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Abstract. This paper studies the global well-posedness problem on a tropical
climate model with fractional dissipation. This system allows us to simultane-

ously examine a family of equations characterized by the fractional dissipative

terms (−∆)αu in the equation of the barotropic mode u and (−∆)βv in the
equation of the first baroclinic mode v. We establish the global existence

and regularity of the solutions when the total fractional power is 2, namely

α+ β = 2.

1. Introduction. This paper focuses on the global existence and regularity of so-
lutions to the initial-value problem on a tropical climate model with fractional
dissipation

∂tu+ u · ∇u+ ν(−∆)αu+∇p+∇ · (v ⊗ v) = 0, x ∈ R2, t > 0,

∂tv + u · ∇v + v · ∇u+ η(−∆)βv +∇θ = 0,

∂tθ + u · ∇θ +∇ · v = 0,

∇ · u = 0,

(u, v, θ)(x, 0) = (u0(x), v0(x), θ0(x)),

(1)

where the vector fields u = (u1, u2) and v = (v1, v2) denote the barotropic mode
and the first baroclinic mode of the velocity, respectively, and the scalar p denotes
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the pressure and θ the temperature, and ν ≥ 0, η ≥ 0, 0 ≤ α ≤ 2 and 0 ≤ β ≤ 2
are real parameters.

When ν = η = 0, (1) reduces to the original tropical climate model derived by
Frierson, Majda and Pauluis [5]. When ν > 0, η > 0, α = 1 and β = 1, (1) reduces
to the viscous counterpart of the Frierson-Majda-Pauluis model that was studied
by Li and Titi [10]. We also mention a recent work of Ye [14], which includes the
standard Laplacian dissipation in the equation for θ. In this paper the equation
for θ has no dissipation. (1) with 0 ≤ α ≤ 2 and 0 ≤ β ≤ 2 may be relevant in
modeling tropical atmospheric dynamics. These fractional diffusion operators model
the so-called anomalous diffusion, a much studied topic in physics, probability and
finance (see, e.g., [1, 6, 11]). Especially, (1) allows us to study long-range diffusive
interactions. Our main focus here is on the fundamental mathematical issues such
as the global (in time) existence and regularity problem. Mathematically (1) has
the advantage of allowing us to examine a family of equations simultaneously.

We are able to show that, for α + β = 2 and 1 < β ≤ 3
2 , (1) always possesses a

unique global solution when the initial data (u0, v0, θ0) is sufficiently smooth. More
precisely, we obtain the following theorem.

Theorem 1.1. Let s > 2. Assume the initial data (u0, v0, θ0) satisfies

u0, v0 ∈ Hs(R2), ∇ · u0 = 0, θ0 ∈ Ḣ−1(R2) ∩Hs+1−β(R2).

Consider (1) with α and β satisfying

α+ β = 2, 1 < β ≤ 3

2
.

Then (1) has a unique global solution (u, v, θ) satisfying, for any t > 0,

u, v ∈ C([0, t);Hs(R2)), θ ∈ C([0, t); Ḣ−1(R2) ∩Hs+1−β(R2)).

We remark that the case α + β = 2 and 3
2 < β < 2 is no more difficult than

the case presented here and will be worked out later. In addition, we also examine
a special case of α + β = 2, namely α = 2 and β = 0. We establish the global
existence and uniqueness of the solutions when the initial data is in Hs with s > 2.

Theorem 1.2. Let s > 2. Assume (u0, v0, θ0) ∈ Hs(R2) with ∇ · u0 = 0. Consider
(1) with α = 2 and η = 0. Then (1) has a unique global solution (u, v, θ) satisfying,
for any t > 0

u, v, θ ∈ C(0, t;Hs(R2)).

Our approach for proving Theorem 1.1 is new and different from those in [10]
and [14]. The proof of Theorem 1.1 boils down to proving global a priori bounds.
The global bound for the L2-norm of (u, v, θ) follows directly from (1). The proof of
the global H1-bound is more difficult and is at the core of the proof of Theorem 1.1.
For notational convenience, we set ν = η = 1. Our approach for proving the global
H1-bound is new. We take the structure of (1) into full account and reformulate
(1) in terms of the variables

ω = ∇× u, j = ∇× v, h = ∇ · v, H = h− Λ2−2βθ
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as 

∂tω + u · ∇ω + (−∆)αω + v · ∇j + 2h j + v2∂1h− v1∂2h = 0,

∂tj + u · ∇j + v · ∇ω + ω h+ η(−∆)βj = 0,

∂th+ u · ∇h+ (−∆)βh+ ∆θ = −2∇u : ∇v,
∂tθ + u · ∇θ + h = 0,

∇ · u = 0,

(2)

where Λ = (−∆)
1
2 and the notation A : B for two matrices A = (aij) and B = (bij)

is defined as

A : B =
∑
i,j

aij bij .

The advantage of (2) is that the equations of ω and j do not involve θ. Due to the
lack of dissipation in the equation of θ, it is difficult to deal with the term ∆θ in
the equation for h. This motivates us to consider the following combined quantity

H = h−Rβθ with Rβ = Λ2−2β ,

which satisfies (by combining the equations of h and θ)

∂tH + u · ∇H + (−∆)βH = −2∇u : ∇v + Λ2−2βh+ [Λ2−2β , u · ∇]θ. (3)

We work with (2) and (3) to prove the global bound for (ω, j,H), which reads

‖(ω, j,H)‖2L2 +

∫ t

0

(
‖Λα∇u‖2L2 + ‖Λβ(j,H)‖2L2

)
dτ ≤ C(‖(u0, v0, θ0)‖H1 , t) <∞.

This global bound does not immediately translate into a global bound for∫ t

0

‖Λβ∇v‖2L2 dτ <∞.

As in Lemma 1.3 stated below, the L2-norm of the gradient can be represented in
terms of the L2-norms of the curl and the divergence, namely

‖Λβ∇v‖2L2 = ‖Λβj‖2L2 + ‖Λβh‖2L2 = ‖Λβj‖2L2 + ‖ΛβH + Λ2−βθ‖2L2 ,

but the trouble is that we do not have control of ‖Λ2−βθ‖L2 . Since there is no
dissipation in the equation of θ, we need to control ‖∇u‖L∞ or its equivalent such
as ‖ω‖H1 in order to control any derivative of θ.

This prompts us to prove global bounds for ω in more regular settings. We first
show a global bound for ‖ω‖

L
2
α

, which allows us to further prove the global bound

for ∫ t

0

‖∇ω‖2L2 dτ <∞.

This global bound is enough for us to control the nonlinear terms in the estimate
of the Hs via the logarithmic Sobolev inequality, for s > 2,

‖∇u‖L∞(R2) ≤ C
(
1 + ‖u‖L2(R2) + ‖∇ω‖L2(R2) log(1 + ‖u‖Hs(R2))

)
.

The proof of Theorem 1.2 is achieved through a two-stage process. The first
stage proves a global H1-bound via energy estimates and an improved version of
Gronwall’s inequality while the second stage establishes the global Hs bound by
making use of the global H1 bound.



4 B. DONG, W. WANG, J. WU AND H. ZHANG

Finally we supply a basic fact that relates ∇F to ∇× F and ∇ · F for a vector
field F . As we know, for a divergence-free vector ∇ · F = 0,

‖∇F‖L2 = ‖∇ × F‖L2 .

If F is not divergence-free, ∇ · F 6= 0, in general ‖∇F‖L2 6= ‖∇ × F‖L2 . The
following lemma relates the L2-norms of ∇F , ∇ × F and ∇ · F and provides a
bound for the Lq-norm of ∇F . This lemma will be used repeatedly throughout the
rest of this paper.

Lemma 1.3. For any vector field F ,

‖∇F‖2L2 = ‖∇ × F‖2L2 + ‖∇ · F‖2L2 (4)

and, for 2 < q <∞,

‖∇F‖Lq ≤ C (‖∇ × F‖Lq + ‖∇ · F‖Lq ). (5)

(4) follows from the identity

∇× (∇× F ) = ∇(∇ · F )−∆F, (6)

Plancherel’s theorem and a direct calculation. (5) follows from a variant of (6),

∇F = ∇(−∆)−1∇× (∇× F )−∇(−∆)−1∇(∇ · F ),

the Calderon-Zygmund inequality on singular integral operators.

The rest of this paper is divided into two sections followed by an appendix.
Section 2 provides the proof of Theorem 1.1 while Section 3 proves Theorem 1.2.
The appendix supplies some of the inequalities as well as the definition of Besov
spaces.

2. Proof of Theorem 1.1. This section proves Theorem 1.1. As we know, the
proof of Theorem 1.1 boils down to the global a priori bounds in Hs. The proof
is achieved in several steps, which successively establish the global bounds in more
and more regular functional settings.

2.1. Global H1-bound. The subsection proves the following global H1 bound.

Proposition 1. Assume (u0, v0, θ0) obeys the assumptions stated in Theorem 1.1.
Assume α+β = 2 and 1 < β ≤ 3

2 . Let (u, v, θ) be the corresponding solution. Then

(u, v, θ) obeys the following global H1-bound, for any t > 0,

‖∇u‖2L2 + ‖∇v‖2L2 +

∫ t

0

(
‖Λα∇u‖2L2 + ‖Λβ(j,H)‖2L2

)
dτ

≤ C(‖(u0, v0, θ0)‖H1 , t) <∞,
where C(‖(u0, v0, θ0)‖H1 , t) depends on t and the initial H1-norm ‖(u0, v0, θ0)‖H1 .

In order to prove Proposition 1, we first state the following global L2 bound for
(u0, v0, θ0) and the global Lq-bound for θ.

Lemma 2.1. Assume (u0, v0, θ0) obeys the assumptions stated in Theorem 1.1.
Let (u, v, θ) be the corresponding solution. Then (u, v, θ) obeys the following global
L2-bound, for any t > 0,

‖(u, v, θ)‖2L2 + 2

∫ t

0

(‖Λαu‖2L2 + ‖Λβv‖2L2) dτ = ‖(u0, v0, θ0)‖2L2 . (1)
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In addition, for any q satisfying 2 ≤ q ≤ 2
2−β and for any t > 0,

‖θ(t)‖Lq ≤ ‖θ0‖Lq +
√
t‖Λβv‖L2

tL
2 <∞. (2)

Proof of Lemma 2.1. The global L2-bound in (1) follows from a standard energy
estimate involving integration by parts and the application of ∇·u = 0. The global
bound in (2) follows from the fact that, for q = 2

2−β > 2, by taking the scalar

product of θ|θ|q−1 with the equation for θ in (1.2),

‖θ(t)‖
L

2
2−β

≤ ‖θ0‖
L

2
2−β

+

∫ t

0

‖h‖Lq dτ

≤ ‖θ0‖
L

2
2−β

+

∫ t

0

‖Λβv‖L2 dτ

≤ ‖θ0‖
L

2
2−β

+
√
t‖Λβv‖L2

tL
2 .

The global bound for ‖θ‖Lq with 2 ≤ q ≤ 2
2−β follows from a simple interpolation

inequality.

We now turn to the proof of Proposition 1.

Proof of Proposition 1. Dotting the equation of ω with ω, the equation of j with j
and the equation of H with H, we obtain, after integration by parts,

1

2

d

dt
‖(ω, j,H)‖2L2 + ‖Λαω‖2L2 + ‖Λβj‖2L2 + ‖ΛβH‖2L2 = I1 + I2 + I3 + I4 + I5,

where

I1 = −3

∫
w h j, I2 = −

∫
(v2∂1h− v1∂2h)ω, I3 = −2

∫
∇u : ∇v H,

I4 =

∫
Λ2−2βhH, I5 =

∫
H [Λ2−2β , u · ∇]θ.

We now estimate the terms on the right-hand side. By Hölder’s inequality and
Sobolev embedding inequality

|I1| ≤ 3 ‖j‖L2 ‖ω‖Lp‖h‖Lq
≤ C ‖j‖L2 ‖Λαω‖L2‖Λβ−1h‖L2

≤ C ‖j‖L2 ‖Λαω‖L2‖Λβv‖L2

≤ 1

16
‖Λαω‖2L2 + C ‖Λβv‖2L2‖j‖2L2 ,

where
1

p
+

1

q
=

1

2
,

1

p
=

1

2
− α

2
,

1

q
=

1

2
− β − 1

2
. (3)

To estimate I2, we recall that h = H + Λ2−2βθ and write I2 as

I2 = −
∫

(v2∂1H − v1∂2H)ω −
∫

(v2∂1Λ2−2βθ − v1∂2Λ2−2βθ)ω

:= I21 + I22.

By Hölder’s inequality and Sobolev’s embedding inequality,

|I21| ≤ ‖ω‖L2‖v‖
L

2
β−1
‖∇H‖

L
2

2−β

≤ ‖ω‖L2 ‖v‖Hβ ‖ΛβH‖L2 .
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To bound I22, we shift the derivatives away from θ to obtain

I22 =

∫
θΛ2−2β(∂1(v2ω)− ∂2(v1ω)).

By Hölder’s inequality and Sobolev’s embedding inequality,

|I22| ≤ ‖θ‖
L

2
2−β
‖Λ3−2β(vω)‖

L
2
β

≤ C ‖θ‖
L

2
2−β

(
‖Λ3−2βv‖L2‖ω‖

L
2

1−α
+ ‖Λ3−2βω‖

L
2

2−β
‖v‖

L
1

β−1

)
≤ C ‖θ‖

L
2

2−β
‖v‖Hβ ‖Λαω‖L2

≤ 1

16
‖Λαω‖2L2 + C ‖θ‖2

L
2

2−β
‖v‖2Hβ .

Again, by Hölder’s inequality and Sobolev embedding inequality,

|I3| ≤ 2‖∇u‖Lp‖∇v‖Lq ‖H‖L2

≤ C ‖Λαω‖L2‖Λβ−1∇v‖L2 ‖H‖L2

≤ 1

16
‖Λαω‖2L2 + C ‖Λβv‖2L2‖H‖2L2 ,

where p and q are defined in (3). Thanks to 1 < β ≤ 3
2 , by an interpolation

inequality,

|I4| ≤ ‖Λ3−2βv‖L2 ‖H‖L2

≤ C ‖v‖3(1− 1
β )

L2 ‖Λβv‖
3
β−2

L2 ‖H‖L2 .

Due to ∇ · u = 0,

[Λ2−2β , u · ∇]θ = Λ2−2β∇ · (uθ)− u · ∇Λ2−2βθ.

By Lemma A.1,

|I5| ≤ ‖Λ2−2β∇ · (uθ)− u · ∇Λ2−2βθ‖L2 ‖H‖L2

≤ C ‖H‖L2

(
‖Λ3−2βu‖

L
2

β−1
‖θ‖

L
2

2−β
+ ‖∇u‖

L
1

β−1
‖Λ2−2βθ‖

L
2

3−2β

)
≤ C ‖H‖L2

(
‖Λ5−3βu‖L2‖θ‖

L
2

2−β
+ ‖Λ3−2β∇u‖L2‖θ‖L2

)
≤ C ‖H‖L2(‖ω‖L2 + ‖Λαω‖L2)(‖θ‖L2 + ‖θ‖

L
2

2−β
),

where, due to β > 1, we have 5− 3β ≤ 1 + α and 4− 2β ≤ 1 + α, and

‖Λ5−3βu‖L2 , ‖Λ3−2β∇u‖L2 ≤ C (‖ω‖L2 + ‖Λαω‖L2).

Further, by Young’s inequality and Lemma 2.1,

|I5| ≤
1

16
‖Λαω‖2L2 + C (‖H‖2L2 + ‖ω‖2L2).

Combining all the estimates above, we obtain

d

dt
‖(ω, j,H)‖2L2 + ‖Λαω‖2L2 + ‖Λβj‖2L2 + ‖ΛβH‖2L2

≤ C (1 + ‖v‖2Hβ )(‖ω‖2L2 + ‖j‖2L2 + ‖H‖2L2 + ‖H‖L2) + C ‖θ‖2
L

2
2−β
‖v‖2Hβ .

Gronwall’s inequality then implies the global H1-bound in Proposition 1
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2.2. Global W 1,p bound for v. This subsection proves a global bound for ‖θ‖Lq
with any q ∈ [2,∞] and for ‖∇v‖Lq for any 2 ≤ q <∞.

Proposition 2. Assume (u, v, θ) solves (1). Then, for any t > 0,

‖θ(t)‖Lq ≤ C(t, ‖(u0, v0, θ0)‖H1), 2 ≤ q ≤ ∞,
‖∇v(t)‖Lq ≤ C(t, ‖θ0‖Ḣ−1 , ‖(u0, v0, θ0)‖H1), 2 ≤ q <∞. (4)

Especially,
‖v(t)‖L∞ ≤ C(t, ‖θ0‖Ḣ−1 , ‖(u0, v0, θ0)‖H1).

To prove Proposition 2, we need to consider ‖θ‖Ḣ−1 . It appears reasonable to

consider the Ḣ−1-norm of θ. The equation of θ

∂tθ + u · ∇θ +∇ · v = 0

indicates that ‖θ‖L2 ∼ ‖∇·v‖L2 . Consequently, the counterpart of ‖v‖L2 is ‖θ‖Ḣ−1 .
The following asserts that ‖θ‖Ḣ−1 remains bounded for all time.

Lemma 2.2. Assume θ0 ∈ Ḣ−1 ∩ Ḣ1. Then, for all time t > 0,

‖θ(t)‖Ḣ−1 ≤ C(t, ‖θ0‖Ḣ−1 , ‖(u0, v0, θ0)‖H1).

Proof of Lemma 2.2. We write θ = ∆θ̃. Inserting this in the equation for θ and

dotting the equation by θ̃, we obtain

1

2

d

dt
‖∇θ̃‖2L2 ≤ ‖uθ‖L2‖∇θ̃‖L2 + ‖v‖L2‖∇θ̃‖L2

≤ (‖u‖L∞‖θ‖L2 + ‖v‖L2)‖∇θ̃‖L2

The embedding inequality

‖u‖L∞ ≤ C ‖u‖
1

1+α

L2 ‖Λαω‖
α

1+α

L2

and the global bound in Proposition 1 then implies that

‖θ(t)‖Ḣ−1 = ‖∇θ̃‖L2 ≤ ‖θ0‖Ḣ−1 +

∫ t

0

(‖u‖L∞‖θ‖L2 + ‖v‖L2) dτ <∞.

This completes the proof of Lemma 2.2.

We now prove Proposition 2.

Proof of Proposition 2. First we show that, for any 2 ≤ q ≤ ∞,

‖θ(t)‖Lq ≤ C <∞.
In fact, for any 2 ≤ q̃ < q ≤ ∞ satisfying

2 ≤ q̃ < 2

2− β
,

1

q
=

1

q̃
− 2β − 2

2

we have, from the equation of θ and the Hardy-Littlewood-Sobolev inequality,

‖θ(t)‖Lq ≤ ‖θ0‖Lq +

∫ t

0

‖h‖Lq dτ

≤ ‖θ0‖Lq +

∫ t

0

‖H + Λ2−2βθ‖Lq dτ

≤ ‖θ0‖Lq +

∫ t

0

‖H‖Lq dτ +

∫ t

0

‖θ‖Lq̃ dτ. (5)
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Because of the embedding inequality

‖H‖Lq ≤ C ‖H‖
1− q−2

βq

L2 ‖ΛβH‖
q−2
βq

L2 ,

the global bounds in Proposition 1 and Lemma 2.1, we use (5) to control ‖θ(t)‖Lq
by ‖θ‖Lq̃ and an iterative process leads to a global bound on ‖θ(t)‖Lq for all q.

We now establish a global bound on ‖∇v‖Lq . We rewrite the equation for v in
the integral form

v = g ∗ v0 −
∫ t

0

g(t− τ) ∗ (u · ∇v + v · ∇u+∇θ)(τ) dτ,

where g is the kernel function associated with the operator e−t (−∆)β , or

ĝ(ξ, t) = e−t |ξ|
2β

.

By Young’s inequality, for q1, q2 ∈ [1,∞] and 1 + 1
q = 1

q1
+ 1

q2
,

‖∇v‖Lq ≤ ‖g ∗ ∇v0‖Lq +

∫ t

0

‖∇∇g(t− τ)‖Lq1 ‖(uv + θ)(τ)‖Lq2 dτ.

Noticing that

g(x, t) = t−
1
β g

(
x

t
1
2β

, 1

)
=: t−

1
β g0

(
x

t
1
2β

)
,

we have

‖∇∇g(t)‖Lq1 ≤ C t−
2
β+ 1

q1β ‖g0‖Lq1 .

In addition,

‖uv + θ‖Lq2 ≤ ‖u‖L2q2 ‖v‖L2q2 + ‖θ‖Lq2 ≤ C ‖ω‖L2‖∇v‖L2 + ‖θ‖Lq2

and, due to β ≤ 3
2 , by an interpolation inequality and Lemma 2.2

‖∇v‖L2 ≤ C (‖j‖L2 + ‖h‖L2)

= C (‖j‖L2 + ‖H‖L2 + ‖Λ2−2βθ‖L2)

≤ C (‖j‖L2 + ‖H‖L2 + ‖θ‖Ḣ−1 + ‖θ‖L2) <∞.

By Proposition 1, for any t > 0,

‖uv + θ‖Lq2 <∞.

Therefore, if 1 < q1 <
1

2−β , then

−1 < − 2

β
+

1

q1β
< 0

and thus

‖∇v‖Lq ≤ ‖g‖L1‖∇v0‖Lq + C

∫ t

0

(t− τ)−
2
β+ 1

q1β dτ

≤ ‖∇v0‖Lq + C <∞.

This completes the proof of Proposition 2.
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2.3. Global bound for ‖ω‖
L

2
α

and ‖∇ω‖L2
tL

2 . This subsection proves a global

bound for ‖∇ω‖L2
tL

2 , an important step in proving the global Hs bound for the

solution. To do so, we need a global bound for ‖ω‖
L

2
α

.

Proposition 3. Assume (u0, v0, θ0) obeys the assumptions stated in Theorem 1.1
with α + β = 2 and 1 < β ≤ 3

2 . Let (u, v, θ) be the corresponding solution. Then
ω = ∇× u satisfies, for any t > 0,

‖ω(t)‖
L

2
α
≤ C(t, u0, v0, θ0),

∫ t

0

‖∇ω(τ)‖2L2 dτ ≤ C(t, u0, v0, θ0). (6)

Proof of Proposition 3. For notational convenience, we write q = 2
α . Recalling the

equation of ω,

∂tω + u · ∇ω + (−∆)αω +∇×∇ · (v ⊗ v) = 0, (7)

we obtain

1

q

d

dt
‖ω‖qLq +

∫
|ω|q−2ω (−∆)αω dx = −

∫
R2

∇×∇ · (v ⊗ v)|ω|q−2ω dx. (8)

The dissipative part admits the lower bound,∫
|ω|q−2ω (−∆)αω dx ≥ C0 ‖ω‖q

L
q

1−α
. (9)

We write v in terms of j and h. According to (6),

v = (−∆)−1∇× (∇× v)− (−∆)−1∇(∇ · v)

= (−∆)−1∇× j − (−∆)−1∇h
= (−∆)−1∇× j − (−∆)−1∇H − (−∆)−1∇Λ2−2βθ. (10)

Inserting this representation in (8) and applying Hölder’s inequality yield∣∣∣∣∫
R2

∇×∇ · (v ⊗ v)|ω|q−2ω dx

∣∣∣∣
≤ C ‖v‖L∞ (‖∇ × j‖Lq + ‖∇H‖Lq ) ‖ω‖q−1

Lq

+C ‖v‖L∞ ‖θ‖Lq1 ‖Λ3−2β(|ω|q−2ω)‖Lq2
≤ C ‖v‖L∞

(
‖Λβj‖L2 + ‖ΛβH‖L2

)
‖ω‖q−1

Lq

+C ‖v‖L∞ ‖θ‖Lq1 ‖Λ3−2β(|ω|q−2ω)‖
L

1
α
2

+2(1−α)2

+C ‖ω‖q−1
Lq ‖∇v‖

2
Lq2 ,

where 1
q1

+ α
2 + 2(1 − α)2 = 1 and q2 = 2q. Due to 3 − 2β < α, we can choose σ

satisfying

3− 2β < σ < α.

By Lemma A.5,

‖Λ3−2β(|ω|q−2ω)‖
L

1
α
2

+2(1−α)2
≤ C ‖ω‖Bσ 1

α
2

+(1−α)2
, 1
α
2

+2(1−α)2

‖ω‖q−2

L
q−2

(1−α)2

≤ C ‖ω‖Bα2,2 ‖ω‖
q−2

L
q

1−α

= C ‖ω‖Hα ‖ω‖q−2

L
q

1−α
,
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where we have used a Besov embedding inequality and a simple identity

‖ω‖Bσ 1
α
2

+(1−α)2
, 1
α
2

+2(1−α)2

≤ C ‖ω‖Bα2,2 ,
q − 2

(1− α)2
=

q

1− α
for q =

2

α
.

Therefore,

−
∫
R2

∇×∇ · (v ⊗ v)|ω|q−2ω dx

≤ C0

16
‖ω‖q

L
q

1−α
+ C ‖v‖L∞

(
‖Λβj‖L2 + ‖ΛβH‖L2

)
‖ω‖q−1

Lq

+C ‖ω‖q−1
Lq ‖∇v‖

2
Lq2 + C ‖v‖

1
α

L∞ ‖θ‖
1
α

Lq1 ‖ω‖
1
α

Hα . (11)

Inserting (9) and (11) in (8), we obtain, due to α ≥ 1
2 because α+β = 2 and β ≤ 3

2 ,

‖ω‖
L

2
α
≤ C(t, u0, v0, θ0) <∞.

Let γ = α+ 2β − 3. Due to α+ β = 2 and β > 1, we have

γ > 0, γ + α = 1.

Applying Λγ to (7) and then dotting with Λγω, we find

1

2

d

dt
‖Λγω‖2L2 + ‖Λα+γω‖2L2 = J1 + J2, (12)

where

J̃1 = −
∫

Λγ(u · ∇ω) Λγω dx,

J̃2 = −
∫

ΛγωΛγ∇×∇ · (v ⊗ v) dx.

To bound J̃1, we write it as, due to ∇ · u = 0,

J̃1 = −
∫

(Λγ(u · ∇ω)− u · ∇Λγω) Λγω dx.

By Lemma A.1,

|J̃1| ≤ C ‖Λγω‖L2

(
‖Λγ∇u‖

L
2

1−α
‖ω‖

L
2
α

+ ‖∇u‖
L

2
α
‖Λγω‖

L
2

1−α

)
≤ C ‖Λγω‖L2 ‖ω‖

L
2
α
‖Λα+γω‖L2

≤ 1

16
‖Λα+γω‖2L2 + C ‖ω‖2

L
2
α
‖Λγω‖2L2 .

To bound J̃2, we invoke (10) and apply Hölder’s inequality

|J̃2| ≤ C ‖v‖L∞ ‖(j,H)‖H1 ‖Λα+γω‖L2 + C ‖v‖L∞ ‖θ‖L2 ‖Λ3−2βΛ2γω‖L2

≤ 1

16
‖Λα+γω‖2L2 + C ‖v‖2L∞ ‖(j,H)‖2H1 + C ‖v‖2L∞ ‖θ‖2L2 ,

where we have written 3− 2β + γ = α. Inserting the bounds for J̃1 and J̃2 in (12)
and invoking the global bound for ‖ω‖

L
2
α

, we obtain

‖Λγω(t)‖2L2 +

∫ t

0

‖Λα+γω(τ)‖2L2 dτ ≤ C(t, u0, v0, θ0) <∞.

Noticing α+ γ = 1 finishes the proof of (6) and the proof of Proposition 3.



CLIMATE MODEL 11

2.4. Global Hs bound. This subsection establishes the global Hs bound for the
solution. More precisely, we prove the following proposition.

Proposition 4. Assume (u0, v0, θ0) obeys the assumptions stated in Theorem 1.1.
Let (u, v, θ) be the corresponding solution. Then (u, v, θ) obeys, for any t > 0,

‖u‖2Hs + ‖v‖2Hs + ‖θ‖2Hs+1−β +

∫ t

0

(
‖Λαu‖2Hs + ‖Λβv‖2Hs

)
dτ

≤ C(u0, v0, θ0, t),

where C(u0, v0, θ0, t) depends on t and the initial data.

Proof of Proposition 4. Let J = (I−∆)
1
2 denote the inhomogeneous differentiation

operator. Taking the inner product of (1) with (J2su, J2sv, J2s+2−2βθ), we have

1

2

d

dt

(
‖u‖2Hs + ‖v‖2Hs + ‖θ‖2Hs+1−β

)
+ ‖Λαu‖2Hs + ‖Λβv‖2Hs

≤ −
∫
Js(u · ∇u) · Jsu dx−

∫
Js∇ · (v ⊗ v) · Jsu dx−

∫
Js(v · ∇u) · Jsv dx

−
∫
Js(u · ∇v) · Jsv dx−

∫
Js∇θ · Jsv dx

−
∫
Js+1−β(u · ∇θ) Js+1−βθ dx−

∫
Js+1−βhJs+1−βθ dx

=: J1 + J2 + J3 + J4 + J5 + J6 + J7. (13)

To bound J1, we apply ∇ · u = 0 to write it as

J1 = −
∫

(Js(u · ∇u)− u · ∇Jsu) · Jsu dx.

By Lemma A.1 and Sobolev’s inequality,

|J1| ≤ C ‖Jsu‖L2 ‖Jsu‖
L

2
1−α
‖∇u‖

L
2
α
≤ C ‖Jsu‖L2 ‖Λαu‖Hs ‖ω‖

L
2
α

≤ 1

64
‖Λαu‖2Hs + C ‖ω‖2

L
2
α
‖u‖2Hs .

We estimate J2 and J3 together. Since ∇ · (v ⊗ v) = v(∇ · v) + v · ∇v,

J2 + J3 = −
∫
Js(v · ∇v) · Jsu dx−

∫
Js(v · ∇u) · Jsv dx

−
∫
Js(v∇ · v) · Jsu dx

= −
∫

(Js(v · ∇v)− v · ∇Jsv) · Jsu dx

−
∫

(Js(v · ∇u)− v · ∇Jsu) · Jsv dx

−
∫

(∇ · v) Jsu · Jsv dx−
∫
Js(v∇ · v) · Jsu dx.
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By Lemma A.1, Sobolev’s inequality and α+ β = 2,

|J2 + J3| ≤ C ‖Jsu‖
L

2
1−α
‖∇v‖

L
2
α
‖Jsv‖L2

+C ‖Jsv‖L2

(
‖Jsv‖

L
2

1−α
‖∇u‖

L
2
α

+ ‖∇v‖
L

2
α
‖Jsu‖

L
2

1−α

)
+ ‖Jsv‖L2 ‖∇ · v‖

L
2
α
‖Jsu‖

L
2

1−α
+ ‖v‖L∞ ‖Jsu‖L2 ‖∇Jsv‖L2

≤ C
(
‖Λβv‖L2 + ‖ω‖

L
2
α

)
‖Λαu‖Hs ‖v‖Hs

+C ‖v‖L∞ ‖u‖Hs ‖Λβv‖Hs

≤ 1

64

(
‖Λαu‖2Hs + ‖Λβv‖2Hs

)
+ C

(
‖Λβv‖2L2 + ‖ω‖2

L
2
α

)
‖v‖2Hs

+C ‖v‖2L∞ ‖Jsu‖2L2 .

J4 can be estimated similarly,

|J4| ≤
1

64

(
‖Λαu‖2Hs + ‖Λβv‖2Hs

)
+ C

(
‖Λβv‖2L2 + ‖ω‖2

L
2
α

)
‖(u, v)‖2Hs .

By Hölder’s inequality,

|J5| ≤ ‖Js+1−βθ‖L2‖Λβv‖Hs ≤
1

64
‖Λβv‖2Hs + C ‖Js+1−βθ‖2L2 ,

|J7| ≤ ‖Js+1−βh‖L2 ‖Js+1−βθ‖L2 ≤ 1

64
‖Λβv‖2Hs + C ‖Js+1−βθ‖2L2 .

To estimate J6, we write, due to ∇ · u = 0,

J6 = −
∫ (

Js+1−β(u · ∇θ)− u · ∇Js+1−βθ
)
Js+1−βθ dx.

By Lemma A.1,

|J6| ≤ ‖Js+1−βθ‖L2

(
‖θ‖L∞ ‖Js+2−βu‖L2 + ‖∇u‖L∞ ‖Js+1−βθ‖L2

)
.

We invoke the logarithmic Sobolev inequality,

‖∇u‖L∞ ≤ C (1 + ‖u‖L2 + ‖∇u‖Ḣ1 log(1 + ‖u‖Hs))
≤ C (1 + ‖u‖L2 + ‖∇ω‖L2 log(1 + ‖u‖Hs)).

Due to α+ β = 2,

|J6| ≤
1

64
‖Λβu‖2Hs + C ‖θ‖2L∞‖θ‖2Hs+1−β

+C (1 + ‖u‖L2 + ‖∇ω‖L2 log(1 + ‖u‖Hs))‖θ‖2Hs+1−β .

Inserting the bounds in (13), applying Osgood’s inequality and taking into account
of the bounds in Propositions 2 and 3, we obtain the desired global bound in Propo-
sition 4.

3. Proof of Theorem 1.2. This section proves Theorem 1.2. Again the proof
boils down to establishing the global a priori bounds. First we prove the global H1

bound.
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Proposition 5. Assume (u0, v0, θ0) obeys the assumptions stated in Theorem 1.2.
Consider (1) with α = 2 and η = 0. Let (u, v, θ) be the corresponding solution.
Then, for any t > 0,

‖(u, v, θ)‖2L2 + 2

∫ t

0

‖∆u‖2L2 dτ ≤ ‖(u0, v0, θ0)‖2L2 , (1)

‖(∇u,∇v,∇θ)‖2L2 +

∫ t

0

‖∇∆u‖2L2 dτ ≤ C(t, ‖(u0, v0, θ0)‖2H1), (2)

where C depends on t and ‖(u0, v0, θ0)‖2H1 .

Proof. Taking the L2 inner product of equations (1) with (u, v, θ) and integrating
by parts, we have

1

2

d

dt

(
‖u‖2L2 + ‖v‖2L2 + ‖θ‖2L2

)
+ ‖∆u‖2L2

=

∫
R2

(−u · ∇u) · u dx+

∫
R2

(−u · ∇v) · v dx+

∫
R2

(−u · ∇θ) θ dx

−
∫
R2

[(v · ∇u) · v dx+∇ · (v ⊗ v) · u] dx+

∫
R2

(∇θ · v +∇ · vθ) dx

= 0.

Integrating in time yields the assertion (1). To prove (2), we take the inner product
of (1) with (∆u,∆v,∆θ) and integrate by parts to obtain

1

2

d

dt

(
‖∇u‖2L2 + ‖∇v‖2L2 + ‖∇θ‖2L2

)
+ ‖∇∆u‖2L2 (3)

≤
∫
R2

(u · ∇u)∆udx+

∫
R2

∇ · (v ⊗ v)∆udx+

∫
R2

(u · ∇v)∆vdx

+

∫
R2

(v · ∇u)∆vdx+

∫
R2

(u · ∇θ) ∆θdx+

∫
R2

(∇θ∆v +∇ · v∆θ)dx

≤
∫
R2

(|∇u||∇u||∇u|+ |∇u||∇v||∇v|+ |∇u||∇θ||∇θ|) dx+ 2

∫
R2

|v||∇v||∆u|dx

≤ C‖∇u‖L∞
(
‖∇u‖2L2 + ‖∇v‖2L2 + ‖∇θ‖2L2

)
+ C‖v‖L4‖∇v‖L2‖∆u‖L4

≤ C‖∇u‖L∞
(
‖∇u‖2L2 + ‖∇v‖2L2 + ‖∇θ‖2L2

)
+C‖v‖

1
2

L2‖∇v‖
3
2

L2‖∆u‖
1
2

L2‖∇∆u‖
1
2

L2

≤ C‖∇u‖L∞‖(∇u,∇v,∇θ)‖2L2 + C‖v‖
2
3

L2(1 + ‖∆u‖2L2)‖∇v‖2L2 +
1

2
‖∇∆u‖2L2 .

Invoking the logarithmic Sobolev inequality,

‖∇u‖L∞ ≤ C(1 + ‖u‖L2 + ‖∆u‖L2 log(e+ ‖u‖H3)),

(3) can be rewritten as

d

dt
‖(∇u,∇v,∇θ)‖2L2 + ‖∇∆u‖2L2

≤ C(1 + ‖u‖L2 + ‖∆u‖L2 log(e+ ‖u‖H3))‖(∇u,∇v,∇θ)‖2L2

+C‖v‖
2
3

L2(1 + ‖∆u‖2L2)‖(∇u,∇v,∇θ)‖2L2 .

Lemma A.2 then implies

‖(∇u,∇v,∇θ)‖2L2 +

∫ t

0

‖∇∆u‖2L2ds ≤ C(t, ‖(u0, v0, θ0)‖2H1).
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This completes the proof of Proposition 5.

Proposition 6. Assume (u0, v0, θ0) obeys the assumptions stated in Theorem 1.2.
Consider (1) with α = 2 and η = 0. Let (u, v, θ) be the corresponding solution.
Then, for any t > 0,

‖(u, v, θ)‖2Hs +

∫ t

0

‖∆u‖2Hsdτ ≤ C(‖(u0, v0, θ0)‖Hs , t) <∞, (4)

Proof. Taking the inner product of (1) with (J2su, J2sv, J2sθ) and integrating by
parts, we have

1

2

d

dt

(
‖u‖2Hs + ‖v‖2Hs + ‖θ‖2Hs

)
+ ‖∆u‖2Hs

≤ −
∫
R2

(u · ∇u)J2sudx+

∫
R2

(−u · ∇v)J2svdx+

∫
R2

(−u · ∇θ) J2sθdx

−
∫
R2

∇ · (v ⊗ v)J2sudx−
∫
R2

(v · ∇u)Jsvdx

=: L1 + L2 + L3 + L4 + L5. (5)

As in the proof of Proposition 4, by Lemma A.1, we have

L1 + L2 + L3 = −
∫
R2

([Js∇, u]uJsu+ [Js∇, u]vJsv + [Js∇, u]θJsθ) dx

≤ C‖∇u‖L∞‖(u, v, θ)‖2Hs + ‖JsΛu‖L4‖(u, v, θ)‖L4‖(u, v, θ)‖Hs
≤ C‖∇u‖L∞‖(u, v, θ)‖2Hs

+ (‖u‖L2 + ‖∆u‖Hs)‖(u, v, θ)‖H1‖(u, v, θ)‖Hs

≤ C(1 + ‖∇∆u‖L2)‖(u, v, θ)‖2Hs +
1

4
‖∆u‖2Hs + C.

L4 and L5 can be bounded by

L4 = −
∫
R2

Js∇ · (v ⊗ v)Jsudx

=

∫
R2

Js−1(v ⊗ v)Js+1∇udx

≤ C‖Js−1v‖L4‖v‖L4‖Js+1∇v‖L2

≤ C‖v‖2Hs‖∇v‖L2‖v‖L2 +
1

8
‖∆u‖Hs ≤ C‖u‖2Hs +

1

8
‖∆u‖Hs

and

L5 = −
∫
R2

Js(v · ∇u)Jsvdx

≤ C
(
‖Jsv‖L2‖∇u‖L∞ + ‖v‖L4‖J s

2∇u‖L4

)
‖v‖Hs

≤ C‖∇u‖L∞‖v‖2Hs + ‖∇v‖L2‖v‖L2‖v‖2Hs +
1

8
‖∆u‖Hs

≤ C (‖∇∆u‖L2 + 1) ‖v‖2Hs +
1

2
‖∆u‖2Hs .

Inserting the estimates above in the right hand side of (5) and applying Gronwall’s
inequality, we have

‖(u, v, θ)‖2Hs +

∫ t

0

‖∆u‖2Hsdτ ≤ C(‖(u0, v0, θ0)‖Hs , t) <∞,
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This completes the proof of 6.

Appendix A. Inequalities and Besov spaces. This appendix supplies several
inequalities and some facts on the Besov spaces used in the previous sections. First
we recall two calculus inequalities involving fractional derivatives. Second we pro-
vide an improved Gronwall type inequality. Third we describe the definition of the
Littlewood-Paley decomposition and the definition of Besov spaces. Some related
facts used in the previous sections are also included. The material presented in this
appendix can be found in several books and many papers (see, e.g., [2, 3, 12, 13]).

Let J = (I −∆)
1
2 denote the inhomogeneous differentiation operator. We recall

following calculus inequalities (see, e.g., [7, p.334]).

Lemma A.1. Let s > 0. Let p, p1, p3 ∈ (1,∞) and p2, p4 ∈ [1,∞] satisfying

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

Then, for two constants C1 and C2,

‖Js(f g)‖Lp ≤ C1 (‖Jsf‖Lp1 ‖g‖Lp2 + ‖Jsg‖Lp3 ‖f‖Lp4 ) ,

‖Js(f g)− f Jsg‖Lp ≤ C2

(
‖Jsf‖Lp1 ‖g‖Lp2 + ‖Js−1g‖Lp3 ‖∇f‖Lp4

)
.

These estimates still hold if we replace Js by the homogeneous operator Λs.

The second lemma is an improved Gronwall type inequality (see, e.g., [9]).

Lemma A.2. Assume that Y,Z,A and B are non-negative functions satisfying

d

dt
Y (t) + Z(t) ≤ A(t)Y (t) +B(t)Y (t) ln(1 + Z(t)), (1)

Let T > 0. Assume A ∈ L1(0, T ) and B ∈ L2(0, T ). Then, for any t ∈ [0, T ],

Y (t) ≤ (1 + Y (0))e
∫ t
0 B(τ) dτ

e
∫ t
0 e

∫ t
s B(τ) dτ (A(s)+B2(s)) ds (2)

and ∫ t

0

Z(τ) dτ ≤ Y (t)

∫ t

0

A(τ) dτ + Y 2(t)

∫ t

0

B2(τ) dτ <∞. (3)

Proof. Setting

Y1(t) = ln(1 + Y (t)), Z1(t) = Z(t)/(1 + Y (t)),

we have
d

dt
Y1(t) + Z1(t) ≤A(t) +B(t) ln(1 + Z(t))

≤A(t) +B(t) ln(1 + (1 + Y (t))Z1(t))

≤A(t) +B(t) ln(1 + Y (t))(1 + Z1(t))

≤A(t) +B(t)Y1(t) +B(t) ln(1 + Z1(t)).

Using the simple fact that, for f ≥ 0,

ln(1 + f(t)) ≤ f
1
2 (t), (4)

we obtain
d

dt
Y1(t) + Z1(t) ≤ A(t) +B(t)Y1(t) +B2(t) +

1

4
Z1(t).
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Gronwall’s inequality then implies

Y1(t) ≤ Y1(0) e
∫ t
0 B(τ) dτ +

∫ t

0

e
∫ t
s B(τ) dτ (A(s) +B2(s)) ds,

which yields (2). In addition, (2) allows us to obtain (3) by using the inequality
(4) in (1) and integrating in time. This completes the proof of Lemma A.2.

We now describe the Littlewood-Paley decomposition and the Besov spaces. We
start with several notations. S denotes the usual Schwarz class and S ′ its dual, the
space of tempered distributions. S0 denotes a subspace of S defined by

S0 =

{
φ ∈ S :

∫
Rd
φ(x)xγ dx = 0, |γ| = 0, 1, 2, · · ·

}
and S ′0 denotes its dual. S ′0 can be identified as

S ′0 = S ′/S⊥0 = S ′/P,
where P denotes the space of multinomials. We also recall the standard Fourier
transform and the inverse Fourier transform,

f̂(ξ) =

∫
Rd
f(x)e−2πix·ξdx, g∨(x) =

∫
Rd
g(ξ) e2πix·ξdξ.

To introduce the Littlewood-Paley decomposition, we write for each j ∈ Z

Aj =
{
ξ ∈ Rd : 2j−1 ≤ |ξ| < 2j+1

}
.

The Littlewood-Paley decomposition asserts the existence of a sequence of functions
{Φj}j∈Z ∈ S such that

suppΦ̂j ⊂ Aj , Φ̂j(ξ) = Φ̂0(2−jξ) or Φj(x) = 2jdΦ0(2jx),

and
∞∑

j=−∞
Φ̂j(ξ) =

{
1 , if ξ ∈ Rd \ {0},
0 , if ξ = 0.

Therefore, for a general function ψ ∈ S, we have
∞∑

j=−∞
Φ̂j(ξ)ψ̂(ξ) = ψ̂(ξ) for ξ ∈ Rd \ {0}.

In addition, if ψ ∈ S0, then
∞∑

j=−∞
Φ̂j(ξ)ψ̂(ξ) = ψ̂(ξ) for any ξ ∈ Rd.

That is, for ψ ∈ S0,
∞∑

j=−∞
Φj ∗ ψ = ψ

and hence
∞∑

j=−∞
Φj ∗ f = f, f ∈ S ′0

in the sense of weak-∗ topology of S ′0. For notational convenience, we define

∆̇jf = Φj ∗ f, j ∈ Z. (5)
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We now choose Ψ ∈ S such that

Ψ̂(ξ) = 1−
∞∑
j=0

Φ̂j(ξ), ξ ∈ Rd.

Then, for any ψ ∈ S,

Ψ ∗ ψ +

∞∑
j=0

Φj ∗ ψ = ψ

and hence

Ψ ∗ f +

∞∑
j=0

Φj ∗ f = f

in S ′ for any f ∈ S ′. We set

∆jf =

 0, if j ≤ −2,
Ψ ∗ f, if j = −1,
Φj ∗ f, if j = 0, 1, 2, · · · .

(6)

For notational convenience, we write ∆j for ∆̇j when there is no confusion. They
are different for j ≤ −1. As provided below, the homogeneous Besov spaces are
defined in terms of ∆̇j while the inhomogeneous Besov spaces are defined in ∆j .
Besides the Fourier localization operators ∆j , the partial sum Sj is also a useful
notation. For an integer j,

Sj ≡
j−1∑
k=−1

∆k,

where ∆k is given by (6). For any f ∈ S ′, the Fourier transform of Sjf is supported
on the ball of radius 2j and

Sjf ⇀ f in S ′.

In addition, for two tempered distributions u and v, we also recall the notion of
paraproducts

Tuv =
∑
j

Sj−1u∆jv, R(u, v) =
∑
|i−j|≤2

∆iu∆jv

and Bony’s decomposition, see e.g. [2],

u v = Tuv + Tvu+R(u, v).

In addition, the notation ∆̃k, defined by

∆̃k = ∆k−1 + ∆k + ∆k+1,

is also useful.

Definition A.3. For s ∈ R and 1 ≤ p, q ≤ ∞, the homogeneous Besov space Ḃsp,q
consists of f ∈ S ′0 satisfying

‖f‖Ḃsp,q ≡ ‖2
js‖∆̇jf‖Lp‖lq <∞.

An equivalent norm of the the homogeneous Besov space Ḃsp,q with s ∈ (0, 1) is
given by

‖f‖Ḃsp,q =

[∫
Rd

‖f(x+ ·)− f(·)‖q
Lp(Rd)

|x|d+sq
dx

] 1
q

. (7)
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Definition A.4. The inhomogeneous Besov space Bsp,q with 1 ≤ p, q ≤ ∞ and
s ∈ R consists of functions f ∈ S ′ satisfying

‖f‖Bsp,q ≡ ‖2
js‖∆jf‖Lp‖lq <∞.

Many frequently used function spaces are special cases of Besov spaces. The
following proposition lists some useful equivalence and embedding relations.

Proposition 7. For any s ∈ R,

Hs ∼ Bs2,2.
For any s ∈ R and 1 < q <∞,

Bsq,min{q,2} ↪→W s
q ↪→ Bsq,max{q,2}.

For any non-integer s > 0, the Hölder space Cs is equivalent to Bs∞,∞.

Bernstein’s inequalities are useful tools in dealing with Fourier localized func-
tions. These inequalities trade integrability for derivatives. The following propo-
sition provides Bernstein type inequalities for fractional derivatives. The upper
bounds also hold when the fractional operators are replaced by partial derivatives.

Proposition 8. Let α ≥ 0. Let 1 ≤ p ≤ q ≤ ∞.

1) If f satisfies

supp f̂ ⊂ {ξ ∈ Rd : |ξ| ≤ K2j},
for some integer j and a constant K > 0, then

‖(−∆)αf‖Lq(Rd) ≤ C1 22αj+jd( 1
p−

1
q )‖f‖Lp(Rd).

2) If f satisfies

supp f̂ ⊂ {ξ ∈ Rd : K12j ≤ |ξ| ≤ K22j}
for some integer j and constants 0 < K1 ≤ K2, then

C1 22αj‖f‖Lq(Rd) ≤ ‖(−∆)αf‖Lq(Rd) ≤ C2 22αj+jd( 1
p−

1
q )‖f‖Lp(Rd),

where C1 and C2 are constants depending on α, p and q only.

We have also used the following inequality. It is a generalization of the Kato-
Ponce inequality, which requires m to be an integer (see, e.g., [8]). This lemma
extends it to any real number m ≥ 2. A proof for this lemma can be found in [4].

Lemma A.5. Let 0 < s < σ < 1, 2 ≤ m < ∞, and p, q, r ∈ (1,∞)3 satisfying
1
p = 1

q + 1
r . Then, there exists C = C(s, σ,m, p, q, r) such that∥∥|f |m−2f

∥∥
Lp

+ ‖Λs(|f |m−2f)‖Lp ≤ C‖f‖Bσq, p‖f‖
m−2
Lr(m−2) . (8)
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