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Abstract

This paper establishes the global existence and regularity of solutions to a two-dimensional (2D) trop-
ical climate model (TCM) with fractional dissipation. The inviscid counterpart of this model was derived 
by Frierson, Majda and Pauluis [8] as a model for tropical geophysical flows. This model reflects the in-
teraction and coupling among the barotropic mode u, the first baroclinic mode v of the velocity and the 
temperature θ . The systems with fractional dissipation studied here may arise in the modeling of geophys-
ical circumstances. Mathematically these systems allow simultaneous examination of a family of systems 
with various levels of regularization. The aim here is the global regularity with the least dissipation. We 
prove two main results: first, the global regularity of the system with (−�)βv and (−�)γ θ for β > 1 and 
β + γ > 3

2 ; and second, the global regularity of the system with (−�)βv for β > 3
2 . The proofs of these 

results are not trivial and the requirements on the fractional indices appear to be optimal. The key tools 
employed here include the maximal regularity for general fractional heat operators, the Littlewood–Paley 
decomposition and Besov space techniques, lower bounds involving fractional Laplacian and simultaneous 
estimates of several coupled quantities.
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1. Introduction

Consider the two-dimensional (2D) tropical climate model (TCM) with fractional dissipation⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu + u · ∇u + μ(−�)αu + ∇p + ∇ · (v ⊗ v) = 0,

∂t v + u · ∇v + ν(−�)βv + v · ∇u + ∇θ = 0,

∂t θ + u · ∇θ + η(−�)γ θ + ∇ · v = 0,

∇ · u = 0,

(1.1)

where the 2D vector fields u = (u1(x, t), u2(x, t)) and v = (v1(x, t), v2(x, t)) denote the 
barotropic mode and the first baroclinic mode of the velocity, respectively, and the scalars θ
and p denote the temperature and the pressure, respectively, and μ, ν, η, α, β, γ ≥ 0 are real pa-
rameters. Here v ⊗ v is the standard tensor notation and the fractional Laplacian operator (−�)α

is defined via the Fourier transform

̂(−�)αf (ξ) = |ξ |2αf̂ (ξ).

There are geophysical circumstances in which the fractional Laplacian may arise. Flows in 
the middle atmosphere traveling upwards undergo changes due to the changes in atmospheric 
properties. The effect of kinematic diffusion is attenuated by the thinning of atmosphere. This 
anomalous attenuation can be modeled using the space fractional Laplacian [4,9].

When α = β = γ = 1, (1.1) reduces to the standard TCM with Laplacian dissipation. The 
inviscid version of (1.1), namely (1.1) with μ = ν = η = 0, was first derived by Frierson, Majda 
and Pauluis [8] as a model for tropical geophysical flows. Fundamental issues concerning (1.1)
such as the global existence and regularity of solutions have attracted considerable attention. 
Important results have been obtained. Li and Titi proved the global well-posedness for the case 
when α = β = 1 and η = 0 by introducing a combined quantity called pseudo baroclinic velocity 
[16]. The work of Li and Titi [16] inspired several subsequent studies. Dong, Wang, Wu and 
Zhang [7] examined (1.1) with α +β = 2 and η = 0. By taking advantage of the special structure 
of the equations of

ω = ∇ × u, j = ∇ × v,

[7] proved the global regularity for the case α + β = 2 and 1 ≤ β ≤ 3
2 . Ye [24] investigated the 

case when α > 0, β = 1 and γ = 1 and proved the global existence and uniqueness of classical 
solutions.

This paper focuses on two cases:

(1) μ = 0, β > 1, β + γ >
3

2
; (2)

3

2
< β ≤ 2, μ = η = 0.

We establish the global existence and uniqueness of classical solutions for each case. More pre-
cisely, we obtain the following theorems.
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Theorem 1.1. Consider the following TCM with fractional dissipation⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tu + u · ∇u + ∇p + ∇ · (v ⊗ v) = 0,

∂t v + u · ∇v + ν(−�)βv + v · ∇u + ∇θ = 0,

∂t θ + u · ∇θ + η(−�)γ θ + ∇ · v = 0,

∇ · u = 0,

(u, v, θ)(x,0) = (u0(x), v0(x), θ0(x))

(1.2)

with

ν > 0, η > 0, β > 1, β + γ >
3

2
.

Assume (u0, v0, θ0) ∈ Hs(R2) with s > 2 and ∇ ·u0 = 0. Then (1.2) has a unique global classical 
solution (u, v, θ) satisfying, for any t > 0,

(u, v, θ) ∈ C(0, t;Hs), v ∈ L2(0, t;Hs+β), θ ∈ L2(0, t;Hs+γ ).

Corresponding to the second case, we have the following theorem.

Theorem 1.2. Consider the following TCM with fractional dissipation⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tu + u · ∇u + ∇p + ∇ · (v ⊗ v) = 0,

∂t v + u · ∇v + ν(−�)βv + v · ∇u + ∇θ = 0,

∂t θ + u · ∇θ + ∇ · v = 0,

∇ · u = 0,

(u, v, θ)(x,0) = (u0(x), v0(x), θ0(x))

(1.3)

with

ν > 0,
3

2
< β ≤ 2.

Assume (u0, v0, θ0) ∈ Hs(R2) with s > 2 and ∇ ·u0 = 0. Then (1.3) has a unique global classical 
solution (u, v, θ) satisfying, for any t > 0,

(u, v, θ) ∈ C(0, t;Hs), v ∈ L2(0, t;Hs+β).

The aim has been to establish the global existence and regularity with the least dissipation. 
The proofs of these theorems are not trivial. The proofs exploit the fractional dissipation to 
its full capacity. The key tools employed here include the maximal regularity for general frac-
tional heat operators, the Littlewood–Paley decomposition and Besov space techniques, lower 
bounds involving fractional Laplacian and simultaneous estimates of several coupled quantities. 
We devote one section, Section 2 to some of the tools we use. In addition, an appendix on the 
Littlewood–Paley decomposition and Besov spaces is also attached for reader’s convenience. For 
notational convenience, we write � = (−�)

1
2 and use ‖f ‖ q p for ‖f ‖Lq(0,t;Lp(Rd )).
Lt Lx
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The core part in the proof of Theorem 1.1 consists of several key a priori global-in-time 
estimates. The desired global bounds are proven in two steps. The first step establishes global 
bounds for three quantities:

‖�σ v‖L
q
t L2

x
, ‖θ‖L∞

t L
q
x

and ‖(∇u, �2−βv, �δθ)‖L∞
t L2

x

where σ ≤ 2β − 1, 2 ≤ q < ∞ and δ < γ . The global bound for the first quantity ‖�σv‖L
q
t L2

x

makes use of the global L2-bounds, the structure of the equation for v and the maximal reg-
ularity for the fractional heat operator. To obtain the global bound for ‖θ‖L∞

t L
q
x
, we perform 

Lq -estimates, make use of a lower bound for the fractional dissipation �γ θ and bound the term 
related to ∇ · v suitably. The third bound is for three quantities. The quantities ∇u, �2−βv and 
�δθ are simultaneously estimated here due to the coupling of the equations. The estimate of one 
of them depends on the other two. The second main step proves two key a priori bounds, for 
2 ≤ p ≤ ∞,

‖�v‖L1
t L

p
x

and ‖ω‖L∞
t L

p
x
. (1.4)

These global bounds are sufficient for any global bounds in more regular settings such as Hs . To 
prove (1.4), we exploit the nonlinear coupling structure and combine the estimates of ‖ω‖L∞

t L
p
x
, 

‖�v‖L1
t L

p
x

and ‖�σ1v‖L1
t L

p
x

with σ1 < 2γ . The estimates of these three quantities are tangled 
together, with the estimate of one of them depending on the other two. The global bounds for 
them are obtained through suitable combination and Gronwall’s inequality. In the process of the 
estimates, it appears that the condition β + γ > 3

2 is optimal. More details of these estimates are 
presented in Section 3.

The proof of Theorem 1.2 boils down to prove the global a priori bounds

t∫
0

‖�v‖L∞ dτ, ‖∇u‖L∞ and ‖∇θ‖L∞ . (1.5)

Clearly the Hs bound of (u, v, θ) follows easily from the bounds in (1.5). The proof of (1.5) fully 
exploits the dissipation in the equation of v and is split into two steps. The first step combines 
the estimates of ‖ω‖L∞

t L2
x

and ‖�β−1v‖L∞
t L2

x∩L2
t Ḣ

β due to their coupling. The global bound for 
‖θ‖L∞ then follows as a simple consequence. The second step makes use of the maximal regu-
larity for the fractional heat operator and show the boundedness of ‖�v‖L2

t L
∞
x

. This regularity 
allows us to prove that ‖∇u‖L∞ and ‖∇θ‖L∞ . Then follows the global bound for ‖(u, v, θ)‖Hs .

The rest of this paper is divided into three sections followed by an appendix. Section 2 contains 
various tools such as the maximal regularity for general fractional heat operators, commutator 
estimates involving fractional Laplacian operators in Besov spaces and a lower bound for frac-
tional Laplacian operators. Section 3 proves Theorem 1.1 while Section 4 proves Theorem 1.2. 
Detailed a priori estimates are proved in these sections. An appendix on the Littlewood–Paley 
decomposition and Besov spaces is attached for reader’s convenience.

2. Several tool lemmas

This section serves as a preparation for the proofs of our main results. Several tool lemmas 
and estimates are presented here.
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The following lemma provides an upper bound for the fractional heat operator �σe−�αt as a 
map from Lp(Rd) to Lq(Rd), which follows from the Young inequality combined with scaling 
property of the corresponding kernel. It is a natural extension of the corresponding result for the 
standard heat operator (see for example [18, Lemma 3.1]).

Lemma 2.1. Let σ > 0 and α > 0. Let 1 ≤ p ≤ q ≤ ∞. Then, for any t > 0,

∥∥∥�σ e−�αtf

∥∥∥
Lq(Rd )

≤ C t
− σ

α
− d

α

(
1
p

− 1
q

)
‖f ‖Lp(Rd )

for a constant C = C(d, σ, α, p, q).

We remark that Lemma 2.1 is also true for σ = 0 (see [18, Lemma 3.1]). More precisely, we 
have for 1 ≤ p ≤ q ≤ ∞ and for any t > 0,

∥∥∥e−�αtf

∥∥∥
Lq(Rd )

≤ C t
− d

α

(
1
p

− 1
q

)
‖f ‖Lp(Rd ).

The maximal regularity estimate for the standard heat operator e�t is well-known (see, e.g., 
[15]). The same estimate actually holds for the general heat operator with fractional Laplacian 
(see, e.g., [3,11]). The proof of this lemma involves fundamental tools in harmonic analysis 
such as the Calderon–Zygmund theory on the vector-valued singular integral operators. Actually, 
Lemma 2.2 below is a special case of the Theorem in part 3.1 of [11] (see pages 1654–1655 of 
[11]). We remark that p and q in Lemma 2.2 are not allowed to be 1 or ∞.

Lemma 2.2. Let α > 0 and p, q ∈ (1, ∞). Then the operator

Gf ≡
t∫

0

(−�)αe−(−�)α(t−τ) f (τ ) dτ

is bounded from Lq
t L

p
x to Lq

t L
p
x . The case with α = 1 represents the maximal regularity for the 

standard Laplacian operator.

We also state and prove the following estimate that provides explicit dependence on time t . 
We note that the indices p and q in the following lemma can be 1 or ∞.

Lemma 2.3. Let β > 0 be a real parameter. Assume f = f (x, t) ∈ L
q
t L

p
x with 1 ≤ p, q ≤ ∞. 

Then the solution u of the fractional parabolic equation{
∂tu + �2βu = f,

u(x,0) = u0(x)
(2.1)

satisfies, for any 0 < σ1 < 2β and σ2 + σ3 = σ1,

‖�σ1 u‖L
q
t L

p
x

≤ Ct
1
q
− σ2

2β ‖�σ3u0‖L
p
x

+ C t
1− σ1

2β ‖f ‖L
q
t L

p
x
. (2.2)
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The point of this lemma is the explicit dependence on t , even though the case when σ1 = 2β

is excluded. Nevertheless, (2.2) is good enough for our purpose.

Proof. The solution u of (2.1) can be written in the form

u(t) = e−�2β tu0 +
t∫

0

e−�2β(t−τ)f (τ ) dτ.

Therefore,

�σ1 u(t) = �σ1 e−�2β tu0 +
t∫

0

�σ1 e−�2β(t−τ)f (τ ) dτ. (2.3)

The kernel function associated with the operator �σ1 e−�2β t is given by

g(x, t) =
∫
R2

eix·ξ |ξ |σ1 e−|ξ |2β t dξ = t
− σ1

2β t
− 1

β g0

(
x

t
1

2β

)
,

where

g0(x) =
∫
R2

eix·ξ |ξ |σ1 e−|ξ |2β

dξ.

Inspired by the proof of [18, Lemma 2.1], we can show that g0 obeys the following bounds (see 
appendix for details)

‖g(·, t)‖L1
x
≤ C t

− σ1
2β and ‖‖g(·, t)‖L1

x
‖L1(0,t) ≤ C t

1− σ1
2β . (2.4)

Applying Lp
x on (2.3), Minkowski’s inequality and Lemma 2.1 yield

‖�σ1 u(t)‖L
p
x

≤ ‖�σ1 e−�2β tu0‖L
p
x

+
∥∥∥∥∥∥

t∫
0

�σ1 e−�2β(t−τ)f (τ ) dτ

∥∥∥∥∥∥
L

p
x

≤ ‖�σ1 e−�2β tu0‖L
p
x

+ C

t∫
0

‖�σ1 e−�2β(t−τ)f (τ )‖L
p
x
dτ

≤ ‖�σ1 e−�2β tu0‖L
p
x

+ C

t∫
0

(t − τ)
− σ1

2β ‖f (τ)‖L
p
x
dτ.

Taking the Lq
t -norm and writing the time integral above as a convolution, we have, by the con-

volution Young inequality,
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‖�σ1 u‖L
q
t L

p
x

≤ C

∥∥∥‖�σ1−σ3 e−�2β t�σ3u0‖L
p
x

∥∥∥
L

q
t

+ C

∥∥∥(
τ

− σ1
2β χ{0≤τ≤t} � ‖f (τ)‖L

p
x

)
(t)

∥∥∥
L

q
t

≤ C

∥∥∥t
− σ1−σ3

2β ‖�σ3u0‖L
p
x

∥∥∥
L

q
t

+ C ‖τ− σ1
2β χ{0≤τ≤t}‖L1

τ
‖f ‖L

q
t L

p
x

≤ C‖t−
σ1−σ3

2β ‖L
q
t
‖�σ3u0‖L

p
x

+ C t
1− σ1

2β ‖f ‖L
q
t L

p
x

≤ Ct
1
q
− σ2

2β ‖�σ3u0‖L
p
x

+ C t
1− σ1

2β ‖f ‖L
q
t L

p
x
,

where � denotes the convolution operator and χ{0≤τ≤t} denotes the characteristic function. This 
completes the proof of Lemma 2.3. �

We shall also make use of the following commutator estimate (see, e.g., [12,25]).

Lemma 2.4. Let p ∈ [2, ∞) and r ∈ [1, ∞] and δ ∈ (0, 1), s ∈ (0, 1) such that s + δ < 1. Then

‖[�δ,f ]g‖Bs
p,r

≤ C(p, r, δ, s)
(‖∇f ‖Lp‖g‖

Bs+δ−1∞,r
+ ‖f ‖L2‖g‖L2

)
. (2.5)

Additionally, if f is a divergence-free vector field and 1
p

= 1
p1

+ 1
p2

with p ∈ [2, ∞), p1, p2 ∈
[2, ∞], r ∈ [1, ∞] as well as s ∈ (−1, 1 − δ) for δ ∈ (0, 1), then it holds

‖[�δ,f · ∇]g‖Bs
p,r

≤ C(p, r, δ, s)
(‖∇f ‖Lp1 ‖g‖

Bs+δ
p2,r

+ ‖f ‖L2‖g‖L2

)
. (2.6)

The following fractional type Gagliardo–Nirenberg inequality will also be used (see, e.g., 
[10]).

Lemma 2.5. Let 0 < p, p0, p1, q, q0, q1 ≤ ∞, s, s0, s1 ∈R and 0 ≤ ϑ ≤ 1. Then the following 
fractional type Gagliardo–Nirenberg inequality

‖v‖Ḃs
p,q (Rn) ≤ C‖v‖1−ϑ

Ḃ
s0
p0,q0 (Rn)

‖v‖ϑ

Ḃ
s1
p1,q1 (Rn)

(2.7)

holds for all v ∈ Ḃ
s0
p0,q0 ∩ Ḃ

s1
p1,q1 if and only if

n

p
− s = (1 − ϑ)

( n

p0
− s0

) + ϑ
( n

p1
− s1

)
, s ≤ (1 − ϑ)s0 + ϑs1,

1

q
≤ 1 − ϑ

q0
+ ϑ

q1
, if p0 �= p1 and s = (1 − ϑ)s0 + ϑs1,

s0 �= s1 or
1

q
≤ 1 − ϑ

q0
+ ϑ

q1
, if p0 = p1 and s = (1 − ϑ)s0 + ϑs1,

s0 − n

p0
�= s − n

p
or

1

q
≤ 1 − ϑ

q0
+ ϑ

q1
, if s < (1 − ϑ)s0 + ϑs1.

Remark 2.6. Lemma 2.5 is also true in the nonhomogeneous framework.

The following commutator and bilinear estimates involving fractional derivatives will be used 
(see, e.g., [13,14]).
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Lemma 2.7. Let s > 0. Let p, p1, p3 ∈ (1, ∞) and p2, p4 ∈ [1, ∞] satisfy

1

p
= 1

p1
+ 1

p2
= 1

p3
+ 1

p4
.

Then there exist two constants C1 and C2,

‖[�s,f ]g‖Lp ≤ C1

(
‖�sf ‖Lp1 ‖g‖Lp2 + ‖�s−1g‖Lp3 ‖∇f ‖Lp4

)
,

‖�s(f g)‖Lp ≤ C2
(‖�sf ‖Lp1 ‖g‖Lp2 + ‖�sg‖Lp3 ‖f ‖Lp4

)
.

We recall a lower bound involving the fractional dissipation (see, e.g., [6]).

Lemma 2.8. For any γ ∈ (0, 1) and 2 ≤ q < ∞, the following lower bound holds

∫
R2

�2γ θ(|θ |q−2θ) dx ≥ c̃ ‖θ‖q

L
q

1−γ

,

where ̃c is a positive constant.

Finally we recall the classical Hardy–Littlewood–Sobolev inequality (see, e.g., [20]).

Lemma 2.9. Let 0 < � < d and 1 < q < p < ∞ satisfy 1
p

+ �
d

= 1
q

. Then, for any f ∈ Lq(Rd),

‖�−�f ‖Lp(Rd ) ≤ C‖f ‖Lq(Rd ), (2.8)

where C is a positive constant depending only on d, �, p and q .

3. The proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1, which boils down to establishing global 
a priori bounds for the solution (u, v, θ) in Hs . This is accomplished in two main steps. The first 
step contains three preliminary global a priori bounds. The second step proves the global bounds 
for ‖�v‖L1

t L
∞
x

and ‖ω‖L∞
t L∞

x
. Once these global bounds are obtained, the global Hs bound on 

(u, v, θ) then follows as a special consequence.
For the sake of clarity, the rest of this section is divided into two subsections. The first sub-

section presents the global bounds on

‖�σ v‖L
q
t L2

x
, ‖θ‖L∞

t L
q
x

and ‖(∇u, �2−βv, �δθ)‖L∞
t L2

x

where σ ≤ 2β − 1, 2 ≤ q < ∞ and δ < γ . The second subsection simultaneously estimates 
‖ω‖L∞

t L
p
x
, ‖�v‖L1

t L
p
x

and ‖�σ1v‖L1
t L

p
x

with σ1 < 2γ due to the fact that the estimate of one of 
them depends on the other two.
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3.1. Three global a priori bounds

This subsection proves three preliminary global a priori bounds, which serve as a foundation 
for bounds in higher regularity spaces. For simplicity, we set ν = η = 1 throughout the rest of 
this section.

The first one is on the �σv with σ ≤ 2β − 1 in Lq
t L2

x .

Proposition 3.1. Consider (1.2) with the initial data satisfying the assumptions stated in The-
orem 1.1. Let (u, v, θ) be the corresponding solution. Then, for any σ ≤ 2β − 1 and any 
2 ≤ q < ∞,

t∫
0

‖�σ v(τ)‖q

L2 dτ ≤ C(t, u0, v0, θ0). (3.1)

To prove (3.1), we first state the following global L2 bound, which follows easily from simple 
energy estimates.

Lemma 3.2. Consider (1.2) with the initial data satisfying the assumptions stated in Theorem 1.1. 
Let (u, v, θ) be the corresponding solution. Then (u, v, θ) admits the following global L2 bound

‖(u, v, θ)(t)‖2
L2 + 2

t∫
0

(
‖�βv‖2

L2 + ‖�γ θ‖2
L2

)
dτ = ‖(u0, v0, θ0)‖2

L2 .

Proof of Proposition 3.1. The proof makes use of Lemma 2.2. To start, we write the second 
equation of (1.2) as

∂tv + (−�)βv = −u · ∇v − v · ∇u − ∇θ.

By the Duhamel principle, the k-th component of v can be written in the following integral form

vk(t) = e−�2β t v0k −
t∫

0

e−�2β(t−τ) (∇ · (uvk + vuk) − uk∇ · v + ∂kθ) dτ.

Applying �2β−1 yields

∂t�
2β−1vk + �2β�2β−1vk = −�2β−1 (∇ · (uvk + vuk) − uk∇ · v + ∂kθ)

or

�2β−1vk(t)

= e−�2β t�2β−1v0k −
t∫
e−�2β(t−τ)�2β−1 (∇ · (uvk + vuk) − uk∇ · v + ∂kθ) dτ
0
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= e−�2β t�2β−1v0k −
t∫

0

e−�2β(t−τ)�2β−1 (∇ · (uvk + vuk)) dτ

+
t∫

0

e−�2β(t−τ)�2β−1 (uk∇ · v) dτ −
t∫

0

e−�2β(t−τ)�2β−1 (∂kθ) dτ

= e−�2β t�2β−1v0k −
t∫

0

e−�2β(t−τ)�2β�−1∇ · ((uvk + vuk)) dτ

+
t∫

0

e−�2β(t−τ)�2β�−1 (uk∇ · v) dτ −
t∫

0

e−�2β(t−τ)�2β�−1∂kθ dτ

:= N1 + N2 + N3 + N4.

Applying Lq
t L

2
x to the equation above leads to

t∫
0

‖�2β−1v‖q

L2dτ ≤
t∫

0

‖N1‖q

L2dτ +
t∫

0

‖N2‖q

L2dτ +
t∫

0

‖N3‖q

L2dτ +
t∫

0

‖N4‖q

L2dτ.

By Lemma 2.1 with f = �2β−1v0k , σ = 0 and q = p = 2,

t∫
0

‖N1‖q

L2dτ =
t∫

0

‖e−�2β t�2β−1v0k‖q

L2 dτ

≤ C

t∫
0

‖�2β−1v0k‖q

L2 dτ

= C‖�2β−1v0k‖q

L2

t∫
0

1dτ

= Ct‖�2β−1v0‖q

L2 .

Applying Lemma 2.1, Minkowski’s inequality, the Hardy–Littlewood–Sobolev inequality (2.8)
and the convolution Young inequality, we obtain

t∫
0

‖N3‖q

L2dτ =
∥∥∥∥∥∥

t∫
0

e−�2β(t−τ)�2β�−1 (uk∇ · v) dτ

∥∥∥∥∥∥
q

L
q
t L2

x

=
∥∥∥∥∥∥

t∫
0

e−�2β(t−τ)�2β+δ−1�−δ (uk∇ · v) dτ

∥∥∥∥∥∥
q

q 2
Lt Lx
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=
∥∥∥∥∥∥
∥∥∥ t∫

0

e−�2β(t−τ)�2β+δ−1�−δ (uk∇ · v) dτ

∥∥∥
L2

x

∥∥∥∥∥∥
q

L
q
t

≤
∥∥∥∥∥∥

t∫
0

∥∥∥e−�2β(t−τ)�2β+δ−1�−δ (uk∇ · v)

∥∥∥
L2

x

dτ

∥∥∥∥∥∥
q

L
q
t

≤ C

∥∥∥∥∥∥
t∫

0

(t − τ)
− 2β+δ−1

2β ‖�−δ (uk∇ · v)‖L2
x
dτ

∥∥∥∥∥∥
q

L
q
t

≤ C

∥∥∥∥∥∥
t∫

0

(t − τ)
− 2β+δ−1

2β ‖ (uk∇ · v)‖
L

2
1+δ
x

dτ

∥∥∥∥∥∥
q

L
q
t

≤ C

∥∥∥∥∥∥
t∫

0

τ
− 2β+δ−1

2β dτ

∥∥∥∥∥∥
q

L1
τ

t∫
0

‖ (uk∇ · v)‖q

L

2
1+δ
x

dτ

≤ Ct
(1−δ)q

2β

t∫
0

‖u‖q

L2
x
‖∇v‖q

L
2
δ
x

dτ

≤ Ct
(1−δ)q

2β

t∫
0

‖u‖q

L2
x
‖v‖

q(2β+δ−3)
2β−1

L2
x

‖�2β−1v‖
q(2−δ)
2β−1

L2
x

dτ

≤ 1

4

t∫
0

‖�2β−1v‖q

L2 dτ + Ct
(1−δ)(2β−1)q
2β(2β+δ−3)

t∫
0

(‖u‖
q(2β−1)
2β+δ−3

L2 ‖v‖q

L2) dτ,

where δ > 0 satisfies 3 − 2β < δ < 1. Such δ exists since β > 1. By Lemma 2.2,

t∫
0

‖N2‖q

L2dτ =
∥∥∥∥∥∥

t∫
0

e−�2β(t−τ)�2β�−1∇ · ((uvk + vuk)) dτ

∥∥∥∥∥∥
q

L
q
t L2

x

≤ C

t∫
0

‖�−1∇ · (uvk + vuk)‖q

L2 dτ

≤ C

t∫
0

‖uvk + vuk‖q

L2 dτ

≤ C

t∫
‖u‖q

L2‖v‖q
L∞ dτ
0
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≤ C

t∫
0

(‖u‖q

L2‖v‖(1− 1
2β−1 )q

L2 ‖�2β−1v‖
q

2β−1

L2 ) dτ

≤ 1

4

t∫
0

‖�2β−1v‖q

L2 dτ + C

t∫
0

(‖u‖
q(2β−1)

2β−2

L2 ‖v‖q

L2) dτ

and

t∫
0

‖N4‖q

L2dτ =
∥∥∥∥∥∥

t∫
0

e−�2β(t−τ)�2β�−1∂kθ dτ

∥∥∥∥∥∥
q

L
q
t L2

x

≤ C

t∫
0

‖�−1∇θ‖q

L2 dτ

≤ C

t∫
0

‖θ‖q

L2 dτ.

Putting these estimates together leads to

t∫
0

‖�2β−1v‖q

L2dτ ≤ 1

2

t∫
0

‖�2β−1v‖q

L2dt + Ct‖�2β−1v0‖q

L2

+ Ct
(1−δ)(2β−1)q
2β(2β+δ−3)

t∫
0

(‖u‖
q(2β−1)
2β+δ−3

L2 ‖v‖q

L2) dτ

+ C

t∫
0

(‖u‖
q(2β−1)

2β−2

L2 ‖v‖q

L2) dτ + C

t∫
0

‖θ‖q

L2 dτ.

Since ‖(u, v, θ)‖L2 is bounded in terms of the initial data (u0, v0, θ0), we obtain

t∫
0

‖�2β−1v(τ)‖q

L2 dτ ≤ C(t, u0, v0, θ0) < ∞.

By interpolation, for any σ ≤ 2β − 1,

t∫
0

‖�σ v(τ)‖q

L2 dτ ≤
t∫

0

(‖v(τ)‖
2β−1−σ

2β−1

L2 ‖�2β−1v(τ)‖
σ

2β−1

L2

)q
dτ ≤ C(t, u0, v0, θ0).

This completes the proof of Proposition 3.1. �
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The next proposition assesses a global bound for ‖θ‖L∞
t L

q
x

for any 2 ≤ q < ∞.

Proposition 3.3. Consider (1.2) with β > 3
2 − γ . Assume that (u0, v0, θ0) satisfy the conditions 

stated in Theorem 1.1. Then the corresponding smooth solution (u, v, θ) of (1.2) satisfies, for any 
t > 0 and for any 2 ≤ q < ∞,

‖θ(t)‖Lq ≤ C(t, u0, v0, θ0). (3.2)

Proof of Proposition 3.3. Multiplying (1.2)3 by |θ |q−2θ and integrating the resulting equality 
with respect to x, we have

1

q

d

dt
‖θ(t)‖q

Lq +
∫
R2

�2γ θ(|θ |q−2θ) dx = −
∫
R2

∇ · v (|θ |q−2θ) dx.

We remark that we may assume β < 3
2 . Actually, if β ≥ 3

2 , one easily obtains from (3.1) that, for 
any 2 ≤ p, q < ∞

t∫
0

‖∇v(τ)‖q
Lp dτ ≤ C(t, u0, v0, θ0).

This immediately implies the desired estimate (3.2). According to the lower bound in Lemma 2.8, 
we have, for a constant ̃c,

∫
R2

�2γ θ(|θ |q−2θ) dx ≥ c̃ ‖θ‖q

L
q

1−γ

.

By Hölder’s inequality,

∣∣∣ ∫
R2

∇ · v (|θ |q−2θ) dx

∣∣∣ ≤ C‖∇v‖
L

2
2−σ

‖θ‖q−1

L
2(q−1)

σ

. (3.3)

For any 1 < σ < 2β − 1, by Sobolev’s inequality and an interpolation inequality,

‖∇v‖
L

2
2−σ

≤ C ‖�σ v‖L2, ‖θ‖
L

2(q−1)
σ

≤ ‖θ‖1−λ
Lq ‖θ‖λ

L
q

1−γ
,

where

λ = (2 − σ)q − 2
.

2γ (q − 1)
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Inserting these inequalities in (3.3) and applying Young’s inequality, we have

∣∣∣ ∫
R2

∇ · v (|θ |q−2θ) dx

∣∣∣ ≤ c̃

2
‖θ‖q

L
q

1−γ

+ C‖�σ v‖
q

q−(q−1)λ

L2 ‖θ‖
q(q−1)(1−λ)
q−(q−1)λ

Lq

≤ c̃

2
‖θ‖q

L
q

1−γ

+ C‖�2β−1v‖
q

q−(q−1)λ

L2 (1 + ‖θ‖q
Lq ).

In order for

λ = (2 − σ)q − 2

2γ (q − 1)
∈ (0, 1),

we need, noticing that σ < 2β − 1 but close to 2β − 1,

(3 − 2β − 2γ )q < 2(1 − γ ). (3.4)

The condition β > 3
2 − γ is imposed to ensure (3.4) holds. Therefore, for any 2 ≤ q < ∞,

d

dt
‖θ(t)‖q

Lq ≤ C‖�σ v‖
q

q−(q−1)λ

L2 (1 + ‖θ‖q
Lq ). (3.5)

By Gronwall’s inequality and (3.1), we obtain the desired global bound for ‖θ‖Lq . �
Next we establish the following global bound of (u, v, θ).

Proposition 3.4. Suppose that (u0, v0, θ0) satisfies the assumptions stated in Theorem 1.1, β > 1
and β > 3

2 − γ . Let (u, v, θ) be the corresponding solution, then (u, v, θ) obeys the following 
global bound, for any 3 − 2β − γ < δ < γ and for any t > 0,

‖(∇u,�2−βv,�δθ)(t)‖2
L2 +

t∫
0

‖(�v,�δ+γ θ)‖2
L2dτ ≤ C(t, u0, v0, θ0). (3.6)

Proof of Proposition 3.4. Multiplying both sides of the first three equations of (1.2) with 
(−�u, �2(2−β)v, �2δθ), we find

1

2

d

dt
‖(∇u,�2−βv,�δθ)‖2

L2 + ‖(�v,�δ+γ θ)‖2
L2

=
∫
R2

∇ · (v ⊗ v) · �u dx +
∫
R2

�2−β(v · ∇u) · �2−βv dx

+
∫

2

�2−β(u · ∇v) · �2−βv dx +
∫

2

�2−β∇θ · �2−βv dx
R R
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+
∫
R2

�δ∇ · v�δθ +
∫
R2

�δ(u · ∇θ)�δθ dx

=: I1 + I2 + I3 + I4 + I5 + I6, (3.7)

where we have used the following identity, due to ∇ · u = 0 (see [22, (3.2)])

∫
R2

(u · ∇)u · �u dx = 0.

By Hölder’s inequality and Sobolev’s inequality,

I1 =
∫
R2

∂i(vivj )∂
2
k uj dx

= −
∫
R2

∂2
k (vivj )∂iuj dx

= −
∫
R2

(∂2
k vivj + 2∂kvi∂kvj )∂iuj dx

≤ C(‖�v‖L2‖v‖L∞ + ‖∇v‖2
L4)‖∇u‖L2

≤ C(‖�v‖L2‖v‖L∞ + ‖∇v‖L2‖�v‖L2)‖∇u‖L2

≤ C (‖v‖L2 + ‖�βv‖L2)‖�v‖L2 ‖∇u‖L2

≤ 1

6
‖�v‖2

L2 + C(1 + ‖�βv‖2
L2)‖∇u‖2

L2 .

Since the case when β > 3
2 is dealt with in Theorem 1.2, we restrict to β ∈ (1, 3

2 ] here. By the 
Hardy–Littlewood–Sobolev inequality (2.8), we have, for β < 3

2 ,

I2 =
∫
R2

�2−2β(v · ∇u) · �2v dx

≤ ‖�2−2β(v · ∇u)‖L2‖�v‖L2

= ‖�−(2β−2)(v · ∇u)‖L2‖�v‖L2

≤ C‖v · ∇u‖
L

2
2β−1

‖�v‖L2

≤ C‖v‖
L

1
β−1

‖∇u‖L2‖�v‖L2

≤ 1

6
‖�v‖2

L2 + C(1 + ‖�βv‖2
L2)‖∇u‖2

L2
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and

I3 =
∫
R2

�2−2β(u · ∇v) · �2v dx

≤ ‖�2−2β(u · ∇v)‖L2‖�v‖L2

≤ C‖u · ∇v‖
L

2
2β−1

‖�v‖L2

≤ C‖u‖
L

2
3β−3

‖∇v‖
L

2
2−β

‖�v‖L2

≤ C(‖u‖L2 + ‖∇u‖L2)‖�βv‖L2‖�v‖L2

≤ 1

6
‖�v‖2

L2 + C(1 + ‖�βv‖2
L2)‖∇u‖2

L2 .

In terms of the case β = 3
2 , one has, for some p ∈ (1, 2),

I2 =
∫
R2

�−1(v · ∇u) · �2v dx

≤ ‖v · ∇u‖Lp‖∇v‖
L

p
p−1

≤ C‖v‖
L

2p
2−p

‖∇u‖L2‖v‖
p−1
p

L2 ‖�v‖
1
p

L2

≤ C(‖v‖L2 + ‖�βv‖L2)‖∇u‖L2‖v‖
p−1
p

L2 ‖�v‖
1
p

L2

≤ 1

6
‖�v‖2

L2 + C(1 + ‖�βv‖2
L2)(1 + ‖∇u‖2

L2)

and, for some p̃ ∈ ( 4
3 , 2),

I3 =
∫
R2

�−1(u · ∇v) · �2v dx

≤ ‖u · ∇v‖Lp̃‖∇v‖
L

p̃
p̃−1

≤ C‖u‖
L

2p̃
2−(2−β)p̃

‖∇v‖
L

2
2−β

‖v‖
p̃−1
p̃

L2 ‖�v‖
1
p̃

L2

≤ C(‖u‖L2 + ‖∇u‖L2)‖�βv‖L2‖v‖
p̃−1
p̃

L2 ‖�v‖
1
p̃

L2

≤ 1

6
‖�v‖2

L2 + C(1 + ‖�βv‖2
L2)(1 + ‖∇u‖2

L2).
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Thanks to 3 − 2β − γ < δ, by Young’s inequality

I4 =
∫
R2

�2−β∇θ · �2−βv dx

≤ ‖�3−2βθ‖L2‖�v‖L2

≤ 1

6
‖�v‖2

L2 + 1

6
‖�δ+γ θ‖2

L2 + C‖θ‖2
L2 .

According to a simple interpolation inequality and Young’s inequality,

I5 ≤ ‖�δ+1−γ v‖L2‖�δ+γ θ‖L2

≤ 1

6
‖�v‖2

L2 + 1

6
‖�δ+γ θ‖2

L2 + C‖v‖2
L2 .

By the commutator estimate (2.5),

I6 = −
∫
R2

[�δ, u · ∇]θ �δθ dx

≤ ‖[�δ, u]θ‖H 1−γ ‖�δ+γ θ‖L2

≤ C
(‖∇u‖L2‖θ‖

B
δ−γ
∞,2

+ ‖u‖L2‖θ‖L2

)‖�δ+γ θ‖L2

≤ C
(‖∇u‖L2‖θ‖Lq + ‖u‖L2‖θ‖L2

)‖�δ+γ θ‖L2

≤ 1

6
‖�δ+γ θ‖2

L2 + C‖θ‖2
Lq ‖∇u‖2

L2 + C‖u‖2
L2‖θ‖2

L2,

where we have used the estimate, for δ < γ ,

‖θ‖
B

δ−γ
∞,2

≤ C‖θ‖Lq , q >
2

γ − δ
.

Combining all the estimates above and using (3.2), we reach

d

dt
‖(∇u,�2−βv,�δθ)(t)‖2

L2 + ‖(�v,�δ+γ θ)‖2
L2

≤ C ‖�γ θ‖2
L2 + C(1 + ‖�βv‖2

L2 + ‖θ‖2
Lq )(1 + ‖∇u‖2

L2).

Gronwall’s inequality and Proposition 4.2 imply (3.6). �
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3.2. Global bounds for ‖�v‖L1
t L

∞
x

and ‖ω‖L∞
t L∞

x

The goal of this subsection is to show that the following proposition.

Proposition 3.5. Consider (1.2) with β > 1 and β > 3
2 − γ . Assume that (u0, v0, θ0) satisfies 

the conditions stated in Theorem 1.1. Let (u, v, θ) be the corresponding solution. Then, for any 
2 ≤ p ≤ ∞,

‖�v‖L1
t L

p
x

≤ C < ∞, ‖ω‖L∞
t L

p
x

≤ C < ∞,

where the upper bounds C = C(t, u0, v0, θ0).

To prove Proposition 3.5, we need a global bound for v in a more regular setting than provided 
in the previous subsection.

Proposition 3.6. Consider (1.2) with β > 1 and β > 3
2 − γ . Assume that (u0, v0, θ0) satisfy the 

conditions stated in Theorem 1.1. Let (u, v, θ) be the corresponding solution. Then for any t > 0,

‖�ρv(t)‖2
L2 +

t∫
0

‖�ρ+βv(τ )‖2
L2dτ ≤ C(t, u0, v0, θ0), (3.8)

where ρ = δ + γ + β − 1 with δ < 1 − γ . Especially, we have, by taking ρ close to β ,

‖v(t)‖L∞ ≤ C(t, u0, v0, θ0)

and for any 2 ≤ q ≤ ∞,

t∫
0

‖∇v‖2
Lq dτ ≤ C

t∫
0

‖�ρ+βv‖2
L2 dτ ≤ C(t, u0, v0, θ0),

which, by the proof of Proposition 3.3, implies

‖θ(t)‖L∞ ≤ C(t, u0, v0, θ0).

Proof of Proposition 3.6. Taking the inner product of the second equation in (1.2) with �2ρv, 
we obtain

1

2

d

dt
‖�ρv‖2

L2 + ‖�ρ+βv‖2
L2

= −
∫
R2

(v · ∇u) · �2ρv dx −
∫
R2

(u · ∇v) · �2ρv dx −
∫
R2

∇θ · �2ρv dx

=: Ĩ1 + Ĩ2 + Ĩ3. (3.9)
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By Hölder’s inequality and Sobolev’s inequality,

Ĩ1 ≤ C‖v‖L∞‖∇u‖L2‖�2ρv‖L2

≤ C(‖v‖L2 + ‖�ρ+βv‖L2)‖�βv‖L2 ‖∇u‖L2

≤ 1

6
‖�ρ+βv‖2

L2 + C‖�βv‖2
L2‖∇u‖2

L2 + C‖v‖L2‖�βv‖L2‖∇u‖L2

≤ 1

6
‖�ρ+βv‖2

L2 + C‖�βv‖2
L2‖∇u‖2

L2 + C‖v‖2
L2 .

Similarly, for suitable small ε > 0,

Ĩ2 ≤ C‖u‖
L

2
β−ρ+ε

‖∇v‖
L

2
1−ε

‖�2ρv‖
L

2
1+ρ−β

≤ C‖u‖2
H 1‖�ρv‖1−λ(ε)

L2 ‖�ρ+βv‖λ(ε)

L2 ‖�ρ+βv‖L2

≤ 1

6
‖�ρ+βv‖2

L2 + C‖u‖
2

1−λ(ε)

H 1 ‖�ρv‖2
L2,

where λ(ε) = 1−ρ+ε
β

∈ (0, 1). Thanks to ρ = δ + γ + β − 1, by Young’s inequality

Ĩ3 = −
∫
R2

∇θ · �2ρv dx ≤ ‖�ρ−β+1θ‖L2‖�ρ+βv‖L2

≤ 1

6
‖�ρ+βv‖2

L2 + C‖�δ+γ θ‖2
L2 .

Summing up all the estimates above, we obtain

d

dt
‖�ρv‖2

L2 + ‖�ρ+βv‖2
L2

≤ C‖�βv‖2
L2‖∇u‖2

L2 + C‖v‖2
L2 + C‖�δ+γ θ‖2

L2 + C‖u‖
2

1−λ(ε)

H 1 ‖�ρv‖2
L2 .

Gronwall’s inequality then yields the desired bound in (3.8). This completes the proof of Propo-
sition 3.6. �

The proof of Proposition 3.5 is divided into three closely related steps. The result of the first 
step is stated in the following Lemma.

Lemma 3.7. Consider (1.2) with β > 1 and β > 3
2 − γ . Assume that (u0, v0, θ0) satisfies the 

conditions stated in Theorem 1.1. Let (u, v, θ) be the corresponding solution. Then, for any 
2 ≤ p ≤ ∞, the vorticity ω = ∇ × u obeys, for any t > 0,

‖ω(t)‖Lp ≤ ‖ω0‖Lp + C

t∫
0

‖�v(τ)‖Lp dτ, (3.10)

where C = C(t, u0, v0, θ0).
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Proof. It follows from the vorticity equation

∂tω + u · ∇ω + ∇ × ∇ · (v ⊗ v) = 0 (3.11)

that

‖ω(t)‖Lp ≤ ‖ω0‖Lp +
t∫

0

‖∇ × ∇ · (v ⊗ v)‖Lp dτ

≤ ‖ω0‖Lp + C

t∫
0

‖v‖L∞ ‖�v‖Lp dτ

≤ ‖ω0‖Lp + C

t∫
0

‖�v‖Lp dτ,

where we have used the global bound on ‖v‖L∞ from Proposition 3.6. This proves Lem-
ma 3.7. �

The second step controls ‖�σv‖L1
t L

p
x

for any 0 < σ < 2β in terms of ω and θ , as provided by 
the following lemma.

Lemma 3.8. Consider (1.2) with β > 1 and β > 3
2 − γ . Assume that (u0, v0, θ0) satisfies the 

conditions stated in Theorem 1.1. Let (u, v, θ) be the corresponding solution. Then, for any 
2 ≤ p ≤ ∞ and any ε > 0,

‖�v‖L1
t L

p
x

≤ t
1− 1

2β ‖�u0‖Lp + C t
1− 1

β

+ C t
1− 1

β ‖ω‖L1
t L

p
x

+ C t
ε

2β ‖�3−2β+εθ‖L1
t L

p
x
. (3.12)

In addition, for any 2 < μ̃ < 2β but close to 2, say

μ̃ = 2 + 1

10
(2β + 2γ − 3) ,

we have

‖�μ̃v‖L1
t L

p
x

≤ t
1− μ̃

2β ‖�u0‖Lp + C t
1− μ̃

2β

+ C t
1− μ̃

2β ‖ω‖L1
t L

p
x

+ C t
μ̃−2
2β ‖�3−2β+(μ̃−2)θ‖L1

t L
p
x
. (3.13)

Proof. We proceed as in the proof of Lemma 2.3. First, we write the equation of v in (1.2) in the 
integral form
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v(t) = e−ν�2β t v0 −
t∫

0

e−ν�2β(t−τ) (u · ∇v + v · ∇u + ∇θ) dτ.

Applying �2 to the integral form above, we obtain, as the proof of Lemma 2.3,

‖�2v‖L
p
x

≤‖�2e−ν�2β t v0‖L
p
x

+ C

t∫
0

(t − τ)
− 1

β ‖u(τ)‖L2p ‖∇v(τ)‖L2p dτ

+ C

t∫
0

(t − τ)
− 1

β ‖v(τ)‖L∞ ‖∇u(τ)‖Lp dτ

+ C

t∫
0

(t − τ)
−1+ ε

2β ‖�3−2β+εθ(τ )‖Lp dτ

for any ε > 0 small. Invoking the basic inequalities

‖u‖L2p ≤ C‖u‖H 1, ‖∇u‖Lp ≤ C ‖ω‖Lp

and the global bound for ‖∇v(τ)‖
L1

t L
2p
x

in Proposition 3.6, we obtain, after integrating in time,

‖�v‖L1
t L

p
x

≤ t
1− 1

2β ‖�u0‖Lp + C t
1− 1

β

+ C t
1− 1

β ‖ω‖L1
t L

p
x

+ C t
ε

2β ‖�3−2β+εθ‖L1
t L

p
x
.

The proof of (3.13) is very similar. The difference is that one applies �μ̃ instead of �2. This 
proves Lemma 3.8. �

The third step makes use of the equation of θ and proves the following lemma.

Lemma 3.9. Consider (1.2) with β > 1 and β > 3
2 − γ . Assume that (u0, v0, θ0) satisfies the 

conditions stated in Theorem 1.1. Let (u, v, θ) be the corresponding solution. Then, for any 
2 ≤ p < ∞ and for any σ < 2γ ,

‖�σ θ‖L1
t L

p
x

≤ ‖θ0‖Lp + C ‖ω‖L1
t L

p
x

+ C, (3.14)

where C = C(t, u0, v0, θ0).

Proof. Applying the Fourier localization operator �j with j ∈ Z and j ≥ −1 to the equation of 
θ and then dotting the resulting equation with �jθ |�jθ |p−2 yields
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1

p

d

dt
‖�jθ‖p

Lp + C 22γj ‖�jθ‖p
Lp = −

∫
�jθ |�jθ |p−2 [�j,u · ∇θ ]dx

+
∫

�jθ |�jθ |p−2 �j∇ · v dx,

where we have invoked the lower bound (see [5] or [17])∫
�jθ |�jθ |p−2 �2γ �jθ dx ≥ C 22γj ‖�jθ‖p

Lp .

More details on the Littlewood–Paley decomposition, Besov spaces, Bernstein’s inequalities and 
other related materials can be found in the appendix. Recall a standard commutator estimate,

‖[�j,u · ∇]θ‖Lp ≤ C ‖θ‖B0∞,∞ ‖∇u‖Lp .

Applying Hölder’s inequality then yields

d

dt
‖�jθ‖Lp + C 22γj ‖�jθ‖Lp ≤ C ‖θ‖L∞ ‖ω‖Lp + C ‖∇v‖Lp .

Integrating in time yields

‖�jθ(t)‖Lp ≤ C e−22γj t ‖�jθ0‖Lp + C

t∫
0

e−22γj (t−τ) (‖ω(τ)‖Lp + ‖∇v(τ)‖Lp) dτ.

Taking the L1-norm in time and applying Young’s inequality for convolution, we have

t∫
0

‖�jθ(τ)‖Lp dτ ≤ C 2−2γj ‖�jθ0‖Lp + C 2−2γj
(
‖ω‖L1

t L
p
x

+ ‖∇v‖L1
t L

p
x

)
.

Multiplying both sides by 22γj yields, for any j ≥ 0,

22γj

t∫
0

‖�jθ(τ)‖Lp dτ ≤ C ‖�jθ0‖Lp + C ‖ω‖L1
t L

p
x

+ C.

As a special consequence, for any σ < 2γ ,

t∫
0

‖�σ θ(τ)‖Lp dτ ≤
t∫

0

‖�σ θ(τ)‖B0
p,1

dτ

=
∑

j≥−1

t∫
‖�j�

σ θ(τ)‖Lp dτ
0
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≤
∑

j≥−1

t∫
0

2σj‖�jθ(τ)‖Lp dτ

=
∑

j≥−1

2(σ−2γ )j 22γj

t∫
0

‖�jθ(τ)‖Lp dτ

≤ ‖θ0‖Lp + C ‖ω‖L1
t L

p
x

+ C,

which is (3.14). This completes the proof of Lemma 3.9. �
We are now ready to prove Proposition 3.5.

Proof of Proposition 3.5. Since

β + γ >
3

2
,

we can choose ε > 0 and σ > 0 such that

3 − 2β + ε < σ < 2γ. (3.15)

It follows from Lemma 3.7, (3.12) in Lemma 3.8 and Lemma 3.9 that

‖ω(t)‖Lp ≤ ‖ω0‖Lp + C

t∫
0

‖�v(τ)‖Lp dτ

≤ ‖ω0‖Lp + C

t∫
0

‖ω(τ)‖Lp dτ + C

t∫
0

‖�3−2β+εθ‖Lp dτ + C

≤ C + C

t∫
0

‖ω(τ)‖Lp dτ + C

t∫
0

‖�σ θ‖Lp dτ

≤ C + C

t∫
0

‖ω(τ)‖Lp dτ.

Gronwall’s inequality then implies that, for any ε > 0 and σ > 0 satisfying (3.15)

‖ω(t)‖Lp ≤ C,

t∫
0

‖�σ θ‖Lp dτ ≤ C.

Then we apply (3.13) in Lemma 3.8 with 2 < μ̃ < 2β but close to 2 to obtain, for σ < 2γ close 
to 2γ ,
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t∫
0

‖�μ̃v‖Lp dτ ≤ C + C ‖ω‖L1
t L

p
x

+ C ‖�γ θ‖|L1
t L

p
x

< ∞.

Due to the Sobolev embedding, for μ̃ > 2,

‖�v‖L∞
x

≤ C (‖v‖L2 + ‖�μ̃v‖Lp),

we obtain, for any t > 0,

t∫
0

‖�v‖L∞ dt < ∞.

The vorticity equation

∂tω + u · ∇ω + ∇ × ∇ · (v ⊗ v) = 0

then implies

‖ω(t)‖L∞ < ∞.

These global bounds are then sufficient for any higher regularity. This completes the proof of 
Proposition 3.5. �
4. The proof of Theorem 1.2

This section proves Theorem 1.2. The main efforts are devoted to showing the global a priori
bound for the solution (u, v, θ) in Hs . The key component is to obtain the global L∞ for ∇u. 
This is accomplished via several propositions.

Proposition 4.1 (Uniform H 1 bound for the velocity). Assume that (u0, v0, θ0) satisfies the con-
ditions stated in Theorem 1.2. Let (u, v, θ) be the corresponding solution of (1.3). Then the 
following uniform H 1 bound holds

‖ω‖2
L2 + ‖�β−1v‖2

L2 +
t∫

0

‖�2β−1v‖2
L2 dτ ≤ C(‖(u0, v0, θ0)‖H 1). (4.1)

As a consequence,

∞∫
0

‖∇v‖L∞ dt < ∞.

We start with the global L2 bound.
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Lemma 4.2 (Global L2 bound). Consider (1.3). Assume that (u0, v0, θ0) satisfies the conditions 
stated in Theorem 1.2. Let (u, v, θ) be the corresponding solution of (1.3). Then (u, v, θ) obeys 
the following global L2-bound

‖(u, v, θ)(t)‖2
L2 + 2

t∫
0

‖�βv‖2
L2 dτ = ‖(u0, v0, θ0)‖2

L2 , (4.2)

for any t > 0, which implies 
∫ t

0 ‖v‖2
L∞dτ < +∞ due to β > 1.

Proof. Taking the L2-inner product of (1.3) with (u, v, θ), integrating by parts and using ∇ ·u =
0, we obtain

1

2

d

dt
‖(u, v, θ)‖2

L2 + ‖�βv‖2
L2 = 0, (4.3)

where we have used the following facts∫
R2

(u · ∇)u · u dx =
∫
R2

(u · ∇)v · v dx =
∫
R2

(u · ∇θ)θ dx = 0,

∫
R2

∇ · (v ⊗ v) · u dx +
∫
R2

(v · ∇)u · v dx = 0,

∫
R2

∇θ · v dx +
∫
R2

(∇ · v)θ dx = 0.

Integrating (4.3) in time from 0 to t implies (4.2). �
We now turn to the proof of Proposition 4.1.

Proof of Proposition 4.1. The vorticity ω = ∇ × u satisfies

∂tω + u · ∇ω + ∇ × ∇ · (v ⊗ v) = 0. (4.4)

Taking the L2 inner product of (4.4) with ω and integrating by parts yield

1

2

d

dt
‖ω‖2

L2 = −
∫
R2

∇ × ∇ · (v ⊗ v)ωdx

≤C‖�v‖L2‖v‖L∞‖ω‖L2

≤ 1

4
‖�2β−1v‖2

L2 + C‖v‖2
L∞‖ω‖2

L2
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Dotting both sides of the v-equation in (1.3) with �2β−2v and integrating on R2, it follows that

1

2

d

dt
‖�β−1v‖2

L2 + ‖�2β−1v‖2
L2

= −
∫
R2

(u · ∇v)�2β−2vdx −
∫
R2

(v · ∇u)�2β−2vdx −
∫
R2

∇θ�2β−2vdx

≤ C‖u‖L2‖v‖L∞‖�2β−1v‖L2 + C‖∇u‖L2‖v‖L∞‖�2β−2v‖L2 + C‖θ‖L2‖�2β−1v‖L2

≤ C‖v‖L∞‖�2β−1v‖L2 + C‖v‖2
L∞‖ω‖2

L2 + 1

8
‖�2β−1v‖2

L2 + C‖θ‖L2‖�2β−1v‖L2

≤ C‖v‖2
L∞‖ω‖2

L2 + 1

4
‖�2β−1v‖2

L2

Combining the inequalities above, we have

d

dt
(‖ω‖2

L2 + ‖�β−1v‖2
L2) + ‖�2β−1v‖2

L2 ≤ C‖v‖2
L∞‖ω‖2

L2 (4.5)

Integrating (4.5) in time from 0 to t implies (4.1). Since 2β − 1 > 2, (4.1), together with Sobolev 
embedding inequality, implies

t∫
0

‖∇v‖L∞dτ ≤ t
1
2

⎛⎝ t∫
0

‖∇v‖2
L∞dτ

⎞⎠
1
2

≤ t
1
2

⎛⎝ t∫
0

(‖v‖2
L2 + ‖�2β−1v‖2

L2)dτ

⎞⎠
1
2

< ∞.

This completes the proof of Proposition 4.1. �
The following global Lp bound for θ holds.

Proposition 4.3. Consider (1.3). Assume that (u0, v0, θ0) satisfies the conditions stated in Theo-
rem 1.2. Let (u, v, θ) be the corresponding solution of (1.3). Then, for any 2 ≤ p ≤ ∞,

‖θ(t)‖Lp ≤ C(t, u0, v0, θ0). (4.6)

Proof. For any 2 ≤ p < ∞, by multiplying both sides of the θ -equation in (1.3) by |θ |p−2θ and 
integrating on R2, we have

1

p

d

dt
‖θ‖p

Lp ≤ −
∫
R2

∇ · v|θ |p−2θdx ≤ C‖∇v‖Lp‖θ‖p−1
Lp .

Integrating in time leads to

‖θ‖Lp ≤ ‖θ0‖Lp + C

t∫
‖∇v‖Lpds ≤ C

t∫
‖v‖1− 2(p−1)

(2β−1)p

L2 ‖�2β−1v‖
2(p−1)
(2β−1)p

L2 ds,
0 0
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which yields the bound for p < ∞. Now taking the limit as p → ∞, we have

‖θ(t)‖L∞ ≤ C

t∫
0

(‖v‖2
L2 + ‖�2β−1v‖2

L2)ds < +∞.

This completes the proof. �
Next we establish a bound for 

∫ t

0 ‖�v‖2
L∞ .

Proposition 4.4. Consider (1.3). Assume that (u0, v0, θ0) satisfies the conditions stated in Theo-
rem 1.2. Let (u, v, θ) be the corresponding solution of (1.3). Then, for any t > 0,

t∫
0

‖�v‖2
L∞ dτ < +∞.

Proof. Applying the argument of Lemma 2.3, we have, for any δ < 2β − 1 and for any 2 ≤
p < ∞,

t∫
0

‖�δv‖2
Lp dτ ≤ t

2
β
−1‖∇v0‖2

Lp + C

t∫
0

(‖uv‖2
Lp + ‖θ‖2

Lp) dτ + C

t∫
0

‖u∇ · v‖2
Lp dτ

≤ C(t,‖v0‖Hs ) + C

t∫
0

(‖u‖2
H 1‖v‖2

L∞ + ‖u‖2
H 1‖∇v‖2

L∞ + ‖θ‖2
Lp) dτ

≤ C(t, u0, v0, θ0) < ∞.

Since 2β − 1 > 2, a simple embedding inequality then implies

t∫
0

‖�v‖2
L∞ dτ < ∞.

This completes the proof of Proposition 4.4. �
The next proposition proves a key component in the proof of Theorem 1.2, a global bound for 

‖∇u‖L∞ .

Proposition 4.5 (L∞ estimate of the ω). Consider (1.3). Assume that (u0, v0, θ0) satisfies the 
conditions stated in Theorem 1.2. Let (u, v, θ) be the corresponding solution of (1.3). Then, for 
any t > 0,

‖∇u(t)‖L∞ < ∞.
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Proof. We start by recalling the vorticity equation in (4.4),

∂tω + u · ∇ω = −∇ × ∇ · (v ⊗ v). (4.7)

By a bound on solutions to the transport equation in Besov spaces with zero regularity index, 
namely B0

∞,1 (see, e.g., [1,17,23]),

‖ω‖B0∞,1
≤

(
‖ω0‖B0∞,1

+
t∫

0

‖∇ × ∇ · (v ⊗ v)‖B0∞,1
dτ

)(
1 +

t∫
0

‖∇u‖L∞ dτ
)
.

For p > 2
2β−3 ,

‖∇ × ∇ · (v ⊗ v)‖B0∞,1
≤C‖vv‖B2∞,1

≤C‖v‖L∞‖v‖B2∞,1

≤C‖v‖2
B2∞,1

≤C‖v‖2
L2 + C‖�2β−1v‖2

Lp . (4.8)

In addition,

‖∇u‖L∞ ≤ C‖u‖L2 + C‖ω‖B0∞,1
.

Therefore,

‖ω‖B0∞,1
≤ C

(
1 +

t∫
0

‖�2β−1v‖2
Lp dτ

)(
1 +

t∫
0

‖ω‖B0∞,1
dτ

)
.

Thanks to Gronwall’s inequality, we have

‖ω‖B0∞,1
≤ C(t),

which further implies

‖∇u(t)‖B0∞,1
≤ C(t).

This completes the proof of Proposition 4.5. �
A simple consequence of (4.8) is a global bound for ‖∇θ‖Lp .
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Proposition 4.6 (Lp estimate of ∇θ ). Consider (1.3). Assume that (u0, v0, θ0) satisfies the con-
ditions stated in Theorem 1.2. Let (u, v, θ) be the corresponding solution of (1.3). Then, for any 
2 ≤ p ≤ ∞ and any t > 0,

‖∇θ(t)‖Lp ≤ C(t, u0, v0, θ0) < ∞. (4.9)

Proof. Applying ∇ to the θ -equation in (1.3)

∂t θ + u · ∇θ + ∇ · v = 0,

then multiplying the resultant by |∇θ |p−2∇θ , and integrating over R2, we have, after integration 
by parts,

1

p

d

dt
‖∇θ‖p

Lp ≤
∫
R2

∇θ · ∇u · |∇θ |p−2∇θ dx +
∫
R2

∇∇ · v · |∇θ |p−2∇θ dx

≤ ‖∇θ‖p
Lp‖∇u‖L∞ + ‖�v‖Lp‖∇θ‖p−1

Lp

or

d

dt
‖∇θ‖Lp ≤ C‖∇u‖L∞ ‖∇θ‖Lp + C‖�v‖Lp,

where C’s are constants independent of p. Gronwall’s inequality then implies

‖∇θ‖2
Lp(t) ≤ C

⎛⎝1 +
t∫

0

‖�v‖Lp dτ

⎞⎠ exp

⎛⎝ t∫
0

‖∇u‖L∞ dτ

⎞⎠ < ∞.

Taking the limit as p → ∞ yields (4.9). This completes the proof of Proposition 4.6. �
We are now ready to prove a global bound for (u, v, θ) in Hs .

Proof of Theorem 1.2. Applying �s to (1.3) and then dotting with (�su, �sv, �sθ), we obtain, 
after integration by parts,

1

2

d

dt
‖(�su,�sv,�sθ)‖2

L2 + ‖�s+βv‖2
L2

= −
∫
R2

�s(u · ∇u) · �su dx −
∫
R2

�s∇ · (v ⊗ v) · �su dx

−
∫

2

�s(u · ∇v) · �sv dx −
∫

2

�s(v · ∇u) · �sv dx
R R
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−
∫
R2

�s(u · ∇θ) · �sθ dx

=: H1 + H2 + H3 + H4 + H5.

Now we estimate H1, H2, H3, H4 and H5 one by one. By Lemma 2.7,

H1 = −
∫
R2

(�s(u · ∇u) − u · ∇�su) · �su dx

= −
∫
R2

[�s,u · ∇]u · �su dx

≤ C‖�su‖L2‖∇u‖L∞‖�su‖L2

≤ C‖∇u‖L∞‖�su‖2
L2 .

By Lemma 2.7 and Sobolev’s inequality,

H2 ≤ C‖�s+1v‖L2‖v‖L∞‖�su‖L2

≤ C(‖v‖L2 + ‖�s+βv‖L2)‖�βv‖L2‖�su‖L2

≤ 1

6
‖�s+βv‖2

L2 + C + C‖�βv‖2
L2‖�su‖2

L2,

H3 ≤ ‖�s(u · ∇v)‖L2‖�sv‖L2

≤ C(‖�su‖L2‖∇v‖L∞ + ‖�s+1v‖L2‖u‖L∞)‖�sv‖L2

≤ C
(‖�su‖L2‖∇v‖L∞ + (‖v‖L2 + ‖�s+βv‖L2)‖u‖L∞

)‖�sv‖L2

≤ 1

6
‖�s+βv‖2

L2 + C(1 + ‖∇v‖2
L∞)‖(�su,�sv)‖2

L2,

H4 ≤ ‖�s−1(v · ∇u)‖L2‖�s+1v‖L2

≤ C(‖�su‖L2‖v‖L∞ + ‖�s−1v‖L2‖∇u‖L∞)‖�s+1v‖L2

≤ C
(‖�su‖L2‖�βv‖L2 + (‖v‖L2 + ‖�sv‖L2)‖ω‖L∞

)
(‖v‖L2 + ‖�s+βv‖L2)

≤ 1

6
‖�s+βv‖2

L2 + C(1 + ‖�βv‖2
L2)‖(�su,�sv)‖2

L2 ,

H5 = −
∫
R2

(�s(u · ∇θ) − u · ∇�sθ) · �sθ dx

= −
∫
R2

[�s,u · ∇]θ · �sθ dx

≤ C(‖�su‖L2‖∇θ‖L∞ + ‖�sθ‖L2‖∇u‖L∞)‖�sθ‖L2

≤ C‖(�su,�sθ)‖2
L2 .
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Combining all estimates above, we get

d

dt
‖(�su,�sv,�sθ)‖2

L2 + ‖�s+βv‖2
L2

≤ C + C(1 + ‖�βv‖2
L2 + ‖∇v‖2

L∞)‖(�su,�sv,�sθ)‖2
L2 ,

which implies the desired global bound in Theorem 1.2. �
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Appendix A. Frequency localization and Besov spaces

This appendix provides the definition of the Littlewood–Paley decomposition and the defi-
nition of Besov spaces. Some related facts used in the previous sections are also included. The 
material presented in this appendix can be found in several books and many papers (see, e.g., 
[1,2,17,19,21]).

We start with several notational conventions. S denotes the usual Schwarz class and S ′ its 
dual, the space of tempered distributions. To introduce the Littlewood–Paley decomposition, we 
write for each j ∈ Z

Aj =
{
ξ ∈Rd : 2j−1 ≤ |ξ | < 2j+1

}
.

The Littlewood–Paley decomposition asserts the existence of a sequence of functions {�j}j∈Z ∈
S such that

supp�̂j ⊂ Aj , �̂j (ξ) = �̂0(2
−j ξ) or �j(x) = 2jd�0(2

j x),

and

∞∑
j=−∞

�̂j (ξ) =
{

1 , if ξ ∈Rd \ {0},
0 , if ξ = 0.

Therefore, for a general function ψ ∈ S , we have

∞∑
�̂j (ξ)ψ̂(ξ) = ψ̂(ξ) for ξ ∈ Rd \ {0}.
j=−∞
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We now choose � ∈ S such that

�̂(ξ) = 1 −
∞∑

j=0

�̂j (ξ), ξ ∈ Rd .

Then, for any ψ ∈ S ,

� ∗ ψ +
∞∑

j=0

�j ∗ ψ = ψ

and hence

� ∗ f +
∞∑

j=0

�j ∗ f = f (A.1)

in S ′ for any f ∈ S ′. To define the inhomogeneous Besov space, we set

�jf =
⎧⎨⎩

0, if j ≤ −2,

� ∗ f, if j = −1,

�j ∗ f, if j = 0,1,2, · · · .

(A.2)

Besides the Fourier localization operators �j , the partial sum Sj is also a useful notation. For 
an integer j ,

Sj ≡
j−1∑

k=−1

�k.

For any f ∈ S ′, the Fourier transform of Sjf is supported on the ball of radius 2j . It is clear from 
(A.1) that Sj → Id as j → ∞ in the distributional sense. In addition, the notation �̃k, defined 
by

�̃k = �k−1 + �k + �k+1,

is also useful and has been used in the previous sections.

Definition A.1. The inhomogeneous Besov space Bs
p,q with s ∈ R and p, q ∈ [1, ∞] consists of 

f ∈ S ′ satisfying

‖f ‖Bs
p,q

≡ ‖2js‖�jf ‖Lp‖lq < ∞,

where �jf is as defined in (A.2).

Many frequently used function spaces are special cases of Besov spaces. The following propo-
sition lists some useful equivalence and embedding relations.
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Proposition A.2. For any s ∈R,

Hs ∼ Bs
2,2.

For any s ∈R and 1 < q < ∞,

Bs
q,min{q,2} ↪→ Ws

q ↪→ Bs
q,max{q,2}.

For any non-integer s > 0, the Hölder space Cs is equivalent to Bs∞,∞.

Bernstein’s inequalities are useful tools in dealing with Fourier localized functions. These 
inequalities trade integrability for derivatives. The following proposition provides Bernstein type 
inequalities for fractional derivatives. The upper bounds also hold when the fractional operators 
are replaced by partial derivatives.

Proposition A.3. Let α ≥ 0. Let 1 ≤ p ≤ q ≤ ∞.

1) If f satisfies

supp f̂ ⊂ {ξ ∈ Rd : |ξ | ≤ K2j },

for some integer j and a constant K > 0, then

‖(−�)αf ‖Lq(Rd ) ≤ C1 22αj+jd( 1
p

− 1
q
)‖f ‖Lp(Rd ).

2) If f satisfies

supp f̂ ⊂ {ξ ∈ Rd : K12j ≤ |ξ | ≤ K22j }

for some integer j and constants 0 < K1 ≤ K2, then

C1 22αj‖f ‖Lq(Rd ) ≤ ‖(−�)αf ‖Lq(Rd ) ≤ C2 22αj+jd( 1
p

− 1
q
)‖f ‖Lp(Rd ),

where C1 and C2 are constants depending on α, p and q only.

Appendix B. Proof of (2.4)

This appendix provides a detailed proof of (2.4).

Proof of (2.4). We start with the definition of g0(x),

g0(x) =
∫

2

eix·ξ |ξ |σ1 e−|ξ |2β

dξ.
R
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Clearly, for any σ1 ≥ 0 and β > 0,

‖g0‖L∞ ≤
∫
R2

|ξ |σ1 e−|ξ |2β

dξ := C. (B.1)

Denoting

N(x,∇) = x · ∇ξ

i|x|2 ,

we have

N(x,∇)eix·ξ = eix·ξ . (B.2)

We write N∗(x, ∇) as the dual operator of N(x, ∇), namely

N∗(x,∇) = −x · ∇ξ

i|x|2 .

Let χ(ξ) ∈ C∞
c (R2) be the standard smooth cutoff function satisfying

χ(ξ) =
{

1, |ξ | ≤ 1,

0, |ξ | > 2.

For N0 > 0 to be fixed letter, we split g0(x) into two parts,

g0(x) =
∫
R2

eix·ξχ
( ξ

N0

)
|ξ |σ1 e−|ξ |2β

dξ +
∫
R2

eix·ξ
(

1 − χ
( ξ

N0

))
|ξ |σ1 e−|ξ |2β

dξ

:= LF + HF.

The low frequency part LF is bounded by

|LF | ≤
∫

|ξ |≤2N0

|ξ |σ1 dξ ≤ C N
σ1+2
0 . (B.3)

To bound the high frequency part HF , we fix k > 0 to be a positive integer, invoke (B.2) and 
integrate by parts to obtain

HF =
∫
R2

Nk(x,∇)(eix·ξ )
(

1 − χ
( ξ

N0

))
|ξ |σ1 e−|ξ |2β

dξ

=
∫

2

eix·ξ (N∗(x,∇)
)k

{(
1 − χ

( ξ

N0

))
|ξ |σ1 e−|ξ |2β

}
dξ
R
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≤ C|x|−k

∫
|ξ |≥N0

∣∣∣∇k
(|ξ |σ1e−|ξ |2β )∣∣∣dξ

+ C|x|−k

∫
N0≤|ξ |≤2N0

k∑
l=1

∣∣∣∣∇ l

(
1 − χ

( ξ

N0

))∣∣∣∣ ∣∣∣∇k−l
(|ξ |σ1e−|ξ |2β )∣∣∣dξ

≤ C|x|−k

∫
|ξ |≥N0

∣∣∣∇k
(|ξ |σ1e−|ξ |2β )∣∣∣dξ

+ C|x|−k

∫
N0≤|ξ |≤2N0

k∑
l=1

N−l
0

∣∣∣∇k−l
(|ξ |σ1e−|ξ |2β )∣∣∣dξ.

It is easy to check that

∣∣∇ l |ξ |σ1
∣∣ ≤ C|ξ |σ1−l ,

∣∣∣∇k−le−|ξ |2β
∣∣∣ ≤ C

k−l∑
m=1

|ξ |2βm−(k−l)e−|ξ |2β

≤ C(|ξ |2β+l−k + |ξ |(2β−1)(k−l))e−|ξ |2β

.

Consequently,

∣∣∣∇k
(|ξ |σ1e−|ξ |2β )∣∣∣ ≤

k∑
l=0

∣∣∇ l |ξ |σ1
∣∣∣∣∣∇k−le−|ξ |2β

∣∣∣
≤ C

k∑
l=0

(|ξ |σ1+2β−k + |ξ |σ1−l+(2β−1)(k−l))e−|ξ |2β

≤ C(|ξ |σ1+2β−k + |ξ |σ1+(2β−1)k + |ξ |σ1−k)e−|ξ |2β

≤ C(|ξ |σ1−k|ξ |2βe−|ξ |2β + |ξ |σ1−k|ξ |2βke−|ξ |2β + |ξ |σ1−k)

≤ C|ξ |σ1−k,

where we have used the simple facts

|ξ |2βe−|ξ |2β ≤ C, ξ |2βke−|ξ |2β ≤ C.

The same argument yields ∣∣∣∇k−l
(|ξ |σ1e−|ξ |2β )∣∣∣ ≤ C|ξ |σ1−(k−l).
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Therefore, for k > 2 + σ1, the high-frequency part HF is bounded by

|HF | ≤C|x|−k

∫
|ξ |≥N0

|ξ |σ1−k dξ

+ C|x|−k

∫
N0≤|ξ |≤2N0

k∑
l=1

N−l
0 |ξ |σ1−(k−l) dξ

≤C|x|−kN
σ1−k+2
0

+ C|x|−k

∫
N0≤|ξ |≤2N0

k∑
l=1

N
σ1−k
0 dξ

≤C|x|−kN
σ1−k+2
0 .

Putting these estimates together yields

|g0(x)| ≤ C(N
σ1+2
0 + |x|−kN

σ1−k+2
0 ) ≤ C|x|−σ1−2 (B.4)

by choosing N0 ≈ |x|−1. (B.1) and (B.4) together imply, for any x ∈R2,

|g0(x)| ≤ C(1 + |x|)−σ1−2.

Therefore,

‖g0(x)‖L1 ≤ C.

Consequently,

‖g(·, t)‖L1
x
=

∫
R2

t
− σ1

2β t
− 1

β

∣∣∣∣∣g0

(
x

t
1

2β

)∣∣∣∣∣ dx

= Ct
− σ1

2β t
− 1

β

∫
R2

|g0(η)|(t 1
2β

)2
dη

= Ct
− σ1

2β ‖g0(x)‖L1

≤ Ct
− σ1

2β ,

which leads to

‖‖g(·, t)‖L1
x
‖L1(0,t) ≤ Ct

1− σ1
2β .

This completes the proof of (2.4). �
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