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Abstract

This paper examines the global regularity problem for a 2D tropical climate model
with fractional dissipation. The inviscid version of this model was derived by Frier-
son, Majda and Pauluis for large-scale dynamics of precipitation fronts in the tropical
atmosphere. The model considered here has some very special features. This non-
linear system involves interactions between a divergence-free vector field and a
non-divergence-free vector field. In addition, the fractional dissipation not only mod-
els long-range interactions but also allows simultaneous investigations of a family
of system. Our study leads to the global regularity of solutions when the indices
of the fractional Laplacian are in two very broad ranges. In order to establish the
global-in-time bounds, we introduce an efficient way to control the gradient of the
non-divergence-free vector field and make sharp estimates by controlling the regular-
ity of related quantities simultaneously.
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1 Introduction

We aim at the existence and regularity of solutions to the 2D tropical climate model
with fractional dissipation

du+ - Vu+vA*®u+Vp+V-w®v) =0, xeR> >0,

v+ (u-V)v—uAv+ Ve + (v-Vyu =0,

30+ w-V)0 + Ao +V-v =0, (1.1
Vou=0,

u(x,0) =up(x), v(x,0)=wvo(x), 6(x,0)="6(x),

where the vector fields u = (11, u3) and v = (v1, v2) denote the barotropic mode
and the first baroclinic mode of the velocity, respectively, and the scalar p denotes the
pressure and 6 the temperature, and v > 0, u > 0,7 > 0, ¢ > O and y > 0 are
real parameters. Here v ® v denotes the tensor product of v with v, or equivalently
v ® v represents the matrix with the (i, j)-entry being v;v;. The fractional Laplacian
operator A* with « > 0 is either defined through the Fourier transform,

A f(E) = £ (&)
or via the Riesz potential, for a constant C = Cy,

AC el KO

o _
A% f(x) =p.v.Cy e

’

where p.v. means the principal value (see Cérdoba and Cérdoba 2004).

Whenv = u = n =0, (1.1) reduces to the original tropical climate model derived
by Frierson, Majda and Pauluis for large-scale dynamics of precipitation fronts in the
tropical atmosphere (Frierson et al. 2004). More relevant background on the tropical
climate model can be found in Gill (1980), Majda and Biello (2003), Matsuno (1966),
Majda (2003), Stechmann and Majda (2006) and the references therein. We remark that
the model considered in this article is actually a special case of the general framework
developed in Frierson et al. (2004). The model equations they derived have the form
of a shallow water equation and an equation for moisture coupled through a strongly
nonlinear source term. When the precipitation rate P is approximately zero or when the
moist region can be ignored, the tropical climate model reduces to the special model
equation studied here. In addition, this simplified model and its B-plane linearization
are useful in the study of many interesting types of waves such as the Rossby waves and
mixed Rossby-gravity waves (Frierson et al. 2004). Li and Titi (2016a) investigated
this reduced model in the case when the momentum equations contain the viscosities
and the temperature equation involves no diffusivity. It is clear that the elimination
of the moisture- related equations/terms would help improve the regularity of the
solutions.

The original tropical climate model of Frierson, Majda and Pauluis involves
only damping terms but no dissipation. The model studied here, namely (1.1), is
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appended with fractional dissipation terms. Mathematically, these extra dissipation
terms increase the regularity for the system. These terms also significantly change
the model properties and physics. The original tropical climate model is derived from
the inviscid primitive equations (Frierson et al. 2004), and its viscous counterpart
with the standard Laplacian can be derived by the same argument from the viscous
primitive equations (see Khouider and Majda 2005; Li and Titi 2016a, b; Majda 2003;
Stechmann and Majda 2006). The fractional dissipation terms may be relevant in the
study of viscous flows in the thinning of atmosphere. Flows in the middle atmosphere
traveling upward undergo changes due to the changes of atmospheric properties. The
effect of kinematic and thermal diffusion is attenuated by the thinning of atmosphere.
This anomalous attenuation can be modeled by using the space fractional Laplacian.
In addition, when « and y are fractions, (1.1) with these fractional diffusion operators
may also be relevant in modeling the so-called anomalous diffusion, a much stud-
ied topic in physics, probability and finance (see, e.g., Abe and Thurner 1905; Jara
2009; Mellet et al. 2011). Especially, (1.1) allows us to study long-range diffusive
interactions.

Mathematically, (1.1) possesses some special features. The firstis that (1.1) involves
the coupling of a divergence-free vector field # and a non-divergence-free vector field
v. This mix poses mathematical challenges. In order to control the gradient of v,
we need both the curl of v and the divergence of v. This paper demonstrates how
to effectively bound Vv. The second feature is that (1.1) allows us to examine two-
parameter families of systems simultaneously and to understand how the regularity of
the solutions is affected as the sizes of the parameters vary. Our aim here is to establish
the global regularity for (1.1) with the smallest amount of dissipation and provide the
sharpest global well-posedness results.

We establish the global existence and regularity for (1.1) for two ranges of the
parameters « and y. Different ranges of o require different treatments. The main
result is stated in Theorem 1.1. To be concise, we set v = u = n = 1 from now on.

Theorem 1.1 Consider (1.1) with o and y satisfying

44+ o — a2+ 8x+38
, O<a<§,

y > 2 (1.2)
<a<l.

1 —a,

N =

Assume (ug, vo, 0p) € H*(R?) withs > 2. Then, (1.1) admits a unique global solution
satisfying, for any T > 0,

u € C([0, T1; H*(R*)) N L*([0, T]; H*T*(R?)),
v e C([0, TT; H*(R») N L*([0, TT; HTH(R?)),
6 € C([0, T1; H*(R?) N L*([0, T1; H*1Y (R?)).

The result stated in Theorem 1.1 is new. There are several important previous global

regularity results for different ranges of parameters. Li and Titi (2016a) dealt with the
case whenv > 0, u > 0, « = 1 and n = 0. They introduced a combined quantity of
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v and @ to establish the global (in time) H' bound. This case is covered by Theorem
1.1 when we set @ = 1 and y = 0. Ye (2017) obtained the global regularity for (1.1)
when o > 0 and y = 1. It is clear that Theorem 1.1 covers a bigger parameter range
than Ye (2017). Dong et al. (2018) proved the global regularity for the climate model
in the case when there is no thermal diffusion, and when o < % and the total fractional
dissipation in the equations of u and v is at the order of two Laplacians. We remark
that some very interesting cases such as the model with both « and y being small
remain open.

The proof of Theorem 1.1 is not straightforward and demands new techniques. We
describe the main difficulties and explain the techniques to overcome them. Since the
local well-posedness of (1.1) follows from a standard procedure, the key to the global
regularity is the global a priori bounds. For the sake of completeness, the local well-
posedness part is presented in Appendix. The global L? bound for (u, v, #), along
with the time integrability of || A%u||? 12 V]2 72 and A7 62 72, Is immediate due to
the special structure of (1.1) and V - u = 0. By employmg an inequality of Chamorro
and Lemarié-Rieusset (2012), we turn the thermal diffusion of the # equation into a
global bound for ||9|| = , forany r > 0,

L
" 2 dT S CO»
L (= 2

||9(t)llli f IIQ(T)II y(l n, dt+/ 16l

where C depends on the initial data only. These global bounds serve as a preparation
for higher regularity estimates.

The major step is the global H! bound. As demonstrated in [7], there is an advantage
to make use of the equations of

w=Vxu, j=Vxv, h=V-v,
which satisfy

atw—i—(u~V)a)—|—A2°‘a)+(v~V)j+2hj—(v182h—v281h)=0,
hj+w-V)j—Aj+ (@ -V)o+ho=0,

oth+ (u-Vyh — Ah+ A0 + Q(Vu, Vv) =0,

V-u=0,

(1.3)

where Q(Vu, Vv) is given by

O(Vu, Vv) = 201u1(01v1 — d2v2) + 201u202v1 + 2021101 V2.
The equation of j completely eliminates 6. In order to remove the most regularity-
demanding term A# in the equation of /2, we form the combined quantity H = h — 0,
which satisfies

O%H+ (u-VYH— AH + O(Vu, Vv) = A0 + H + 6.
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The global H ! bound for (u, v, 0) is established by estimating ||(w, j, H)| ;2. In this
process, the most difficult terms are generated by the last two terms in the vorticity
equation, namely vid2h — v2d1h. They are handled differently when « is in different
ranges. For 0 < o < % we replace & by H + 6 and control the derivative of 6 by
V@] 12, which requires the estimate of || A =rg 12 simultaneously. When estimating
IAT=70 12 via the equation of 6, we need to bound the nonlinearity of the #-equation
suitably. The condition that

>4+a—Va2+8a+8
v= 2

is necessary in order to form a closed differential inequality. More details can be found
in the proof of Lemma 4.1. For « in the range % < a < 1, the terms generated by
v102h—v201 h inthe estimates of ||(w, j, H)|| ;2 remain the most regularity-demanding
terms. But the estimation process is different and we take advantage of the fact that
o > % We further split this case into two subcases

<a<l, y>1—aqa; Subcase2: =1, y =0.

N =

Subcase 1:

We still substitute 4 by H + 6, but we only need to control | A'=%0 | 12 after shifting
the derivative to the vorticity. The condition that y > 1 —« is sufficient for subsequent
estimates. More details can be found in the proof of Lemma 5.1. Subcase 2 is special
and is treated separately.

In order to establish the global H*-bound for the solutions, a few more steps are
necessary. In the case when 0 < o < %, we consecutively establish more and more
regular global bounds. Using the global H !-level bounds, we further control | V8], -.
The next tier of bounds is time integrability of || Vv| e, [[Av| ;4 (for certain range of
q) and of || A H || ;> shown via the maximal regularity of parabolic type equations. These
bounds further lead to the global bound for || Vu| 1 and |VO| 4 forany 2 < g < oo,
which are sufficient for the global H*-bound. In the case when % <o < 1and
¥ > 1 — a, we make use of the global H'! bound to further establish the bounds for
VOl 2 and |[v| L (0,T: L), Which are then sufficient in proving any higher regularity
estimates.

The rest of this paper is divided into four sections. The Sect. 2 lists some of the
tools to be used for the proof of Theorem 1.1. The Sect. 3 provides the global L?-level
bounds as well as a global bound for |6 ||L 2 The Sect. 4 proves Theorem 1.1 for the
first case, while the Sect. 5 proves Theorem 1.1 for the second case, which is further
split into two subcases.

2 Several Tools

For the sake of clarity, this section lists some of the tools to be used in the proof
of Theorem 1.1. We begin with the following fractional type Gagliardo—Nirenberg
inequality due to Hajaiej et al. (2011).
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Lemma 2.1 LetO < p, po, p1, 4, 90, q1 < 00, 8, 80, §1 € Rand0 <9 < 1. Then,
the following fractional type Gagliardo—Nirenberg inequality

Il @1

1-9
V|| ps < Clv| ..
I ”B;J,q(Rn) =Cll “B;% p1.ap (R™)

a9 (R

holds for all v € B} 4 N By, 4, if and only if

n n n
__S=(1_19)<_—s0)+19<——s1), s < (1 —=9)so + V1,
P Po pi

-0
q0

1 s
55 +q—, if po# p1 and s = (1 —19)so+ Vsq,
1

-9 14 .
+q_7 lfp()zpl ands:(l_l?)so—i_‘&sla
1

S0 £ s§1 or — <
q

n 1 1-9

Po p q q0

D
+ —, ifs<({d—9)s0+ Us1.
q1

The inequality in (2.1) remains valid when the homogeneous Besov spaces are replaced
by the nonhomogeneous Besov spaces.

Next we recall the following refined logarithmic Gronwall inequality (Ye 2018),
which generalizes Lemma 2.5 in Cao et al. (2017). We provide a proof of this inequality
for the convenience of the readers.

Lemma 2.2 Let A and B be two absolutely continuous and nonnegative functions on
(0, T) for any given T > 0, satisfying

A/ () +B@) <[l(t)+m (1) In(A+e) +n(t) In(A + B+ e)I(A +e) + f(1), (2.2)

foranyt € (0, T), wherel(t), m(t), n(t) and f(t) are all nonnegative and integrable
functions on (0, T). Assume further that there are three constants K € [0, 00), @ €
[0, co0) and B € [0, 1) such that for anyt € (0, T)

n(t) < K(A®) +e)* (AGt) + B(t) +e)’. (2.3)
Then, the following estimate holds
t ~
A(t)—}—/ B(s)ds <C(,m,n, f,a,B,K,t) < o0, 2.4
0
foranyt € (0, T). Especially, for the case a = 0, namely,
n(t) < K(A@) + B@) +e)’, 2.5)
(2.4) remains valid.
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Proof of Lemma 2.2 By denoting
Al =A+e, B :=A+B+e,
we have

'+B =A'"+A+B+e
<[ +I1t)+m@)In(A+e) +n@)In(A+ B+e)l(A+e)+ f(t)
=[1+1{t)+m@)InA; +n@)In B]A; + f(1). (2.6)

Dividing both sides of (2.6) by A yields

+— =0+ +m@)InA; +n()In B

A, B t
TR 1+ 29
A Ay 1

which, due to the fact A; > 1, implies

B
(InAp + A—l =14+1@)+m@)InA; +n()InBy + f(1). 2.7
1
Since
n(t) < K(A®) +e)*(A@) + B(t) + ¢)’ < KAYB!

and

n
Inz < j—n Vz, 5 € (0, 00), 2.8)

we have by taking n € (0, 1 — B)

B

n(t)In By = n(r) ln< - ) + (1 + ﬂ) InA,
1+T n
1

1 B n
< ka8l | (<) |+ (14 Yo ma
en\ 1+%F n
Al
K /By \B+
s—(—l) "+(1+°‘+’g
en\Aj n

B @ . K)+<1+a:'3)n(t)lnA1, (2.9

)n(t)lnAl

— 24

where we have used the fact 8 + 1 < 1 in the last line. Combining (2.7) and (2.9)
yields
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(lA)+B
n —
VT oA,

a+p

<I(t)+m(t)In A +C(a, B, 0, K)+ (1 n )n(t) In A+ £(6).(2.10)

Writing

B (s)
2A1(s)

13
X(@) = lnA](t)—I—/ ds,
0
(2.10) then implies

X'(0) = C Bon, K) + £ +10) + (m(0) + “Uﬂ

n(t))X(t).

By the standard Gronwall inequality, we obtain

Ny atB ) de !
X(1) < elo (nO+=FEn ) ds (X(O)—i—/ {C(a,ﬁ,n,K)—i—f(s)—l—l(s)}ds)
0
=C{,m,n, f,a,B,K,1). (2.11)
According to the definition of X, we infer

Al([) < eX([) < eC(l,m,n,f,a,ﬂ,K,l).

Moreover,
! Bi(s)
Bi(s)ds = 2A1( )r < ds
0 2A1(5)
t
B
5/ 2(max A1) 2L gy
0 0<i<t 2A1(s)
< 2CUmn. f.ap.K.1) /t Bils) ds
B 0 24A1(s)
<2CU,m,n, f,a B, K, 1)eClmmf @b K0 (2.12)
This concludes the proof of Lemma 2.2. O

We will also make use of the following commutator estimate (see, e.g., Jiu et al.
2014; Ye and Xu 2016).

Lemma 2.3 Let f be a divergence-free vector field and 1 il + Lz with p € [2, 00),
P1, p2 €[2,00], r € [1,00]aswell as s € (—1,1 —§) for 6 € (0,2), then it holds

LA, £ - Viglsy, < Cp.r. 8, )(IV flLr I8l gsrs + Iflz2lgllz2).  (2.13)

p.r —

We also need a special commutator estimate obtained by Hadadifard and Stefanov
(see Hadadifard and Stefanov 2017, Lemma 2.2).
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Lemma 2.4 Let sy and s; satisfy s1 > 0and 0 < sp —s1 < 1. If V- u = 0, then there
holds

AT (A, u-VID)|Lr < ClIVullpa|A™210]|r, (2.14)
where2 < q <00, 1 < p, r<oosatisfy%:$+%.

3 Preliminary Bounds

We start proving Theorem 1.1. This section provides the global (in time) bounds at
the L?-level and a global bound for |6 || . In addition, we also write the vorticity

formulation to prepare for the proof of the global H ' bounds in subsequent sections. As
aforementioned in Introduction, the vorticity formulation appears to have an advantage
in proving the global H'! bound.

The following lemma states the global L?-bound on (u, v, 8) along with the time
integrability of | A%u]|3,, [[Vv]7, and |AY6]]3,
Lemma 3.1 Assume that (ug, vo, 6p) obeys the conditions stated in Theorem 1.1. Then,
the corresponding smooth solution (u, v, 0) of (1.1) satisfies, for any t > 0,

t
w72 + @172 + 10172 + 2/0 (IA“ul72 + [IVol32 + [AY0]72)(x) dT
= lluoll32 + llvoll72 + 116oll? 2. 3.1)

Proof Dotting (1.1) by (u, v, 8), integrating by parts and using V - u = 0, we obtain

d
5 @ HOIL+ I OIL A1) +HIA T2+ VVlZ2 + 147017, =0,(3.2)

where the following cancellations have been used above
/ V-(v®v)-udx+/ w-Vu-vdx =0,
R2 R2
/ VG-vdx—l—/ (V-v)0dx =0.
R2 R2

Integrating (3.2) in time over (0, ¢) yields desired estimate (3.1). O

The following lemma establishes a global bound for ||6]| 2 and for the time
L1—vY

integrability of the corresponding dissipative part.

Lemma 3.2 Assume that (ug, vo, 6y) obeys the conditions stated in Theorem 1.1. Let
(u, v, 0) be a smooth solution of (1.1). Then, for any t > 0,

t 2 L
”9(””]# +/0 10 ) dr+f @I, dr<Co,  (33)
2 2

1=2
= oy L(=y)
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where Cy is given by

Y
~ -y
Co = Clluollzz + llvollz2 + 601172) (”90”2'2 + lluollz2 + lvollZ, + ||90||iz)
L1-v
for an absolute constant C>0 independent of the initial data.

2
Proof Multiplying equation (1.1)3 by |9|W_26 and integrating over R? lead to

1-— 2 2 5 2 5
——||9(t)II yz + | ATO0ITT 70 dx =~ | Vv (10|77 70)dx.
2 dt LTy R2 R2

We recall the following lower bounds associated with the fractional dissipation term,
for any g € [2, 00) and s € (0, 1),

fRZ [FI972 A% dx = CeL IIf 11 5 (34)
Bq%
L2 2% g ae = o1l (35)

(3.4) is due to Chamorro and Lemarié-Ricusset (see Theorem 2 of Chamorro and
Lemarié-Rieusset 2012) and (3.5) follows from (3.4) via the Sobolev inequality. We
thus obtain

2 - - = 2 =
[ ave (o) ar=a [ (aneim7) =@,

lfy lfy
5 2 5 - N2
/Aye(ww o) dxzclf (ariorm=) = @nen™,
R2 R2 LZiSZT

where ¢}, ¢; and ¢ are absolute constants. By Holder’s inequality and the Gagliardo—
Nirenberg inequality, we have

427 1+y
‘f v-v (16177 7%0) dx| = CIVol2 060 S
L I=v
1
scnwumnenlgn I,
L= L (1-y)?
~ P 2y
c = -y
<ol CIVvl.lle]" % .
2 (- y>7 L1-v
Therefore,
e 2
—||6(r>|| ;+||9|| . el < C|Vvli3, 0] ;. (3.6)
LT= L =2 W% LT-
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Especially,

2y
—W@ng awwwa;,

LT-r
or equivalently

d
—116M|> , < C|Vv|?,.
d;” ()IIL%_ IVvll;2

Integrating in time and using (3.1), we have

I|9(t)||i% < l16oll® s + Clluoll72 + llvoll72 + 160ll72),
e

which, together with (3.6), yields

2

2
umw|§7 f|wanl - dr+/|wun‘2

V)

ﬁ dr < Cy.
17 2
This completes the proof of (3.3). O

In order to prove the global H'-bound for (u, v, 8), we resort to the equation of the
vorticity w. Since v is not necessarily divergence-free, we also write the equations of
the curl of v and the divergence of v. It follows from system (1.1) that

w=V Xu:=0oduy— oui, Jj =V xv:=01v — dvy,
h=V.v:=0[v] + 02

satisfy

Qo+ w-Vo+ Ao+ v-V)j+2hj — (v10ah — v201h) =0,
8j +(u-V)j — Aj+ (- Vo +ho =0,

Oth+ (u-V)h — Ah + A0 + Q(Vu, Vv) =0, S
V.u=0,
where Q(Vu, Vv) is given by
O(Vu, Vv) = 201u1(01v] — 0rv2) + 20 1up0v1 + 201101 V2.
Now by introducing the following key quantity
H=h-90 (3.8)
and combining with the third equation of (1.1), we have
&H 4+ (u-VYH — AH 4+ Q(Vu,Vv) = A0 + H + 6. (3.9)
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Owing to the following identity
Av=V(V-0)+VEV xv), Vi=(3,-d),
one deduces that
Av = Vh+ V). (3.10)

As a consequence,

Vvo=Rih+Raj=RiH+Ri0+Rsj, (3.11)
where

Ri=VV(A), Ry=vvia)l

The rest of this paper is devoted to completing the proof of Theorem 1.1. We divide
the proof into two cases:

44a—vaZF8x+38 1
Casel y> o r@—-verdde®s 5 o1 (3.12)
2 2
1
Case2 y >1—q, Egagl. (3.13)

Section 4 is devoted to the first case, while Sect. 5 is on the second case.

4 Proof of Theorem 1.1: Case 1

This section proves Theorem 1.1 for Case 1:

4 — Va2 +38 8 1
y > to @~ S+ , O<a< —. “.1)
2 2
Attention is focused on y and « satisfying
44 a—a?+8x+8
y = > , O<ax< 3

since the remaining parameter range can be dealt with in a similar manner and is
actually easier to handle. Theorem 1.1 is proven by consecutively establishing more
and more regular global (in time) bounds. The crucial step is the global H' bound
for (u, v, 0) via (3.7). In order to close the differential inequalities, we estimate
[(w, j, H)| ;2 together with ||A]’V9||Lz. It is in this step that we need (4.1). These
global H!-level bounds further allow us to obtain a global bound for || V@] 12 The
next tier of bounds is time integrability of | Vv z, [|Av||;; (for certain range of g)
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and of ||A H| ;2 shown via the maximal regularity of parabolic type equations. These
bounds further lead to the global bound for || Vu| 14 and |VO| 4 forany 2 < g < oo,
which are sufficient for all higher regularity.

The following lemma establishes the global H'-estimate of u and v as well as a
global bound for [|A!=78]|,2.

Lemma 4.1 Assume (ug, vo, 6o) satisfies the conditions stated in Theorem 1.1. Assume
o and y belong to Case I, namely (3.12). Then, the corresponding smooth solution
(u, v, 0) of (1.1) obeys the global bound, for any t > 0,

o172 + 17172 + IHOI 2 + Vo@ll72 + 1A 770017,
t
+/O (A0l 7: + IVjll72 + IVHIT: + 1Av]I7, + [VO]7.)(x) dr
< Co(1), (4.2)
where the bound Cy depends only on t and the initial data.

Proof Multiplying Eqgs. (3.7)1, (3.7)2 and (3.9) by w, j and H, respectively, integrating
over R? and summing them up lead to

1d . )
zauw(wniz F 1O + THOI) + 1A%0ll7, + 1Vjl3, + IVHI,
=—/ ((v~V)ja)+2hjw+(v-V)wj+hwj)dx—/ O(Vu, Vv)H dx
R2 R2
+ / (A*0 + H + 0)H dx + / (v132h — 1201 h)w dx
R2 R2
=N+ D+ 3+ Js. (4.3)

In what follows, we estimate the terms on the right-hand side of (4.3). Integrating by
parts and using the Gagliardo—Nirenberg inequality yield

jlz_/ (U-V)jwdx—f (2hjw+(v-V)wj+hwj)dx
R2 R?

zf hjwdx+/ (v-V)a)jdx—/ <2hja)+(v-V)cuj+ha)j)dx
R2 R2 R2

= —2/ hjow dx
R2

=-2 Hja)dx—Z/ 0jowdx
R2 R2

< Clllg20HIlgaljllgs + CION 21 H l gall 2o

1 1 1 1 1 1 1 1
<Clloll 2l HILIVHIL N0V +CMel 2l H I IV HI IV
<elVjll: + €l VHIT, + CllHll 2l 2 loll32 + ClH Il 211l 210172
< elVjll2, + el VHIE, + Ce(lhll 2 + 101 .21l 2 lloll3
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+ Ce(llhll g2 + 10112111 21613
<ellVjl, +elVHI, + Cc(IVVll7, + 1017) ol
+ C(IVolIZ, + 101701017 . (4.4)

By (3.11) and the Gagliardo—Nirenberg inequality, we have

Jy < c/ [Vu| |Vo| |H|dx
R2

< C [ | IVul (RuH| + [R] + [Rajl) |l dx
R

< ClIVull 2 (IH 1+ 1lls + IH 7 + CIVull 2 101221 H] 2
< Clloll2(H 21V H 22 + 11221Vl 22)

+ CllA @] 2101 2 NH I IV H LS 4.5)
<elVjll7: + el VHIZ, + €l A%|7, + C(IH T2 + 117D 07

2
+ Cellol| &, 1 H |17
.12 2 2 2 2 2 2
< €llVili + el VHI, + el A%0l7, + ClVollTallol}, + Celloll s 1 HI .
(4.6)

The term J3 can be easily bounded as

J3 < CIIAYO| 2| AV Hl 12 + ClH |72 + ClIO]7
1—
< CIA Ol HI LV IVHIY, + CIHI, + ClIOI
<e|VH|?, + CIAY0]7, + CIH|7, + Clo]7..

The last term Jy is more involved. Actually, we have

Jy = C/ (w102 H + v1020 — v201H — v20160)w dx
RZ

< Clvl=IVH| s2lloll 2 + Clloll= VOl 2]l 2
<elVH|?, + €| VO[3, + Celvliix ol

where € > 0 represents a small real number. The estimate of J4 is not done yet, and
the bound involves || V6| 2. Plugging the estimates for J; — J4 into (4.3) leads to

o () 12+ 17 (13 + 1H @) 132) + 1A%0l2, + 1V /13 + IVHIE,

26[IVjll7, +4€|VHIZ, + e A7, + €l VO3,

N —
A & e
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2
+Ce (V012 + 1612, ) lol3, + C. (1 + ||9I|Zz) 1513
+ Ce (14 1V + 1013 ) 1012; + CellolF <l .7

In order to close the above inequality, we need to absorb || V6|2 to the left-hand side.
To achieve this goal, we apply A!~7 to the third equation of (1.1) and multiply by
A'776 to deduce

d _ _
mnA‘ YOWOT, + VO, + IA7Y017, = K1 + Ko, (4.8)

K| = _/ ATYHAY0dx, Ky = _/ AV (- Vo)AV O dx.
R2 R2

By an interpolation inequality,
Ky < [|IA"7H| 2 A7 612
1— _
<IHIVIVHI L IA7 01,
<EIVHI, + CHIZ, + C A 7013,

The estimate of K3 is more delicate. We need the assumption that & and y belong to
Case 1:

4+a—vaZ+8u+8
>

= 5 roy?—dy +2<ay. (4.9)

We set

2 -2 1
po=— 53— and po = 22 =E(J/2—4V+2)SV<1-
0

Making use of commutator estimate (2.14) and the Gagliardo—Nirenberg inequality,
we have

Ky=— [ [AYY, u-V]o A7V dx
R2

< CIATTPATY wVIg) 1A T0)
LI-r

< ClIVullwl6] ||V9||Lz
1—

< C|Vull, ”°||A“W| ||9|| 2, V82
12

<ellVOI7, + el A0l7, + Celloll " o],
L(l y)

< €lVOI%, + el A2, + Cello) Vz lwl7s. (4.10)
L= )2

where we have used the fact that @ and y are in Case 1, namely (4.9) or
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in the last step of (4.10). Inserting the bounds for K| and K> in (4.8) yields

1d 1- 2 2 1- 2
A OO + IVl + IATV0l,

<€l VHI7, + €l VO3, + €l A%0l7, + Cel HIIT, + CellAY 0113,
2
+Clol ", Nl @.11)
L -2

Summing up (4.7) and (4.11) and taking € small enough, we find that

X(0) = o3, + i1 + IHOI + 1A7700)17,.
Y(0) = [IA“o@)2, + Vi3, + IVH® I3, + V@13,

2

2 2
G@) =1+ IIVv(t)IIiz +10OI, + 10 L,
L(lf;/)2

H() = (L+ V@72 + 100172 + lu® 3100172

satisfy the differential inequality

%X(I) +Y(0) < C(Ivll7 + GO)X (1) + CH ().

To bound ||v]| =, we invoke the following logarithmic Sobolev embedding inequality
(see, e.g., Brezis and Gallouet 1980), for o > 1,

£y < C(14 17 2@ + 1Vl Ine + 142 2 )- 4.12)
Thus,
ditX(t) +Y@) <C+ ||Vv||i2 In(e + |Av||;2)X (1) + CG()X(t) + CH(t).
Thanks to (3.8) and (3.10),
AV 2 < CUVIONT2 + IVHOIF 2 + IVO@)]I72) < CY (1)
and thus

%X(t)+Y(t) <CA+[Vv[3, In (e+ X (D) +Y (1)) X(O)+CCOX () +CH(D).
(4.13)
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Due to the simple inequality

1
IVuli7, < Clvli2lAv] 2 < CllAv]l2 < CY2(@),
we apply Lemma 2.2 to (4.13) to obtain

t
X(1) +/ Y(s)ds < C,
0

which is (4.2). This finishes the proof of Lemma 4.1. O
Next, we prove the global H'-estimate of 6.

Lemma 4.2 Assume (ug, vo, 0o) satisfies the conditions stated in Theorem 1.1. Assume
o and y belong to Case 1, namely (3.12). Then, the corresponding smooth solution
(u, v, 0) of (1.1) obeys the global bound, for any t > 0,

t
VO3, + /O IAYVO(T)|7,dT < C (). (4.14)

Proof of Lemma 4.2 Applying V to the third equation of (1.1) and dotting it by V&, we
have

1d 2 v 2 2
3 g VOO + IATVOIL + VO,
5/ VHVde—/ Vu - VOV dx
R2 R2
< CIVHI| 2 VOl 2 + ClIVull 2 IVO1 s
21 1
< CIVH|| 2Vl 2 + ClIVull 2V, " IATVE] [,

2y

| 30T 2
< §|IA VOl + CIVH| 2IVO 2 + Cllewll 2 VOl

The global bound in (4.2) and Gronwall’s inequality imply
t
VoI, + /O IAY V6|2, dr < C.

This concludes the proof of Lemma 4.2. O

Our next step is to obtain higher regularity by making use of the maximal regularity
estimate for parabolic equations (see, e.g., Lemarié-Rieusset 2002).

Lemma 4.3 The operator A defined by

t
Af (x, 1) :=/ eTTIBAF (s, x)ds
0

is bounded from LP (0, T; L1(R")) to L? (0, T; L1(R™)) for every (p, q) € (1, 00) X
(1,00) and T € (0, oo], namely

@ Springer



528 Journal of Nonlinear Science (2019) 29:511-550

<C . ny),
PO LeEn) = IfllLr.7: L9 )

t
” / eTTIBAF (s, x) ds‘
0

where the constant C is independent of T .
Lemmas 4.1 through 4.3 allow us to prove the following estimates.

Lemma 4.4 Assume (ug, vo, 6o) satisfies the conditions stated in Theorem 1.1. Assume
o and y belong to Case 1, namely (3.12). Then, the corresponding smooth solution
(u, v, 0) of (1.1) obeys the global bound, for any t > 0,

lv@) Lo, 7;200) + VU120, 7; 1.0y = C(0). (4.15)

Proof of Lemma 4.4 We recall the following property of the heat equation (see Ye
2017), which states that any solution v of

k 2 n
3zU—AU=Zfl, I fiO N e, 709 &Yy < C, E+Z<2’ 1=12---k
=1

satisfies
lv@) Lo, ;L) < C. (4.16)

Combining (4.14), (4.2) and (3.1), we can show that

Vo) 2\ < CIAYVOl 20, 7:12) < C:
L2<0,T;L1*V>

llu - Vo (@)l 2y =G (4.17)
L2<0,T;L —V)

llv-Vu@)ll 220\ < C. (4.18)
LZ(O,T;L —a)

In fact, by Holder’s inequality,
llu - Vol 2-

=< Cllull 20-» V|
Lyd=y) L

2=y 2,
y I-y

L=

which, together with (4.2) and (4.14), implies (4.17). The proof of (4.18) is the same.
Recall the third equation of (1.1)

v —Av=—-V0—(u-Vyv—(v-Vu. (4.19)
According to (4.16),
lv@®llze©, 7:20) < C. (4.20)

Applying operator A to (4.19) and making use of the Duhamel Principle yield

@ Springer



Journal of Nonlinear Science (2019) 29:511-550 529

t
Av(x, 1) = e Avg(x) — / e(’_S)AA((u VY4 VO + (v V)u) ds. (4.21)
0

By Lemma 4.3,

t '
2 2 2 2
/0 [Av(s)ll 7 ds < C/(; <||u Vo) iz +IVOO)I7z +llv- Vu(s)||Lq) ds < oo,

forsome2 < g < min{%%g, %:—;}. Desired bound (4.15) follows as a sequence. This

completes the proof. O

The following lemma proves a global bound for AH.

Lemma 4.5 Assume (ug, vo, 0o) satisfies the conditions stated in Theorem 1.1. Assume
o and y belong to Case 1, namely (3.12). Then, the corresponding smooth solution
(u, v, 0) of (1.1) obeys the global bound, for any t > 0,

IAH ()] 20x2 <C. (4.22)
Le+2 (0, T;L?)

Proof 1t is not difficult to see that the global bounds in (4.14), (4.15), (4.2) and (3.1)
imply

IAY O 2 < C; (4.23)
L2r=1(0,T:L?)
IH Ol oo, 7:12) + 10Ol o0, 7:12) < C (4.24)
1Q(Vu, Vo))l 1200, 7:12) < C: (4.25)
- VYH @) 20s2 <C. (4.26)
L a+2 (0, T;L2)

Now recalling equation (3.9)
&%H—AH=A"0+H+6—Q(Vu,Vv) — (u-V)H, (4.27)
and applying A to (4.27) and making use of the Duhamel Principle yield
AH(x,t) = ' AHy(x)
+ /Ot e(’_S)AA<A2V0 T H46—0Vu, Vo) — (u- V)H) ds.
By (4.23)—(4.26) and Lemma 4.3, we have

AH(t o =
IAH( )”L%(O,nu) <

This ends the proof. O

Now we establish the following key estimates.
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Lemma 4.6 Assume (ug, vo, 0o) satisfies the conditions stated in Theorem 1.1. Assume

o and y belong to Case 1, namely (3.12). Then, the corresponding smooth solution

(u, v, 0) of (1.1) obeys the global bound, for any 2 < q < oo and for anyt > 0,
IVO@)llLe + IVu@)llLe = C(2). (4.28)

Proof of Lemma 4.6 We apply V to the third equation of (1.1) and multiply it by
[VO|272V6 to deduce

1d
— S IVOOIL, + / AYVO(IVO2VO) dx + [IVO|T, = M1 + M>, (4.29)
q R2
where
M, = —/ VH(|VO|?2Vo)dx, M, = —/ Vu - VO(IVO|972V0) dx.
R2 R2

By means of the pointwise inequality (see, e.g., Cérdoba and Cérdoba 2004) and
Sobolev embedding inequality, it entails

/ AY'VO(VO|ITV0) dx 2C1/ (AY|VO]5)2dx = Co |VO|? , .(4.30)
R2 RrR2 LT=v

According to the Holder inequality, we have

—1
M < C||VH||L4 Ivel?,

<C|VH]|, 2||AH|| "IIVGIILq ; (4.31)

My < C||Vull12[IVO1},,
(ZV2 Dg 24

< Cloll2IVoll ™" IIVel™ e

LT-v

)
< §||ve||q ¢ +Clo ||2V Hivee, (4.32)

Putting the above estimates (4.29)—(4.32) together yields

2

—IIVQ(I)IILq <CIVHI, 2||AHI| "IIVQII "4 Cllo ||2V VeI,

or

_2

d
3 IV0®lie < CIVHI] 2||AH|| g +C||w||” YIVOl e

2y
< CIIVHI|l 2 + CIAH |2 + Cllol 3 1V0] o
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By Gronwall’s inequality along with (4.2) and (4.22), one gets
IVO@D)l[Le < C. (4.33)
Recalling the vorticity equation
ho+ u-Vio+ A 0=~V xV-(v®v), (4.34)
multiplying (4.34) by |@|? 2w and integrating by parts, we have, forany 2 < g < oo.

1
——llwl?, < _/ Vx V- (u®volo??dx
q R2

—1
<CIVx V-l
—1
< CllAWV) || allol%,
—1
< Clllr=llAv]zallol?,

2 2 -2
< CUAvIIT, + l@li)llel], .

That is,
d 2 2 2
Ellwllm < C(|Av|lzq + ll@llzqe)- (4.35)

Integrating (4.35) in time and using Lemma 4.3 lead to

lollfe < lwollfe + C/t AV (174 + llox()174) ds
Ot
< lwollZs + c/o (- Vo)I20 + 19612,
+ v Vu()|7s + lo)l170) ds
< lwoll7q + C/(:(uunizquwnizq +1VOlZ
+ [ll7 IVullZe + llollZq)(s) ds
< llwollq + cfot (i3 vl + 1V Za + llllZa)(s) ds.
By the Gronwall inequality and (4.33),
lo@®le <C, 2<gq < o0.
By the boundedness of the Calderon—Zygmund operator on the L9 space,

IVu(®)llre <C, 2<gq < o0. (4.36)
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This completes the proof of Lemma 4.6. O

With the estimates above at our disposal, we are now ready to give the proof of
Theorem 1.1 for Case 1. The following homogeneous commutator estimate will be
used several times. For any s > 0, we have

IAS(F &) — f A gllir < C UV Fllea IA T glier + llglza AT fllzn),
where p,r,r; € (1,00) and g, g1 € [1, oo] satisfy

1 1 1 1 1

p q9 rr 4q1 n

This type of commutator estimates can be found in several references (see, e.g., Li in
press; Kenig et al. 1993).

Proof of Theorem 1.1 (Case 1) Applying A® withs > 2to (1.1) and taking the L? inner
product with (A*u, A’v, A%9), we obtain

1d
EE(HASM(I)”iz F A VO, + IAOD 1) + AT ul?, + A )2,
+ ||ASJ”’9||i2 :—[ (ASV (v ®v) - Au+ A(v-Vu) - Asv) dx
RZ
—/ A¥(u-V0O) - A°9dx —/ A(u-Vv) - Avdx —/ A(u-Vu) - A udx
R2 R2 R2
= H| + Hy + H3 + Hy. 4.37)

By the commutator and bilinear estimates (see, e.g., Li in press; Kato and Ponce 1988;
Kenig et al. 1991)

ILA®, flgllze < CAUV Lo 1A gllLr + A fllLesliglLrs),
IA*(follLr = CAfllLr 1A glILr2 + IA° fllLrslIglLrs)

with s > 0, pz,p3e(1,oo)and%=%+ =%+ﬁ,wehave

1
P2
Hy < CIAV - (v ® ) 2 1A ull 2 + CIA™! (v V) [ 2 1A o)l 2

1 —1 1
< Clllz A ol 2| A ull 2 + Clivull 2, A= ol 2 1A vl 2

IA

Clivllz I A vll 2| A%u] 2 + Clivul 2. (Ivllz2 + 1A V] 2) 1A w2

IA

1
§||AS+‘v||iz + ClvlZe A ull7, + cnwni% (||v||iz + ||ASv||iz) :

Hy < CII[A° u- VI8l 21 A°01l 2

5C<|IWII 2 [IA%ON 2 + VOl 2 [[A ull 2>||AS9”L2
LY L1-v Lo LT«
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IA

C (IVull 3 IA™7 0,2 + VO, A ul2) 1A0l 2

A

1 1
+ 2 + 2 2 2 2
§||AS Yol. + §||AS “ull;. +C (IIVMIIJ + ||V9||L§> IA*Ol7 5.

Hy < C|A° (u- Vo) |2 A%0]l 2

<C (||u||Loo||A*‘“v||Lz + ||Vv||Loo||A°‘u||Lz) 1AV 2

< %nAf“vniz + ClIVoll o | A ul 2 [ AT 12 + Cllul oo | A V]I,
Hy < C/]RZ I[AY, u-Vu- A'u|dx

< C||Asu||L2(a+1) IAS, u - Vu| 2@+n
L 2aFT

< ClIAull p2@+v ITAY, uildiull 2@+
L 2a+1

< ClIAul 2 (IVal wgn IAT 0l 2w + 10l s 1A%l 2

< CIN Ul 2w | Vull ast | A ul s
2

2a
a+l S+ a+T
CIA ull AT ull /57 IVl e

IA

1 s+a,, 12 QT_H s.2
SIA G + CIVul Gy 1Al .

atl
o

A

Substituting all the preceding estimates into (4.37), one gets

d
a(nAfu(r)niz + A VO N7 2 + A O@172) + AT ull7, + 1A |7, + AT 07,

< CBOUA U7, + 1A ][7, + 1A*0]72).
where

—a

B(t) = (1 + )13 + ||Vu<t>||ilz + ”V“(””i% VoI, 2
2 2 atl
Hlu@)13 0 + VO 1300 + ||Vu(r>||L‘;+1) :
Thanks to (3.1), (4.2), (4.15), (4.28), one has
T
/ B(r)dr < oo.
0

The Gronwall inequality allows us to conclude that

t
IAS @72 + A VO, + [ATO D7, + / WA w17, + 1A v ()17,
0

+ 1A 0(1)|7,) dT < oo,
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which is the desired global bounds in Theorem 1.1. This completes the proof of
Theorem 1.1 for Case 1. O

5 Proof of Theorem 1.1: Case 2

This section provides the proof for Theorem 1.1: Case 2. The focus again is on the
range

since the case y > 1 — « can be dealt with in a similar manner and is actually easier.
We further divide into two subcases: y = 1 —«, % <a<landa =1,y =0.The
rest of this section is correspondingly split into two subsections with each devoted to
one of the cases. Each subcase starts with the estimate of the H!-norm of («, v, 6).

5.1 TheSubcase:y =1-a, 3 =<a<1
Lemma 5.1 Assume (ug, vo, 6o) satisfies the conditions stated in Theorem 1.1. Assume
o and y belong to Case 2, namely (3.13). Then, the corresponding smooth solution

(u, v, 0) of (1.1) obeys the global bound, for anyt > 0,

lo®7, + 17O, + 1HOI7, + [Vo@ 13, + A 0013,
t
+/ A I3+ Vi 7 +HIVHIT AN AT Vo2, + A7 012 ,) (2) dr
0

< Co(0), .1)

where C depends only on t and the initial data.

Proof of Lemma 5.1 Tt follows from (4.3) that
1d 2 . 2 2 o 2 ) 2
S oI + 1O + IHOR) + 1A%0l3: + V]2 + IVHIZ,
=—/ ((v~V)ja)+2hjw+(v-V)wj+hwj)dx—/ O(Vu, Vv)H dx
R2 R2

+ / (A0 + H + 0)H dx + / (v132h — 1201 h)w dx
R2 R2

=N+ L+ 3+ s 5.2)

The terms Jp, J2, J3 can be similarly estimated as those of Hy, H,, Hz. However, the
last term Jy is handled differently. It is bounded by

Jy = C/ (010 H +v1020 — 1201 H — v2010) wdx
R2
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< Clole=IVH 2 llollz2 + CIAT 01l 2| A (ve) || 2
< Clle=IVHI 2 llll 2 + CIAT0] 2 (IIUIILOOHA“wIILz + 1A%l 2 IlelL%)

< Cllvll=IVH( 2@l 2 + CIA ™01l 2 (Ivll [ A%@ll 2 + [ VUl 2 [ A%l 2)
<elVH|7, +€lA%0l7, + Celvlixllolis + Ce (Ivl7~ + 1VVI7.) [A40]13,.

Putting the estimations of J; — J4 into (5.2), we obtain

1d 2 . 2 2 o 2 .2 v 2
53 0I5 + 1 O17: + IHOIZ) + 1A@lg: +1Vjl72 + IVHIE
< 2€|[Vjl3, +4€|VH|?, + 2€[| A%, + €] VO3,

2
+ Ce(IVlI72 + 1017 10l72 + Ce(L+ 101 DI HII

+ Ce(1+ VU2, + 101210125 + Ce(lvlF + IVVIZ)IAT20112,.
(5.3)

The right-hand side of (5.3) involves || A6 12, and we need to estimate || A =g 12
simultaneously. To this end, applying A~ to the third equation of (1.1) and multiply
by A0 to deduce

1d _ _ _ ~ ~
EEIIAI WO, + A0, + A0, =K1+ K2, (5.4)

where

~

K, z_/ AT HA 9 dx, K, = _/ AT - VAT dx.
R2 R?

By Holder’s inequality and an interpolation inequality,

Ky < [IA"H| 2| A"70] 12
< IHISIVHI G IA*0] 2
<e|VH|, + ClHI7, + CelA 017,

Thanks to the commutator estimate (2.13) and the Gagliardo—Nirenberg inequality
(2.1), it yields for y2 < ¢ < y that

~

K) = —f A% u- Vo A0 dx
R2
< A - VIOllg-o A0 1o
_ _ 1-2 _ a
< AT u - VIOl g [ATT0] 7 1A ],

1—c o
< \V4 B Al—ot Y Al—a+y 12
=Cl MIIL%IIGIIBVZZII Ol .7 |l 01,2

-y
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(1 ) (1 ) 1 1
<CIIA’)‘wIILZIIGII o y||9|IV v A O[9I| yIIA “Jr’”@lly

V(l y)

‘I\)

,00 =
1 vy 1= V
—0

) (1 ) 1— 1—
<C|IA°’w|ILzI|9|| li IIGII;MC) [PAN “GII yIIA “*VGIIV

YY

1;/1
2

2 1- [ )( ) =7 1—- 2

< ellA“ol)7, + el AT 007, + Cellol| y el ¥ » A0,
2
17

Llﬂ/ 2
I—y

where we have used y = 1 — « in the commutator estimate and invoked the following
Gagliardo—Nirenberg inequality (see (2.1) or (Bahouri et al. 2011, Proposition 2.22)

y—a

(1 ) ¢ 2
10l groe = C||9|| oy - IIHII;VU noo VIEosY
V2 = y T Ty

Consequently, one has

d _ _ _
EEIIAI GO, + 1A 017, + |AT0)12,

<e|VH|?, + e||A‘*“+Ve||iz + e A%|72 + CllHIT 2 + Cell AT 0|7,
2

+Cello) "3 s 7l T " ||A1—“9||iz+ce(1+||u|| D017, (5.5
L*V 2

1 1

Summing up (5.3) and (5.5) and taking € small enough, we find that

X(t) i= o + 1O, + IHOI2, + 1A 00|12,
Y(t) := [A%0 ()2, + ||W(r>||iz HIVH®OIZ, + A 00175,

2

2
L+ V@)l + ||9(t)I| + ||9I| == W el

y(l v)
J/ 2
1* =y

H() := 1+ Vo |3, + 100112, + ||u(r>||iz>||e(r>||Lz

G@t):

satisty

d ~ ~ 2 ~ ~ ~

EX(t)wLY(t) <C(lvllfe +G@)X @)+ CH(1). (5.6)
Bounding ||v| L~ via (4.12), we obtain, for any § > 0,

d~ ~ -
EX(Z) +Y(@) < CIIVv(t)IIiz In(e + [ A°Vo()];2) X (1)
+CGWHX(t) + CH®). (5.7)
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According to (3.8) and (3.10), we have by taking 0 < § < min{l — o + y, 1}

IA°Vu(@)l 2 < CUAH @) 12 + 1A% (Ol 2 + 1A°0(1)]12)
< C(||H<t)||1“‘||VH(t)||5 + ||j(t>||1‘8||vj'(r>||iz

16, T A o)) =)
<Cle+X1(0)+72()). (5.8)

Furthermore,

IIVUIIL2<CI|v||5+l IIA‘SVUII‘S+1 =ClA VvII[S+1 <Cle+ X0 +Y ) w1 -5.9)

Combining (5.8), (5.9) and applying Lemma 2.2 lead to

t
%) +/ V(s)ds < C,
0

which is (5.1). This completes the proof of Lemma 5.1. O

Next, we prove the global H '-estimate of 6.

Lemma 5.2 Assume (ug, vo, 6o) satisfies the conditions stated in Theorem 1.1. Assume
o and y belong to Case 2, namely (3.13). Then, the corresponding smooth solution
(u, v, 0) of (1.1) obeys the global bound, for anyt > 0,

t
VO3, + /O IAYVO()]12, dv < C(0). (5.10)

Proof of Lemma 5.2 Applying V to the third equation of (1.1) and multiplying it by
VO, we have

1d
zanve(nniz +IAYVOT, + VO3,

5/ VHVde—/ Vu-VOVEO dx
R2 R2

< C||VH|,2|VO|,2 + C|V Vo>
< CI|VH| 2V 2 [ ullmgﬁll IIL%

_l-a I—a

2
< CIIVHI2IVO 2 + ClA @] 2IVO] 7 IIA”VGIILZ

I/\

—IIA”WIILz + CIVH|2[VO] 12 + ClA% 0l 5 e Vo173,

| /\

1
2IIA”VGIILz + CIVHI| 2 V0l 2 + C( + [|A%@l 7)1 V0172,
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where we have used y > 1 — « in the last line. Gronwall’s inequality along with
estimate (5.1) leads to

t
VoI, + fo IAY V6|2, dr < C.

This concludes the proof of Lemma 5.2. O

Lemma 5.3 Assume (ug, vo, 6o) satisfies the conditions stated in Theorem 1.1. Assume
a and y belong to Case 2, namely (3.13). Then, the corresponding smooth solution
(u, v, 0) of (1.1) obeys the global bound, for anyt > 0,

lv@ Lo, ;0 < C(2). (5.11)
Proof of Lemma 5.3 By (5.1) and (5.10), we have, for any 2 < p < oo,

IVe@l 2 =G
LZ(O, .

T:LT=v)

l[u - Vo)

A

p =< C;
L0, T;LP+2)

lv-Vu@] 2 = C.

L>®(0, T;LP*?)

It then follows from (4.16) that

lv@)llLe, 7:20) < C(@).
This proves Lemma 5.3. O

With the estimates above at our disposal, we are now ready to give the proof of the
second case of Theorem 1.1.

Proof of Theorem 1.1 (Subcase 1) Applying A* with s > 2 to (1.1) and then taking the
L? inner product with (A*u, A’v, A*0), we have

1d

2dr

=—/ (ASV.(v@m).Asu+As(v.w)-Afu)dx—/ AS(u - V) - A0 dx
R2 R2

(1A u @2 + AT O3 + IAOO1%) + 1A ulZ, + A 0], + A+ 6)2,

—/ AS(u~Vv)~Asvdx—/ A(u-Vu) - A udx
R2 R2

= Hy + Hy + H3 + Hy. (512)

By Holder’s inequality, Sobolev’s inequality and commutator estimates, we have

1
Hy < §||As+1u||§2 + Cllvl = IA ull3 > + ClIVullge (0117, + 1A V]7,).
Hy < C[[[A%, u- V1Ol 2| A°6] 2
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(lqull 2 [[AY ol 2, +1Vel, 2I8%ul )IIA Ol

= C(Ivull 3 1A*701,2 + 1901 2 ||AS+°‘u||Lz) IA*0]l2

aty—1
< C(IIVMIILZ“ IIA“Vulle IAF76]| 2

aty—1 l—a

+IVOll,," 1AVl IIA”“ulle) A0l 2

1 )
< Ao, + IIA”"‘MII 2+ CUIVullFe + IVOIF)IA ]S .
8 L L

Hy < C||A3(uv)||Lz||AS+1v||Lz
< C(llullzollA*vll 22 + vl zoo A ull 2 AT 0]l

IA

1
guA”‘vniz + C(lullg + [0IZ) (A U], + A V] 5)

IA

1
guA”lvniz + C(lull?) i + IWIT)UA U, + ATV (5.13)

and

£
A

_C/ [AS, u - Vu - A’u|dx
RZ
<ClAull s A" u-Viul| 4
LTHa L3—a
< ClIAul LII[AS,ui]aiull 4
L T+
<cintull o (IVal 2 1A 0l o+ 10l 2 AUl )
LT+« T+a LT« LT+«
<ClIAull s Vull 2 [A%ull
L T+a LT1-«a

~x~

i
T+a
3a—1 —a

C”V””H“”Asu” ) IIA”"‘MIIL

IA

I/\

2
IIAS+“MIIL2 + CIIWII“‘ HIATul,

A

1 )
< SIAT Ul 4+ € (14 1Vulh ) 14w,

where the condition o > % has been used in the last line. Inserting the preceding
estimates in (5.12) yields

d
3 AU + 1A DO + IAOONT) + 1A ullgs + 1A I + 147611
< CDO(IA ull?, + 1A V][, + [A%0]7,), (5.14)
where

D(t) = 1+ V(D)0 + IVu(®)l3a + VO3 .
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By (3.1), (5.1), (5.5) and (5.11), we have

T
/ D(t)dr < oo.
0

Gronwall’s inequality then implies

t
IASu@ 7, + A VO, + I1A0@)]3, + / AT U@, + 1A v(@)12,
0

+ A 0(0)]72) de < oo,

which is the desired global bound in Theorem 1.1. This proves Theorem 1.1 for the

-1 1
subcase y = 1 — «, 7 <a<l O

5.2 TheSubcase:a =1,y =0

Lemma 5.4 Assume (ug, vo, Op) satisfies the conditions stated in Theorem 1.1. Assume
o = 1 and y = 0. Then, the corresponding smooth solution (u, v, 0) of (1.1) obeys
the global bound, for any t > 0,

o172 + 1Oz + THOIT2 + 1Y@ 72 + lv@ 17 + 10017

t
+ /0 (IVo @72 + IVi(l72 + IVH@)72) dT < Co(h), (5.15)

where Cy depends only on t and the initial data.

Proof of Lemma 5.4 1t follows from (4.3) that

1d ) . 2 2 2 2112 2
§d_t(”w(t)”L2 + D2+ THD I 2) + Vol 2 + IVl + IVHI 2
=—/ ((U-V)jw+2hjw+(u-V)wj+hwj)dx—/ O(Vu, Vo)H dx
R2 R2

+/ (H+9)de+/ (W102h — V201w dx
R2 R2

=N+ L+ 3+ s (5.16)

The terms Jq, J3 can be easily estimated as before

Ji < €lVjlZ, + el VHIZ, + Ce(IVull, + 1612) o), (5.17)
+ Ce (IVVl72 + 10171017 (5.18)
J3 < CllH|7. + Cl0]7.. (5.19)
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The Gagliardo—Nirenberg inequality implies
p=C [ 1vul vl ] ax
R2

< c/z Vul (RiH| + [R16] + [Rajl) | H| dx
R
< CIVull 2(N1H N 1o + 1HIZ0) + CIVal o |01 2 1 H | o
< Clol 2 HIIVHI 2 + 1121V 2)
1 1 1 1
+ Clloll % IVol L 100 LI H I IVH,

<elVjll3, +€llVHIT, + €llVol7, + CelllolF > + 1017 )N H 72 + 17117 2)-
(5.20)

We further split J4 into two terms,
J4 =/ hja)dx—f hv - VYiody = Ju + Jao.
R2 R2

J41 admits the same bound as Ji, while J4p can be bounded by
Jap < |vllLee|lhll 2| Voll L2

< Il (1 2 + 1601 .2) Vel 12
< €|Voll7, + Cellvll = (1H 172 + 101172).

Putting the estimates of J; — J4 into (5.16) and taking € small enough, we have

d . .
5<||w<r)niz O + IH®O3) + Vol + 1Vl + IVH,

2
< CU+Vullgs + 1012, + ol + iz (ol + 1ll72 + IHI7).
(5.21)

We still need to bound ||v]|z . As we shall see later in the proof, we need a bound
for ||v]|Lr with2 < p < oo, which depends on ||@]|.r. As a consequence, we need to
include the estimate of ||0(7) || L». Using (3.8) and (3.10), we have, forany 2 < p < oo,

d
EIIG(t)IIip < ClIVvliLrl1€1lzr

< C||Vvl3, + Cl013,
<CUHIZ, + 112, +16117,)

4 2p—4 4 2p—4

CUHINVHI,L + 11 5L0VilE +1017,)

IA

1 S22 1 2 S22 2 2
2 2 2 2 Lr)- .
= SIVllze + SIVHIL + CAGE + 1172 +1011L,). - (5-22)
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Summing up (5.21) and (5.22) leads to

d .
3 (o O 15+ 17 O 1L+ IH @ 172 +10 @ 170) + IVolg2 + 1V l7 + IVHI

2
<C (1 +IVolZ, + 1015 + llell7 + ||vnim> (loll32 + 17172 + 1HI72 + 101Z,) -

Writing
X1(t) = lo®7, + 1O, + IHOI7, + 100117,
Yi(6) = [VoOll7 + Vil + IVH®)7..
2
G1(t) == Vo) 7. + 10O + o @),
we have

d
3 X1+ 110 = CGIOXi(1) + Cllvll X1 (1).

Invoking the following logarithmic Sobolev embedding inequality (Kozono et al.
2002), for p > 2,

1/ ey = C(1+ 1 2y + 110, @/ + IV fllLo@)),  (5:23)

we have

d
F X0+ N0 =CGOX0) + A+ ()15 JInte+ [Vo@liLr) Xy ().

Furthermore,
IVo@)lLr < CAHLr + 1llLe + 1011Lr) (5.24)
2 p=2 2 p=2
<cC (||H||;2||VH||L‘; +1I2IV0,E + ||9||Lp) (5.25)
< Cle+ X1+ Y1(t)? (5.26)
and
2 2= it
OG0 | < Clv®I IVVOI L, (5.27)
P
< CIVoO|Z," < Cle+ X1() + Y1), (5.28)

Lemma 2.2 then implies, any 2 < p < o0,

t
Xl(r>+/ Yi(s)ds < C,
0

which is (5.15). This completes the proof of Lemma 5.4. O
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The following lemma provides a bound for ||6]| 4.

Lemma 5.5 Assume (ug, vo, 6o) satisfies the conditions stated in Theorem 1.1. Assume
o = 1 and y = 0. Then, the corresponding smooth solution (u, v, 0) of (1.1) obeys
the global bound, for any t > 0,

16() | L
sup ————
q=2 q

< Co(1), (5.29)

where Cy(t) depends only on t and the initial data.

Proof of Lemma 5.5 Multiplying the equation of 6,
00+ w-V)0+6=-H

by 6101972 yields
1d -1
gaH@(t)ll’iq + 1601174 < IH e ll01], -
Especially,

%HG(I)HL‘I =IHl L.
Recall the fact that
IH e < C/qllH | g1
with a constant C independent of g. We thus have
d
EIIG(I)IIM < CJqlHllg

Integrating in time and using bound (5.15), we obtain (5.29) immediately. O
Proof of Theorem 1.1 for « = 1 and y = 0. We prove the global H*-estimate. To do

so, we first recall the following logarithmic Sobolev interpolation inequalities

Il fllLa
1 fllLe < C+C(sup—),/In(e+|fllmgs), Vo>1, (530)
(sup =)y n )

[VullL < C + C|Vol 2y/In(e + [ullgs),  V¥s > 2. (5.31)

We apply A® with s > 2 to (1.1) and take the L? inner product with (A%u, A*v, A°6)
to obtain
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1d ) ) ) ) .
Ea(nAbu(t)niz AV + 1A ODN7) + A ), + 1A )7,
z_/ (Afv.(u@)v)-Asu+AS(v-vu)-ASv)dx—f A(u-VO) - A*0 dx
R2 R2

—/ As(u‘Vv)~Asvdx—/ A (u-Vu) - Audx
R2 R2

= H| + H, + H; + Hy.

The terms H; through Hy can be bounded as follows.

H,;

A

1 ) ' )
gnAA“vniz + ClvllZe A ul|T2 4+ ClIVulZo (072 + 1A 7)),
H,

IA

CIIA* V-, ulf|l 21 A°0] 12
CIVull ol A% 2 + 101 Loe | A ull 2) [ A°6]] 2

A

IA

1
gnAS“uniz + C(IVulle + 1017 1A°017,.

Hj

IA

CIIAS @)l 2 1A o]l 2
Cllull= 1A vl 2 + [vllzoe A w2 I AT ][,

IA

IA

1
gnAS“vniz + C(llull oo + I0NT) (A u]Z 5 + [ A*V]35)

and

H4§C/ (A, u-Vu- Au|dx
RZ

< CIA* u- Vil 2| A% ull 2

< CIIA*, uildull 2| A ull 2

< CUIVuillLoe | A Bull 2 + 18wl oo | A ull 2) | AP ul| 2
< C||VullL=llA*ul?,.

Collecting all the estimates above implies that
Z@t) = A u@® |7, + AV, + A0 D)7
satisfies the inequality
d
2O 1Al g, + 1Al

< CUL+ I Vuleo + 1017 Z (1)

0124 \2
In (e + Z() Z(1).
- ) ) n(e+Z(@) Z(1)

<c (1 + Vol + ( sup
q=2
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Gronwall’s inequality ensures that

IASu@ 12, + ATV, + A0 D)3

t
+ /0 UAF u@)7, + 1A v(0)[17,) dr < oo,

This completes the proof of (1.1) for the case« = 1 and y = 0. O
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Appendix A: Local Well-Posedness Theory on (1.1)

For the sake of completeness, this Appendix presents the local existence and unique-
ness result for (1.1) with initial data (u, vo, 69) € H*(R?) withs > 2. More precisely,
in this Appendix, we prove the following local well-posedness result.

Proposition A.1 Let (ug, vo, 0g) € HS(R?) withs > 2 and V - ug = 0. Then, there
exists a positive time T depending on ||uoll gs, ||vollgs and |00l gs such that (1.1)
admits a unique solution (u, v, 0) € C([0, T]; H® (R2).

We remark that we only consider the case s > 2. Actually, s > 2 can be weakened
tos > f(a, y) with the function f(«, y) < 2. However, to make the idea clear, we
assume this condition throughout this Appendix. The proof of Proposition A.1 can be
performed by the method similar to Chapter 3 in Majda and Bertozzi (2002). To prove
Proposition A.1, the main step is to approximate (1.1) in order to easily produce a
family of global smooth solutions. In order to do this, we may, for instance, make use
of the Friedrichs method. Now we define the spectral cutoff as follows

TInFE) = xpo.m E) FE),

where N > 0, B(0O,N) = {¢ € R?||] < N} and XB(0,N) 18 the characteristic
function on B(0, N). Also we define

L% 2 (f € L>(R?)| supp f C B(0, N)}.

Proof of Proposition A.1 The first step is to consider the following approximate system
of (1.1),
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o +PIN(Inu® - V) TIyu™) + vA2 Tyu + PINY - (T @ Inv) =0,
3N + In(Ivu” - V)TInoN — pa TN + VINON + Tn (I - V)T =0,
30" + In(Inu™ - V)TnOY + A% Tno" + V- Iy =0, (A.D)
v-ul =0,
N (x, 0) = Tyuo(x), vV (x,0) = Tyvo(x), 6 (x,0) = Tnbo(x),
where P denotes the standard projection onto divergence-free vector fields. Tak-
ing advantage of the Cauchy—Lipschitz theorem (Picard’s Theorem, see Majda and
Bertozzi 2002), we can find that for any fixed N, there exists a unique local solution
@™, vN,0N) on [0, Ty) in the functional setting L%\, with Ty = T (N, ug, v, 09).
Due to J7 = Jy, P? = P and PJy = JnP, we find that (Tyu®, Tyv", Jyo™)

is also a solution to (A.1) with the same initial datum. Thanks to the uniqueness, we
thus find

Inu =u, gy =0V, gy = oV,
Consequently, approximate system (A.1) reduces to
™ + PIN (" - Vyu) + vA*u + PINV - 0N @ vY) =0,
vV + Iy @ - VN — pav +voN + Iy - v =0,
30N + In @™ - V)oN + AN +v oV =0, (A2)
v-ul =0,
uM (x,0) = Iyuo(x), vV (x,0) = Tnvox), 6" (x,0) = TInbo(x).

A basic energy estimate implies (1, vV, V) of (A.2) satisfies

t
™ O + 10N O + 108 O1% + | A% 12, + 1VeV 12, + 1AY6N |12,)(r) dr
L L L 0 L L L
< lluoll72 + llvoll72 + 16017 -

Therefore, the local solution can be extended into a global one, by the standard Picard
extension theorem (see, e.g., Majda and Bertozzi 2002). Moreover, by direct H*-
estimates, we have

d

< (1Y O + 10" O + 16V Ol ) + 1A G s + 190 1+ 176" 1
< CUIVUN e + VOV oo + 1VON 0o + 10N 1F0) Ul s + 0N 135 + 10V 115
< CUuMlms + 110V s + 16N as + 1oV 150 A 12+ 1oV 1% + 16V 130

< CUu™ s + N 15 + 10V 152 (A3)
where here and in what follows we use the fact that, in 2D case

IVfllLe < Cllfllas, s > 2.
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Notice that in (A.3) we assume that || || s + [[vY | g5 + 10N | g5 > 1, otherwise we
replace [|u™ || gs 4 [0 |5 + 10V 15 by 1+ u™ || s 4 0™ |5 + 10V || s For the
convenience of notation, we denote

X(@) 2 1 O + 10N Ol + 10 Ol
Consequently, (A.3) becomes
Ly < Exar,
dr
where C > 0 is an absolute constant. Standard calculations show that for all N

lluollZss + Ilvollzs + 16017
1= CT (luoll3s + llvollgs + 160117

supT<||uN(r>||%,s + 1IN Ol + 16N O <

0<t<

Therefore, the family @™, vV, 0Ny is uniformly bounded in C ([0, T']; H*) withs > 2,
provided that

1
T < = .
C(lluoll3s + 1bollys + 160113

Thus, it is not hard to see that
dqul, vV, 8,6V e L([0,T]); H7°(R?) forsome o > 2.

Since the embedding L? < H~7 is locally compact, the well-known Aubin—Lions
argument allows us to conclude that, up to extraction, subsequence (uN JoV oN INeN
satisfies

N N’ N N’ N N’
lu™ —u™ |2, Y =Y 2, 0% —0% |2 — 0, as N, N' — oc.

r/

Thanks to the interpolation (|| £l ;v < C||f||;T ||f||§,.V for any s’ < s), we deduce
that

! ! !
lu —u™ gy WY =N e, 10N =0V e — 0, as N, N — oo,

which imply that we have strong convergence limit (u,v,0) € C([0,T]; H sy for
any s’ < s. Therefore, this is enough for us to show that up to extraction, sequence
@™, vV, 0") yen has a limit (u, v, 0) satisfying
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du+P(u-Vyu) +vA®u+PV-(v®v) =0,

v+ (u-V)(v—uAv+Ve+ (v-Viu=0,

30+ (u-V)0 + A0+ V-v=0, (A4)
V.u=0,

u(x,0) =up(x), v(x,0) =uvo(x), 0(x,0) =6y(x).

Moreover, one may show that (u, v, 6) € L*°([0, T]; H® (R2)). Finally, we claim that
(u,v,0) € C([0, T]; H*(R?)); namely, (u, v, ) is strongly continuous in H*(R?) in
time. It suffices to consider u € C([0, T']; H* (R?) as the same fashion can be applied
to v and 6 to obtain the desired result. From the above argument, we first have

sup (llullzs + lvllas +1101H5) < oo.

0<t<T
By the equivalent norm, it yields

lu(t) —u@)lms = | D+ Y | @¥lIAwt) — Au@)ll2)* . (A5)

k<N k>N

where the Fourier localization operator Ay is defined through the Littlewood—Paley
decomposition (see Chapter 2 in Bahouri etal. 2011 for details). Lete > 0be arbitrarily
small. Due to u € L%([0, T]; H*(R?)), there exists an integer M = M (¢) > 0 such
that

1
2 €
[ @A) - w2} < 3. (A6)
k>M
Recalling system (A.4){, we obtain

n

d
Aru(ty) — Aru(ty) :/ EAW(T) dr

4
t

=— / ’ APIV - (v ®v) + (- Vu + vA>u](r) dr.
1

Therefore, we have

> 28 Agu(nr) — A3

k<M
5] 2
= 22“( f APIV - (0 ® ) + (i - Vi + vA2u](1) de 2)
k<M n L
1 2
<> 22’“(/ IAKLY - (0 @ v) + (- VIu + vA®ul||2(1) dr)
k<M gl
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%) 2
< 3025 ( [ UAKT - o uDlia + HIAKG- Vilz + VI 8%l 21(0) d)
k<M h

%) 2
= 24k< / RCT2NAY - @)l 2 + 28TV ALY - (u ®u)||Lz]<r>df)
k<M n

153 2
+024( [ a2 )

k<M n

4k 2 2 2 2 2 2
=C Y 2% (ool el = o+ el i1 = 12 + Nl g1 = 121%)
k<M

4k 2 2 2 2 2 2
< C Y 2% = P (101 o 100 g s + Nl ol s+ vl )
k<M

AM 2 4 4 2
= €211y — ([0l e + Nl s + Vil e ).

Thus, the following holds true

[ 2 @8 amm) - a2} < 2 A7)
k<M

provided |t; — 2| small enough. Combining (A.5), (A.6) with (A.7) implies u €
C([0, T1; H*(R?). The uniqueness can be easily obtained since (u, v, 6) are all in
Lipschitz space. Therefore, the proof of Proposition A.1 is completed. O
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