for a constant depending on T1 and the initial norm only.
(2) There exists T2 > 0 such that ω(n+1) −ω(n) and θ(n+1) − θ(n) are Cauchy sequence in Bs−1

q,∞,
namely

∥∥ω(n+1) − ω(n)
∥∥

Bs−1
q,∞ � C(T2)2

−n,
∥∥θ(n+1) − θ(n)

∥∥
Bs−1

q,∞ � C(T2)2
−n

for any t ∈ [0, T2], where C(T2) is independent of n.

If the properties stated in (1) and (2) hold, then there exists (ω, θ) satisfying, for T = min{T1, T2},

ω(·, t) ∈ Bs
q,∞, θ(·, t) ∈ Bs

q,∞ for 0 � t � T ,

ω(n)(·, t) → ω(·, t) in Bs−1
q,∞, θ(n)(·, t) → θ(·, t) in Bs−1

q,∞.

It is then easy to show that (ω, θ) solves (1.2) and we thus obtain a local solution and the global
bounds in Sections 3 and 4 allow us to extend it into a global solution. It then remains to verify
the properties stated in (1) and (2). Property (1) can be shown as in Sections 3 and 4. To verify
property (2), we consider the equations for the differences ω(n+1) − ω(n) and θ(n+1) − θ(n) and
prove property (2) inductively in n. The bounds can be achieved in a similar fashion in Sections 3
and 4. We thus omit further details. This completes the proof of Theorem 1.2. �
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Appendix A. Functional spaces and Osgood inequality

This appendix provides the definitions of some of the functional spaces and related facts used
in the previous sections. In addition, the Osgood inequality used in the proof of Proposition 4.1
is also provided here for the convenience of readers. Materials presented in this appendix can be
found in several books and many papers (see, e.g., [3,4,26,33,35]).

We start with several notation. S denotes the usual Schwarz class and S ′ its dual, the space of
tempered distributions. S0 denotes a subspace of S defined by

S0 =
{
φ ∈ S:

∫
Rd

φ(x)xγ dx = 0, |γ | = 0,1,2, . . .

}

and S ′
0 denotes its dual. S ′

0 can be identified as

S ′
0 = S ′/S⊥

0 = S ′/P

where P denotes the space of multinomials.
To introduce the Littlewood–Paley decomposition, we write for each j ∈ Z

Aj = {
ξ ∈Rd : 2j−1 � |ξ | < 2j+1}. (A.1)

The Littlewood–Paley decomposition asserts the existence of a sequence of functions {Φj }j∈Z ∈
S such that

supp Φ̂j ⊂ Aj , Φ̂j (ξ) = Φ̂0
(
2−j ξ

)
or Φj(x) = 2jdΦ0

(
2j x

)
,

and

∞∑
j=−∞

Φ̂j (ξ) =
{

1, if ξ ∈ Rd \ {0},
0, if ξ = 0.

Therefore, for a general function ψ ∈ S , we have

∞∑
j=−∞

Φ̂j (ξ)ψ̂(ξ) = ψ̂(ξ) for ξ ∈ Rd \ {0}.

In addition, if ψ ∈ S0, then

∞∑
j=−∞

Φ̂j (ξ)ψ̂(ξ) = ψ̂(ξ) for any ξ ∈ Rd .

That is, for ψ ∈ S0,

∞∑
Φj ∗ ψ = ψ
j=−∞
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and hence

∞∑
j=−∞

Φj ∗ f = f, f ∈ S ′
0

in the sense of weak-∗ topology of S ′
0. For notational convenience, we define

�̊jf = Φj ∗ f, j ∈ Z. (A.2)

Definition A.1. For s ∈ R and 1 � p,q � ∞, the homogeneous Besov space B̊s
p,q consists of

f ∈ S ′
0 satisfying

‖f ‖
B̊s

p,q
≡ ∥∥2js‖�̊jf ‖Lp

∥∥
lq

< ∞.

We now choose Ψ ∈ S such that

Ψ̂ (ξ) = 1 −
∞∑

j=0

Φ̂j (ξ), ξ ∈Rd .

Then, for any ψ ∈ S ,

Ψ ∗ ψ +
∞∑

j=0

Φj ∗ ψ = ψ

and hence

Ψ ∗ f +
∞∑

j=0

Φj ∗ f = f (A.3)

in S ′ for any f ∈ S ′. To define the inhomogeneous Besov space, we set

�jf =

⎧⎪⎨⎪⎩
0, if j � −2,

Ψ ∗ f, if j = −1,

Φj ∗ f, if j = 0,1,2, . . . .

(A.4)

Definition A.2. The inhomogeneous Besov space Bs
p,q with 1 � p,q �∞ and s ∈R consists of

functions f ∈ S ′ satisfying

‖f ‖Bs
p,q

≡ ∥∥2js‖�jf ‖Lp

∥∥
lq

< ∞.

The Besov spaces B̊s
p,q and Bs

p,q with s ∈ (0,1) and 1 � p,q � ∞ can be equivalently defined
by the norms
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‖f ‖
B̊s

p,q
=

( ∫
Rd

(‖f (x + t) − f (x)‖Lp)q

|t |d+sq
dt

)1/q

,

‖f ‖Bs
p,q

= ‖f ‖Lp +
( ∫
Rd

(‖f (x + t) − f (x)‖Lp)q

|t |d+sq
dt

)1/q

.

When q = ∞, the expressions are interpreted in the normal way. We have also used the following
generalized version of Besov spaces.

Definition A.3. Let P = P(|x|) : (0,∞) → (0,∞) be a non-decreasing function satisfying Con-
dition 1.1 and

lim|x|→∞
P(|x|)
|x|ε = 0, ∀ε > 0.

For s ∈ R and 1 � p,q � ∞, the generalized Besov spaces B̊
s,P
p,q and B

s,P
p,q are defined through

the norms

‖f ‖
B̊

s,P
p,q

≡ ∥∥2jsP
(
2j

)‖�̊jf ‖Lp

∥∥
lq

< ∞,

‖f ‖
B

s,P
p,q

≡ ∥∥2jsP
(
2j

)‖�jf ‖Lp

∥∥
lq

< ∞. (A.5)

We have also used the space–time spaces defined below.

Definition A.4. For t > 0, s ∈R and 1 � p,q, r � ∞, the space–time spaces L̃r
t B̊

s
p,q and L̃r

t B
s
p,q

are defined through the norms

‖f ‖
L̃r

t B̊
s
p,q

≡ ∥∥2js‖�̊jf ‖Lr
t L

p

∥∥
lq

,

‖f ‖L̃r
t B

s
p,q

≡ ∥∥2js‖�jf ‖Lr
t L

p

∥∥
lq

.

L̃r
t B̊

s,P
p,q and L̃r

t B
s,P
p,q are similarly defined.

These spaces are related to the classical space–time spaces Lr
t B̊

s
p,q , Lr

t B̊
s,P
p,q and Lr

t B
s,P
p,q via

the Minkowski inequality.
Many frequently used function spaces are special cases of Besov spaces. The following propo-

sition lists some useful equivalence and embedding relations.

Proposition A.5. For any s ∈ R,

H̊ s ∼ B̊s
2,2, H s ∼ Bs

2,2.

For any s ∈R and 1 < q < ∞,

B̊s
q,min{q,2} ↪→ W̊ s

q ↪→ B̊s
q,max{q,2}.

In particular, B̊0 ↪→ Lq ↪→ B̊0 .
q,min{q,2} q,max{q,2}
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For notational convenience, we write �j for �̊j . There will be no confusion if we keep
in mind that �j ’s associated with the homogeneous Besov spaces is defined in (A.2) while
those associated with the inhomogeneous Besov spaces are defined in (A.4). Besides the Fourier
localization operators �j , the partial sum Sj is also a useful notation. For an integer j ,

Sj ≡
j−1∑

k=−1

�k,

where �k is given by (A.4). For any f ∈ S ′, the Fourier transform of Sjf is supported on the
ball of radius 2j .

Bernstein’s inequalities are useful tools in dealing with Fourier localized functions and these
inequalities trade integrability for derivatives. The following proposition provides Bernstein type
inequalities for fractional derivatives.

Proposition A.6. Let α � 0. Let 1 � p � q � ∞.

1) If f satisfies

supp f̂ ⊂ {
ξ ∈ Rd : |ξ | �K2j

}
,

for some integer j and a constant K > 0, then

∥∥(−�)αf
∥∥

Lq(Rd )
� C122αj+jd( 1

p
− 1

q
)‖f ‖Lp(Rd ).

2) If f satisfies

supp f̂ ⊂ {
ξ ∈ Rd : K12j � |ξ | � K22j

}
for some integer j and constants 0 < K1 �K2, then

C122αj‖f ‖Lq(Rd ) �
∥∥(−�)αf

∥∥
Lq(Rd )

� C222αj+jd( 1
p
− 1

q
)‖f ‖Lp(Rd ),

where C1 and C2 are constants depending on α,p and q only.

Finally we recall the Osgood inequality.

Proposition A.7. Let α(t) > 0 be a locally integrable function. Assume ω(t) � 0 be a continuous
and nondecreasing function on (0,∞) satisfying

∞∫
1

1

ω(r)
dr = ∞.

Suppose that ρ(t) > 0 satisfies
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ρ(t)� a +
t∫

t0

α(s)ω
(
ρ(s)

)
ds

for some constant a � 0. Then if a = 0, then ρ ≡ 0; if a > 0, then

−Ω
(
ρ(t)

) + Ω(a) �
t∫

t0

α(τ) dτ,

where

Ω(x) =
1∫

x

dr

ω(r)
.
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