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Abstract

This paper studies the global (in time) regularity and large time behavior of solutions to the 2D microp-
olar equations with only angular viscosity dissipation. Micropolar equations model a class of fluids with 
nonsymmetric stress tensor such as fluids consisting of particles suspended in a viscous medium. When 
there is no kinematic viscosity in the momentum equation, the global regularity problem is not easy due 
to the lack of suitable bounds on the derivatives. The idea here is to fully exploit the structure of the sys-
tem and control the vorticity via the evolution equation of a combined quantity of the vorticity and the 
micro-rotation angular velocity. To understand the large time behavior, we overcome two main difficulties, 
the lack of kinematic viscosity and the presence of linear terms. Classical tools such as the Fourier splitting 
method of Schonbek and Kato’s approach for the decay of small solutions do not apply here. We introduce a 
diagonalization process to eliminate the linear terms and rely on the uniform bounds for the first derivatives 
of the solutions to generate suitable decay rates.
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1. Introduction

The micropolar equations were first introduced in 1965 by C.A. Eringen to model micropolar 
fluids (see Eringen [9, Sections 1 and 6]). Micropolar fluids are fluids with microstructure. They 
belong to a class of fluids with nonsymmetric stress tensor (called polar fluids) and include, as 
a special case, the classical fluids modeled by the Navier–Stokes equations (see, e.g., [4,8–10,
16]). The system of the micropolar equations is a significant generalization of the Navier–Stokes 
equations covering many more phenomena such as fluids consisting of particles suspended in a 
viscous medium (see, e.g., [16,17,19]). The micropolar equations have been extensively studied 
and applied by many engineers and physicists.

The 3D micropolar equations can be written as

(3DMP)

⎧⎪⎨⎪⎩
∂tu − (ν + κ)�u − 2κ∇ × w + u · ∇u + ∇π = 0,

∇ · u = 0,

∂tw − γ�w + 4κw − μ∇∇ · w − 2κ∇ × u + u · ∇w = 0,

(1.1)

where u = u(x, t) denotes the fluid velocity, w(x, t) the field of microrotation representing the 
angular velocity of the rotation of the particles of the fluid, π(x, t) the scalar pressure, ν de-
notes the Newtonian kinematic viscosity, κ the micro-rotation viscosity, and γ and μ the angular 
viscosities. The 3D micropolar equations reduce to the 2D micropolar equation when

u = (u1(x1, x2, t), u2(x1, x2, t),0), w = (0,0,w3(x1, x2, t)), π = π(x1, x2, t).

More explicitly, the 2D micropolar equations can be written as

(2DMP)

⎧⎪⎨⎪⎩
∂tu − (ν + κ)�u − 2κ∇ × w + u · ∇u + ∇π = 0,

∇ · u = 0,

∂tw − γ�w + 4κw − 2κ∇ × u + u · ∇w = 0,

(1.2)

where we have written u = (u1, u2) and w for w3 for notational brevity. It is worth noting that, 
in the 2D case,

� ≡ ∇ × u = ∂x1u2 − ∂x2u1

is a scalar function representing the vorticity, and ∇ × w = (∂x2w,−∂x1w
)
.

The micropolar equations are also mathematically significant. The well-posedness problem 
on the micropolar and closely related equations such as the magneto-micropolar equations has
attracted considerable attention recently from the community of mathematical fluids (see, e.g., 
[2,5,12,16,21,22]). Generally speaking, the global regularity problem for the micropolar equa-
tions is easier than that for the corresponding incompressible magnetohydrodynamic equations 
and harder than that for the corresponding incompressible Boussinesq equations.

More recent efforts are focused on the 2D micropolar equations with partial dissipation. In [7]
Dong and Zhang examined (1.2) without the micro-rotation viscosity, namely γ = 0. The global 
regularity problem for this partial dissipation case is not trivial due to the presence of the term 
∇ × w in the velocity equation. Dong and Zhang in [7] observed that the combined quantity
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� − 2κ

ν + κ
w

obeys a transport-diffusion equation, which allows the extraction of a global bound. Another 
partial dissipation case, (1.2) with ν = 0, γ > 0, κ > 0 and κ �= γ , was examined by Xue, who 
was able to obtain the global well-posedness in the frame work of Besov spaces [20]. We remark 
that the requirement κ �= γ in [20] is not crucial and it is not difficult to see that the global 
well-posedness remains valid even when κ = γ .

This paper aims at the partial dissipation case when (1.2) involves no velocity dissipation. 
More precisely, we study the existence and uniqueness of classical solutions to the 2D micropolar 
equation with only angular velocity dissipation⎧⎪⎨⎪⎩

∂tu + κu − 2κ∇ × w + ∇π + u · ∇u = 0,

∇ · u = 0,

∂tw − γ�w + 4κw − 2κ∇ × u + u · ∇w = 0.

(1.3)

We remark that the term κu does not play any significant role in the global regularity problem. It 
is kept in (1.3) simply to reflect the fact that the micropolar fluid motion requires the presence of 
the micro-rotational effect and micro-rotational inertia, namely κ > 0. We establish the following 
global existence and uniqueness result for (1.3).

Theorem 1.1. Assume (u0, w0) ∈ Hs(R2) (s > 2) and ∇ ·u0 = 0. Then (1.3) has a unique global 
solution (v, w) satisfying

(u,w) ∈ C([0,∞);Hs(R2)), w ∈ L2(0, T ;Hs+1(R2)), ∀ T > 0.

We remark that the global regularity problem on (1.3) is not trivial. The difficulty is due to 
the dynamic micro-rotational term ∇ × w in the velocity equation. This term prevents us from 
obtaining the global L∞-bound for the vorticity � = ∇ × u directly from the vorticity equation,

∂t� + κ� + u · ∇� + 2κ�w = 0, (1.4)

where we have used ∇ × (∇ × w) = −�w. The bound ‖�(t)‖L∞ relies on �w, namely,

‖�(t)‖L∞ ≤ ‖�(0)‖L∞ + 2κ

t∫
0

‖�w(τ)‖L∞ dτ.

To overcome this difficulty, we make use of the angular viscosity dissipation γ�w to balance 
out the bad term 2κ�w in (1.4). More precisely, we consider the sum of the vorticity and micro-
rotation angular velocity

Z = � + 2κ

γ
w,

which satisfies
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∂tZ + u · ∇Z +
(

κ − 4κ2

γ

)
Z +

(
8κ3

γ 2
+ 6κ2

γ

)
w = 0. (1.5)

This equation of Z serves our purpose to obtain a global bound for � via the global bound for Z . 
To bound ‖Z‖L∞ , we need a global bound for ‖w‖L1

t L
∞
x

according to (1.5). To obtain the global 
bound for ‖w‖L1

t L
∞
x

, we first establish the global bound for ‖w‖L1
t H

1
x

via energy estimate and 
then the global bound for ‖�w‖L2

t L
2
x

via the maximal regularity of the heat operator. More details 
can be found in Section 2.

The second purpose of this paper is to obtain explicit time decay rates for the following 2D 
micropolar equation

⎧⎪⎨⎪⎩
∂tu + κu − 2κ∇ × w + ∇π + u · ∇u = 0,

∇ · u = 0,

∂tw − γ�w − 2κ∇ × u + u · ∇w = 0.

(1.6)

(1.6) is obtained by removing the term 4κ w from (1.3). It is not difficult to understand that 
solutions to (1.3) decay exponentially. We ignore this term and consider (1.6) instead. We remark 
that Theorem 1.1 remains valid for (1.6).

We aim at developing an effective approach on large-time behavior for systems involving 
linear terms and with mixed damping and dissipation. As we know, linear terms are usually 
obstacles in the study of large-time behavior and in obtaining explicit decay rates. The diag-
onalization process presented here eliminates the linear terms in (1.6) and leads to an integral 
representation in terms of the nonlinear terms only. This representation allows us to derive the 
desired decay rates. This practice may be useful for more general decay problems.

We remark that, when the micropolar equation has full dissipation, namely (1.2) with ν > 0, 
κ > 0 and γ > 0, effective approaches such as the Fourier splitting method of Schonbek [18] and 
Kato’s method for small solutions [14] have been developed to obtain explicit decay rates. In fact, 
the L2 time decay rate was obtained by Dong–Chen [6] for global solutions of the 2D micropolar 
equation (1.2) via the Fourier splitting method and by Chen–Price [3] for small solutions of the 
3D micropolar equation (1.1) via Kato’s method. However, when the velocity equation has no 
dissipation, the Fourier splitting method which relies on the dissipation in order to decompose 
the whole space into two time-dependent sub-domains does not apply. Furthermore, without 
smallness assumption, Kato’s method [14] does not work due to the difficulty of constructing an 
iterative procedure. Some more recent new time decay methods such as the one by Guo–Wang 
[11] involving Sobolev space of negative indices and the one by [13] for dual equation technique 
do not apply to our circumstance.

In order to derive the decay estimates for (1.6), we make the assumption

γ > 4κ.

As we explain below, this condition is sharp and necessary. It allows us to derive uniform (in 
time) bounds for both the solution and its first derivatives. Especially we are able to show that, 
for any 0 ≤ s < t < ∞,

‖∇u(t)‖2
2 + ‖∇w(t)‖2

2 ≤ C
(
‖∇u(s)‖2

2 + ‖∇w(s)‖2
2

)
,

L L L L
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where C is a constant depending on the L2-norm of (u0, w0) only (see (3.4) in Section 3 for 
details). This inequality leads to the large-time behavior for ∇u and ∇w,

(1 + t)
1
2 ‖(∇u(t),∇w(t))‖L2 → 0, t → ∞,

which also serves as the first step in seeking the decay rate for ‖u(t)‖L2 . To obtain the decay 
rate, we take the inner product of the velocity equation with u and then represent ‖u(t)‖2

L2 in an 
integral form, which leads to the decay estimate

(1 + t)
1
2 ‖u(t)‖L2 → 0, as t → ∞.

To summarize, we have obtained the following decay rates for ‖∇u‖L2 , ‖∇w(t)‖L2 and 
‖u(t)‖L2 .

Theorem 1.2. Assume (u0, w0) are sufficiently regular, say, (u0, w0) ∈ Hs(R2) with s > 2, and 
∇ · u0 = 0. Let (u, w) be the corresponding global solution of the system defined by (1.6). When 
κ and γ satisfy

γ > 4κ, (1.7)

then we have the following decay rates, as t → ∞,

(1 + t)
1
2 ‖(∇u(t),∇w(t))‖L2 → 0, (1 + t)

1
2 ‖u(t)‖L2 → 0.

Due to the presence of the linear terms in (1.6), any direct approach such as energy estimates 
and the integral representation of w does not lead to the large-time behavior for ‖w(t)‖L2 . This 
forces us to eliminate the linear terms of (1.6) via a diagonalization process performed on the 
system of equations for the vorticity � in (1.4) and of w in (1.6), namely{

∂t� + κ� + u · ∇� + 2κ�w = 0,

∂tw − γ�w − 2κ∇ × u + u · ∇w = 0.
(1.8)

To do so, we rewrite (1.8) in the Fourier space as

[
∂t �̂(ξ)

∂t ŵ(ξ)

]
=
[−κ 2κ|ξ |2

2κ −γ |ξ |2
][

�̂(ξ)

ŵ(ξ)

]
+
[

−û · ∇�(ξ)

−û · ∇w(ξ)

]
, (1.9)

where F̂ denotes the Fourier transform of F . To diagonalize the coefficient matrix, we seek the 
eigenvalues and eigenvectors. The eigenvalues satisfy the characteristic equation

λ2 + (κ + γ |ξ |2)λ + (κγ − 4κ2)|ξ |2 = 0,

which is solved by

λ1,2 = −(κ + γ |ξ |2) ±√(κ − γ |ξ |2)2 + 16κ2|ξ |2
. (1.10)
2
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When the condition (1.7) holds, both eigenvalues λ1,2 < 0. If (1.7) is violated, the larger eigen-
value is zero or positive and even the solution of the linear part of (1.9) does not decay in time. 
This explains why (1.7) is necessary and sharp. This diagonalization process with the condition 
(1.7) allows us to eliminate the linear terms and obtain an integral representation of (1.9) in terms 
of the nonlinear terms only. More precisely, we obtain the following proposition.

Proposition 1.3. The system in (1.8) can be represented in the following integral form (in the 
Fourier space),

�̂(ξ, t) = eλ1(ξ)t
(
D1(ξ) �̂0(ξ) − D2(ξ) ŵ0(ξ)

)
+ eλ2(ξ)t

(
D3(ξ) �̂0(ξ) + D2(ξ) ŵ0(ξ)

)
+

t∫
0

eλ1(ξ)(t−τ)
(
−D1(ξ) û · ∇�(ξ, τ ) + D2(ξ)û · ∇w(ξ, τ )

)
dτ

+
t∫

0

eλ2(ξ)(t−τ)
(
−D3(ξ) û · ∇�(ξ, τ ) − D2(ξ)û · ∇w(ξ, τ )

)
dτ, (1.11)

ŵ(ξ, t) = eλ1(ξ)t
(−D4(ξ) �̂0(ξ) + D3(ξ) ŵ0(ξ)

)
+ eλ2(ξ)t

(
D4(ξ) �̂0(ξ) + D1(ξ) ŵ0(ξ)

)
+

t∫
0

eλ1(ξ)(t−τ)
(
D4(ξ) û · ∇�(ξ, τ ) − D3(ξ)û · ∇w(ξ, τ )

)
dτ

+
t∫

0

eλ2(ξ)(t−τ)
(
−D4(ξ) û · ∇�(ξ, τ ) − D1(ξ)û · ∇w(ξ, τ )

)
dτ, (1.12)

where λ1 denotes the eigenvalue in (1.10) with the negative sign in the front of the square-root 
sign and λ2 with the positive sign, and D1, D2, D3 and D4 are given by

D1(ξ) = (κ − γ |ξ |2) +√(κ − γ |ξ |2)2 + 16κ2|ξ |2
2
√

(κ − γ |ξ |2)2 + 16κ2|ξ |2 ,

D2(ξ) = 2κ|ξ |2√
(κ − γ |ξ |2)2 + 16κ2|ξ |2 ,

D3(ξ) = −(κ − γ |ξ |2) +√(κ − γ |ξ |2)2 + 16κ2|ξ |2
2
√

(κ − γ |ξ |2)2 + 16κ2|ξ |2 ,

D4(ξ) = 2κ√
(κ − γ |ξ |2)2 + 16κ2|ξ |2 .

This representation may appear to be complex, but it does not involve any linear terms and 
is suitable for extracting the desired decay rate for ‖w(t)‖L2 . Since λ1 and λ2 depend on ξ , 
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we need to distinguish their behavior in different regions of ξ when estimating the terms in ŵ. 
Nevertheless, we managed to obtain the following decay rate for ‖w(t)‖L2 .

Theorem 1.4. Assume (u0, w0) are sufficiently regular, say, (u0, w0) ∈ Hs(R2) with s > 2, and 
∇ ·u0 = 0. Let (u, w) be the corresponding global solution of the system defined by (1.6). Assume 
(1.7) holds, namely

γ > 4κ.

Assume the initial data w0 satisfies

w0 ∈ L1(R2). (1.13)

Then we have, as t → ∞,

(1 + t)
1
2 ‖w(t)‖L2 → 0.

The condition (1.13) can be replaced by more general ones such as

‖e� tw0‖L2 ≤ C t−
1
2 for t > 0. (1.14)

To provide a more complete picture on the current status of the regularity results on the mi-
cropolar equations, we also present in the appendix the global existence and uniqueness results 
for the micropolar equations with full dissipation. The well-posedness result for the 3D mi-
cropolar equation extends the work of Fujita and Kato on the 3D Navier–Stokes equations to 
a nonlinearly coupled system. In the 2D case, we show that, any u0 ∈ L2 and w0 ∈ L2 gener-
ate a unique global solution. The result for the 2D micropolar equation involves the weakest 
initial data for which one can still deduce the uniqueness. We remark that Lukaszewicz in his 
monograph [16] studied the well-posedness problem on the 3D stationary as well as the time-
dependent micropolar equations. The regularity assumptions on the initial data are different from 
ours.

Finally we remark that one can consider the global regularity and large-time decay problem 
for the 2D fractional dissipative micropolar equation

⎧⎪⎨⎪⎩
∂tu + (ν + κ)(−�)αu − 2κ∇ × w + ∇π + u · ∇u = 0,

∇ · u = 0,

∂tw + γ (−�)βw + 4κw − 2κ∇ × u + u · ∇w = 0,

(1.15)

with

0 < α,β < 1, α + β = 1.

This may not be an easy problem and is in our future study plan. We may need to fully explore 
the structure of this system.
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The rest of this paper is divided into three sections and one appendix. The second section 
details the proof of Theorem 1.1 while the third section proves one of the decay theorems. Sec-
tion 4 carries out the diagonalization process and establish the decay result for ‖w(t)‖L2 . The 
appendix provides the global existence and uniqueness results for the micropolar equations with 
full dissipation.

2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1, the global existence and uniqueness of 
classic solutions for the 2D micropolar equation without velocity dissipation, namely (1.3).

The key component of the proof is the global a priori bound for (u, w) in Hs with s > 2. For 
the sake of clarity, we divide the estimates into several regularity levels.

2.1. Global H 1 estimate

We prove that any classical solution of (1.3) admits a global H 1-bound, as stated in the fol-
lowing proposition.

Proposition 2.1. Assume u0 and w0 satisfy the conditions in Theorem 1.1. Then the correspond-
ing solution (u, w) obeys, for any 0 < t < ∞,

‖u(t)‖2
L2 + ‖w(t)‖2

L2 + γ

t∫
0

‖∇w(τ)‖2
L2dτ + 8κ

t∫
0

‖w(τ)‖2
L2dτ ≤ C eC t , (2.1)

‖∇u(t)‖2
L2 + ‖∇w(t)‖2

L2 + γ

t∫
0

‖�w(τ)‖2
L2τ ≤ C eC t eC eC t

, (2.2)

where C’s are constants depending on κ , γ or ‖(u0, w0)‖H 1 only (their explicit dependence can 
be found in the proof).

Proof. Taking the L2 inner product of (1.3) with (u, w), it is easy to verify

1

2

d

dt

(
‖u(t)‖2

L2 + ‖w(t)‖2
L2

)
+ κ‖u(t)‖2

L2 + γ ‖∇w(t)‖2
L2 + 4κ‖w(t)‖2

L2

=
∫
R2

{2κ(∇ × w) · u + 2κ(∇ × u)w}dx

≤ 4κ‖u‖L2‖∇w‖L2 ≤ 8κ2

γ
‖u(t)‖2

L2 + γ

2
‖∇w(t)‖2

L2,

where we have used the following fact due to the divergence free of u∫
2

(u · ∇u) · u dx = 0,

∫
2

(u · ∇w) w dx = 0.
R R
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Applying Gronwall inequality gives, for 0 < t < ∞,

‖u(t)‖2
L2 + ‖w(t)‖2

L2 + γ

t∫
0

‖∇w(τ)‖2
L2dτ + 8κ

t∫
0

‖w(τ)‖2
L2dτ

≤ e
16κ2

γ
t
(
‖u0‖2

L2 + ‖w0‖2
L2

)
,

which is (2.1). Taking the L2 inner product of (1.3) with (−�u, −�w) leads to

1

2

d

dt

(
‖∇u(t)‖2

L2 + ‖∇w(t)‖2
L2

)
+ κ‖∇u(t)‖2

L2 + γ ‖�w(t)‖2
L2 + 4κ‖∇w(t)‖2

L2

=
∫
R2

(2κ(∇ × w) · (−�u) + 2κ(∇ × u)(−�w))dx +
∫
R2

u · ∇w (−�w)dx

≡ I1 + I2, (2.3)

where we have used the fact ∫
R2

(u · ∇u) · �u dx = 0.

To estimate I1, we integrate by parts and apply Hölder’s inequality to obtain

∫
R2

(2κ(∇ × w) · (−�u) + 2κ(∇ × u)(−�w))dx

≤ 4κ‖∇u(t)‖L2‖�w(t)‖L2 ≤ 16κ2

γ
‖∇u(t)‖2

L2 + γ

4
‖�w(t)‖2

L2 .

By Sobolev’s inequality,

∫
R2

u · ∇w (−�w)dx

≤

∣∣∣∣∣∣∣
∫
R2

∇u · ∇w ∇wdx

∣∣∣∣∣∣∣≤ ‖∇u‖L2‖∇w‖2
L4

≤ ‖∇u‖L2‖∇w‖L2‖�w‖L2 ≤ γ

4
‖�w(t)‖2

L2 + 1

γ
‖∇u‖2

L2‖∇w‖2
L2 .

Inserting the bounds for I1 and I2 in (2.3) gives
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d

dt

(
‖∇u(t)‖2

L2 + ‖∇w(t)‖2
L2

)
+ γ ‖� w(t)‖2

L2

≤ 32κ2 + 2

γ

(
‖∇u(t)‖2

L2 + ‖∇w(t)‖2
L2

)(
‖∇w‖2

L2 + 1
)

.

Gronwall inequality implies, for 0 < t < ∞,

‖∇u(t)‖2
L2 + ‖∇w(t)‖2

L2 + γ

t∫
0

‖�w(τ)‖2
L2τ

≤ exp

⎛⎝32κ2 + 2

γ

t∫
0

(
‖∇w(τ)‖2

L2 + 1
)

dτ

⎞⎠(‖∇u0‖2
L2 + ‖∇w0‖2

L2

)

≤ exp

{
32κ2 + 2

γ 2
e

16κ2
γ

t
(
‖u0‖2

L2 + ‖w0‖2
L2

)}
exp

{
32κ2 + 2

γ
t

}(
‖∇u0‖2

L2 + ‖∇w0‖2
L2

)
� C eC t eC eC t

.

This completes the proof of Proposition 2.1. �
2.2. W 2,q -bound for w and Lq -bound for � = ∇ × u with q ∈ (1, ∞)

This subsection presents the global bound for ‖�w‖L2
t L

q
x

and ‖�‖L∞
t L

q
x

with q ∈ (1, ∞). To 
obtain these global bounds, we combine the maximal regularity property of the heat operator and 
energy estimates. We remark this step does not allow us to obtain the global bounds for q = ∞.

Proposition 2.2. Assume that u0 and w0 satisfy the conditions in Theorem 1.1. Then the cor-
responding solution (u, w) admits the following global bounds, for any q ∈ (1, ∞) and any 
0 < t < ∞,

‖�w‖L2(0,t;Lq), ‖�‖L∞(0,t;Lq) ≤ C eC t eC eC t

, (2.4)

where C’s are constants depending only on q , κ , γ and ‖(u0, w0)‖H 2 .

To prove this proposition, we recall the maximal regularity property for the heat kernel (see, 
e.g., [1], [15, p. 64]).

Lemma 2.3. The operator A defined by

Af (t) ≡
t∫

0

�e�(t−τ) f (τ ) dτ

maps Lp(0, T ; Lq(Rd)) to Lp(0, T ; Lq(Rd)) for any T ∈ (0, ∞] and p, q ∈ (1, ∞).
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We are now ready to prove Proposition 2.2.

Proof of Proposition 2.2. We write the second equation of (1.3) as

w(t) = eγ�tw0 +
t∫

0

eγ�(t−τ) (2κ∇ × u − 4κw − u · ∇w) dτ.

Applying Lemma 2.3 with p = 2 and 2 ≤ q < ∞ yields

t∫
0

‖�w‖2
Lq dτ ≤ C

t∫
0

(
‖∇ × u‖2

Lq + ‖w‖2
Lq + ‖u · ∇w‖2

Lq

)
dτ. (2.5)

By (2.1), (2.2) and Sobolev embedding inequalities,

t∫
0

‖w(τ)‖2
Lq dτ ≤ C

t∫
0

‖∇w(τ)‖2
L2dτ ≤ C

γ
e

16κ2
γ

t
(
‖u0‖2

L2 + ‖w0‖2
L2

)
≤ C eC t

and

t∫
0

‖u · ∇w‖2
Lq dτ ≤

t∫
0

‖u‖2
L2q ‖∇w‖2

L2q dτ

≤ C

t∫
0

‖∇u‖2
L2‖�w‖2

L2dτ ≤ C sup
0≤s≤t

‖∇u(s)‖2
L2

t∫
0

‖�w‖2
L2ds

≤ C eC t eC eC t

,

where we have invoked the global bound in Proposition 2.1. Inserting the two inequalities above 
in (2.5), we have

t∫
0

‖�w‖2
Lq ds ≤ C

t∫
0

‖∇ × u‖2
Lq ds + C eC t eC eC t

. (2.6)

Since we do not have a global bound for 
∫ t

0 ‖∇ × u‖2
Lq ds, we need to estimate ∇ × u simulta-

neously. Writing � = ∇ × u and applying the operator ∇× to the velocity equation in (1.3), we 
obtain

∂t� + κ� + 2κ�w + u · ∇� = 0.

Multiplying by |�|q−2� and integrating on R2 lead to
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1

q

d

dt
‖�(t)‖q

Lq + κ‖�(t)‖q
Lq

= 2κ

∫
R2

(−�w)|�|q−2�dx ≤ 2κ‖�w‖Lq ‖�‖q−1
Lq ,

where we have used the fact ∫
R2

(u · ∇�) |�|q−2� dx = 0.

Integrating the inequality above in time and invoking (2.6), we have

‖�(t)‖2
Lq + κ

t∫
0

‖�(τ)‖2
Lq dτ ≤ ‖�0‖2

Lq + C

t∫
0

(
‖�w(τ)‖2

Lq + ‖�(τ)‖2
Lq

)
dτ

≤ C eC t eC eC t + C

t∫
0

‖�(τ)‖2
Lq dτ (2.7)

where we have used the fact that, for s > 2,

‖�0‖Lq ≤ C ‖u0‖Hs .

Applying Gronwall’s inequality gives

sup
0<t<∞

‖�(t)‖2
Lq + κ

t∫
0

‖�(τ)‖2
Lq dτ ≤ C t eC t eC eC t

for 2 < q < ∞.

This global bound, together with (2.6), yields W 2,q-bound for w

‖�w‖L2(0,t; Lq(R2)) ≤ C t eC t eC eC t

for 2 ≤ q < ∞. (2.8)

This completes the proof of Proposition 2.2. �
2.3. L∞-bound for the vorticity ∇ × u

This subsection makes use of the structure of the micropolar equation to obtain a global bound 
for the L∞-norm of � = ∇ × u. As a consequence, we obtain the global Hs-bound for u and w.

Proposition 2.4. Assume that u0 and w0 satisfy the conditions in Theorem 1.1. Then the corre-
sponding solution (u, w) admits the following global bounds, for any 0 < t < ∞,

‖�(t)‖L∞ ≤ C t eC t eC eC t

, ‖u(t)‖Hs , ‖w(t)‖Hs ≤ C eeteC t eC eC t

.
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Proof. We set Z = � + 2κ
γ

w. By combing the equation of �

∂t� + u · ∇� + κ� = −2κ�w

and that of w, we find

∂tZ + u · ∇Z +
(

κ − 4κ2

γ

)
Z +

(
8κ3

γ 2
+ 6κ2

γ

)
w = 0. (2.9)

Multiplying (2.9) by |Z|p−2Z with 2 ≤ p < ∞ and integrating in R2, we have

1

p

d

dt
‖Z(t)‖p

Lp ≤

∣∣∣∣∣∣∣
∫
R2

[(
κ − 4κ2

γ

)
Z +

(
8κ3

γ 2
+ 6κ2

γ

)
w

]
|Z|p−2Zdx

∣∣∣∣∣∣∣
≤ c1‖Z‖p

Lp + c2‖w‖Lp‖Z‖p−1
Lp , (2.10)

where we have used ∫
R2

(u · ∇Z) |Z|p−2Z dx = 0

and set

c1 =
∣∣∣∣κ − 4κ2

γ

∣∣∣∣ , c2 =
∣∣∣∣8κ3

γ 2
+ 6κ2

γ

∣∣∣∣ .
We simplify (2.10) and then integrate in time to obtain

‖Z(t)‖Lp ≤ ‖Z(0)‖Lp + c1

t∫
0

‖Z(τ )‖Lpdτ + c2

t∫
0

‖w(τ)‖Lpdτ, 2 ≤ p < ∞. (2.11)

Gronwall’s inequality then implies

‖Z(t)‖Lp ≤ ec1 t

⎛⎝‖Z(0)‖Lp + c2

t∫
0

‖w(τ)‖Lpdτ

⎞⎠ .

Since c1 and c2 are independent of p, we obtain by letting p → ∞,

‖Z(t)‖L∞ ≤ ec1 t

⎛⎝‖Z(0)‖L∞ + c2

t∫
0

‖w(τ)‖L∞dτ

⎞⎠ .

By the Gagliardo–Nirenberg inequality, (2.1) and (2.2), we obtain
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t∫
0

‖w(τ)‖L∞dτ ≤
t∫

0

‖w(τ)‖1/2
L2 ‖�w(τ)‖1/2

L2 dτ ≤ C t eC t eC eC t

.

Consequently,

‖Z(t)‖L∞ ≤ C t eC t eC eC t

and

‖�(t)‖L∞ ≤ ‖Z(t)‖L∞ + ‖w(t)‖L∞ ≤ C t eC t eC eC t

.

To show the global bound for (u, w) in Hs , we start with the energy inequality

1

2

d

dt

(
‖u‖2

Hs + ‖w‖2
Hs

)
+ κ‖u‖2

Hs + γ ‖∇w‖2
Hs

= 2κ

∫
R2

{(∇ × w) · (−�)su + (∇ × u)(−�)sw} dx

+
∫
R2

[�s,u · ∇]u · �sudx +
∫
R2

[�s,u · ∇]w · �swdx,

where �s = (−�)s/2 and [a, b] is the standard commutator notation, namely [a, b] = ab − ba. 
The first two terms on the right can be bounded by

2κ

∫
R2

{(∇ × w) · (−�)su + (∇ × u)(−�)sw} dx ≤ 8κ2

γ
‖u‖2

Hs + γ

2
‖∇w‖2

Hs .

Invoking the commutator estimate

‖[�s,f ]g‖Lp ≤ C‖∇f ‖Lq ‖�s−1g‖Lr + C ‖∇sf ‖Lq1 ‖g‖Lr1

where s > 0, p, r, q1 ∈ (1, ∞), q, r1 ∈ [1, ∞] and 1/p = 1/q + 1/r = 1/q1 + 1/r1, we have∫
R2

[�s,u · ∇]u · �sudx +
∫
R2

[�s,u · ∇]w · �swdx

≤ C (‖∇u‖L∞ + ‖∇w‖L∞)
(
‖u‖2

Hs + ‖w‖2
Hs

)
.

Combining these estimates yields

d

dt

(
‖u‖2

Hs + ‖w‖2
Hs

)
+ 2κ‖u‖2

Hs + γ ‖∇w‖2
Hs

≤ C (1 + ‖∇u‖L∞ + ‖∇w‖L∞)
(
‖u‖2

Hs + ‖w‖2
Hs

)
.
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Invoking the logarithmic interpolation inequality

‖∇u‖L∞ ≤ C (1 + ‖u‖L2) + ‖�‖L∞ log(e + ‖u‖Hs )

and applying the global bounds for the time integral of ‖�w‖Lq (as in Proposition 2.2) and for 
‖�‖L∞ , we obtain the desired global Hs bound. This completes the proof of Proposition 2.4. �

With the global bounds in the previous propositions at our disposal, we are ready to prove 
Theorem 1.1.

Proof of Theorem 1.1. The proof is achieved via a standard procedure. One starts with the reg-
ularized micropolar equation, for small ε > 0,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tu
ε − ε�uε + κuε − 2κ∇ × wε + ∇πε + uε · ∇uε = 0,

∇ · uε = 0,

∂tw
ε − γ�wε + 4κwε − 2κ∇ × uε + uε · ∇wε = 0,

(uε,wε)(x,0) = (u0 ∗ φε, w0 ∗ φε) = (uε
0,w

ε
0)

(2.12)

where φε is the standard mollifier, namely

0 ≤ φε(x) = 1

ε2
φ(

|x|
ε

), φ ∈ C∞
0 (R2), suppφ ⊂ {x||x| < 1},

∫
φ(x)dx = 1.

Following the lines as those in the proofs of Proposition 2.1, Proposition 2.2 and Proposition 2.4, 
we can establish the global bound, for any t ∈ (0, ∞),

‖uε‖2
Hs + ‖wε‖2

Hs + γ

t∫
0

‖∇wε‖2
Hs ≤ C eeteC t eC eC t

. (2.13)

A standard compactness argument allows us to obtain the global existence of the classical so-
lution (u, w) to (1.3). The uniqueness can be easily established. In fact, we show that any 
two solutions (u1, w1) and (u2, w2) to (1.3) must be the same. The difference (U, W) with 
U = u1 − u2 and W = w1 − w2 satisfies⎧⎪⎨⎪⎩

∂tU + κU − 2κ∇ × W + ∇π + U · ∇u1 + u2 · ∇U = 0,

∇ · U = 0,

∂tW − γ�W + 4κW − 2κ∇ × U + U · ∇w1 + u2 · ∇W = 0.

(2.14)

Taking the L2 inner product of (U, W) with (2.14), we have

d

dt

(
‖U‖2

L2 + ‖W‖2
L2

)
+ 2κ‖U‖2

L2 + 2γ ‖∇W‖2
L2 + 8κ‖W‖2

L2

= 4κ

∫
2

(∇ × W · U + ∇ × UW)dx
R
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− 2
∫
R2

(U · ∇u1) · Udx − 2
∫
R2

(U · ∇w1)Wdx

≤ 8κ‖U‖L2‖∇W‖L2 + 2‖∇u1‖L∞‖U‖2
L2 + 2‖U‖L2‖∇w1‖L∞‖W‖L2

≤ γ ‖∇W‖2
L2 + 2 (‖∇u1‖L∞ + ‖∇w1‖L∞) (‖U‖2

L2 + ‖W‖2
L2)

≤ γ ‖∇W‖2
L2 + 2 (‖u1‖Hs + ‖w1‖Hs ) (‖U‖2

L2 + ‖W‖2
L2)

≤ γ ‖∇W‖2
L2 + ctect ecect

(‖U‖2
L2 + ‖W‖2

L2).

Gronwall’s inequality then implies

‖U(t)‖2
L2 + ‖W(t)‖2

L2 ≤
(
‖U0‖2

L2 + ‖W0‖2
L2

)
ectect ecect

,

which yields the uniqueness. This completes the proof of Theorem 1.1. �
3. Proof of Theorem 1.2

This section proves Theorem 1.2, which provides large-time decay rates for ‖∇u(t)‖L2 , 
‖∇w(t)‖2

L2 and ‖u(t)‖L2 .
The following Lp − Lq type estimate for the heat operator will be frequently used.

Lemma 3.1. Let 1 ≤ p ≤ q ≤ ∞. Let β be a multi-index. For any t > 0, the heat operator e�t

and ∂β
x e�t are bounded from Lp to Lq . Further, for any f ∈ Lp(Rd),

‖e�tf ‖Lq(Rd ) ≤ C1 t
− d

2 ( 1
p

− 1
q
) ‖f ‖Lp(Rd )

and

‖∂β
x e�tf ‖Lq(Rd ) ≤ C2 t

− |β|
2 − d

2 ( 1
p

− 1
q
) ‖f ‖Lp(Rd ),

where C1 = C1(p, q) and C2 = C2(β, p, q) are constants.

Proof of Theorem 1.2. We take the L2-inner product of (1.6) with (u, w) to obtain

1

2

d

dt

(
‖u(t)‖2

L2 + ‖w(t)‖2
L2

)
+ κ‖u(t)‖2

L2 + γ ‖∇w(t)‖2
L2

=
∫
R2

{2κ(∇ × w) · u + 2κ(∇ × u)w}dx

≤ 4κ‖u‖L2‖∇w‖L2 ≤ 8κ2

γ + 4κ
‖u(t)‖2

L2 + γ + 4κ

2
‖∇w(t)‖2

L2,

which yields

d (‖u(t)‖2
L2 + ‖w(t)‖2

L2

)
+ 2κ(γ − 4κ)‖u(t)‖2

L2 + (γ − 4κ)‖∇w(t)‖2
L2 ≤ 0.
dt γ + 4κ
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Since γ > 4κ , we obtain by integrating in time,

t∫
s

‖u(τ)‖2
L2dτ ≤ γ + 4κ

2κ(γ − 4κ)

(
‖u(s)‖2

L2 + ‖w(s)‖2
L2

)
, 0 ≤ s ≤ t ≤ ∞ (3.1)

and

t∫
s

‖∇w(τ)‖2
L2dτ ≤ 1

γ − 4κ

(
‖u(s)‖2

L2 + ‖w(s)‖2
L2

)
, 0 ≤ s ≤ t ≤ ∞. (3.2)

We further take the L2-inner product of (1.6) with (−�u, −�w) to obtain

1

2

d

dt

(
‖∇u(t)‖2

L2 + ‖∇w(t)‖2
L2

)
+ κ‖∇u(t)‖2

L2 + γ ‖�w(t)‖2
L2

=
∫
R2

(2κ(∇ × w) · (−�u) + 2κ(∇ × u)(−�w))dx −
∫
R2

u · ∇w (−�w)dx

= 4κ

∫
R2

(∇ × u)(−�w)dx −
∫
R2

∇u · ∇w (∇w)dx.

By Young’s inequality,∣∣∣∣∣∣∣4κ

∫
R2

(∇ × u)(−�w)dx

∣∣∣∣∣∣∣≤
16κ2

γ + 12κ
‖∇u(t)‖2

L2 + γ + 12κ

4
‖�w(t)‖2

L2 .

By Sobolev’s inequality,∣∣∣∣∣∣∣
∫
R2

∇u · ∇w (∇w)dx

∣∣∣∣∣∣∣≤‖∇u‖L2 ‖∇w‖2
L4 ≤ ‖∇u‖L2 ‖∇w‖L2‖�w‖L2

≤ γ − 4κ

4
‖�w(t)‖2

L2 + 1

γ − 4κ
‖∇u‖2

L2‖∇w‖2
L2 .

Therefore,

d

dt

(
‖∇u(t)‖2

L2 + ‖∇w(t)‖2
L2

)
+ 2κ(γ − 4κ)

γ + 12κ
‖∇u(t)‖2

L2 + (γ − 4κ)‖�w(t)‖2
L2

≤ 2

γ − 4κ
‖∇w‖2

L2(‖∇u‖2
L2 + ‖∇w‖2

L2). (3.3)

Applying Gronwall’s inequality and using (3.2), we have
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‖∇u(t)‖2
L2 + ‖∇w(t)‖2

L2

≤ exp

⎧⎨⎩ 2

γ − 4κ

t∫
s

‖∇w(τ)‖2
L2dτ

⎫⎬⎭(‖∇u(s)‖2
L2 + ‖∇w(s)‖2

L2

)

≤ exp

⎧⎨⎩ 2

γ − 4κ

t∫
0

‖∇w(τ)‖2
L2dτ

⎫⎬⎭(‖∇u(s)‖2
L2 + ‖∇w(s)‖2

L2

)

≤ exp

{
2

(γ − 4κ)2
(‖u0‖2

L2 + ‖w0‖2
L2)

}(
‖∇u(s)‖2

L2 + ‖∇w(s)‖2
L2

)
(3.4)

for 0 ≤ s ≤ t ≤ ∞. Integrating (3.3) in time and applying (3.2) and (3.4), we have

∞∫
0

‖∇u(τ)‖2
L2dτ

≤ γ + 12κ

κ(γ − 4κ)2

∞∫
0

‖∇w(τ)‖2
L2

(
‖∇u(τ)‖2

L2 + ‖∇w(τ)‖2
L2

)
dτ

≤ γ + 12κ

κ(γ − 4κ)2

∞∫
0

‖∇w(τ)‖2
L2dτ

× exp

{
2

(γ − 4κ)2
(‖u0‖2

L2 + ‖w0‖2
L2)

}(
‖∇u0‖2

L2 + ‖∇w0‖2
L2

)
≤ γ + 12κ

κ(γ − 4κ)3

(
‖u0‖2

L2 + ‖w0‖2
L2

)
× exp

{
2

(γ − 4κ)2
(‖u0‖2

L2 + ‖w0‖2
L2)

}(
‖∇u0‖2

L2 + ‖∇w0‖2
L2

)
. (3.5)

Thus combining (3.2) and (3.5) gives

∞∫
0

(
‖∇u(τ)‖2

L2 + ‖∇w(τ)‖2
L2

)
dτ ≤

(
‖u0‖2

L2 + ‖w0‖2
L2

)

×
{

γ + 12κ

κ(γ − 4κ)3
exp

{
2(‖u0‖2

L2 + ‖w0‖2
L2)

(γ − 4κ)2

}(
‖∇u0‖2

L2 + ‖∇w0‖2
L2

)
+ 1

γ − 4κ

}
.

A special consequence is that
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t∫
t
2

(
‖∇u(τ)‖2

L2 + ‖∇w(τ)‖2
L2

)
dτ → 0 as t → ∞. (3.6)

Furthermore, by (3.4),

t

2
exp

{ −2

(γ − 4κ)2
(‖u0‖2

L2 + ‖w0‖2
L2)

}(
‖∇u(t)‖2

L2 + ‖∇w(t)‖2
L2

)

≤
t∫

t
2

(
‖∇u(τ)‖2

L2 + ‖∇w(τ)‖2
L2

)
dτ,

which yields the desired decay rate

(1 + t)
(
‖∇u(t)‖2

L2 + ‖∇w(t)‖2
L2

)
→ 0 as t → ∞. (3.7)

We now make use of this decay rate in (3.7) to derive the decay rate for ‖u(t)‖2. Taking the 
L2-inner product of the velocity equation in (1.6) with u gives

1

2

d

dt
‖u(t)‖2

L2 + κ‖u(t)‖2
L2 =

∫
R2

2κ(∇ × w) · udx ≤ 2κ‖u‖L2‖∇w‖L2 .

Integrating in time yields

‖u(t)‖2
L2 ≤ e−2κt‖u0‖2

L2 + 4κ

t∫
0

e−2κ(t−s)‖u(s)‖L2‖∇w(s)‖L2ds

= e−2κt‖u0‖2
L2 + 4κ

t
2∫

0

e−2κ(t−s)‖u(s)‖L2‖∇w(s)‖L2ds

+ 4κ

t∫
t
2

e−2κ(t−s)‖u(s)‖L2‖∇w(s)‖L2ds. (3.8)

The first time integral decays exponentially in time, more precisely,

4κ

t
2∫

0

e−2κ(t−s)‖u(s)‖L2‖∇w(s)‖L2ds

≤ 4κe−κt

t
2∫
‖u(s)‖L2‖∇w(s)‖L2ds
0
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≤ 4κe−κt

⎛⎜⎝
t
2∫

0

‖∇w(s)‖2
L2ds

⎞⎟⎠
1
2
⎛⎜⎝

t
2∫

0

‖u(s)‖2
L2ds

⎞⎟⎠
1
2

≤ C

√
γ + 4κ

2κ(γ − 4κ)2

(
‖u0‖2

L2 + ‖w0‖2
L2

)
e−κt ≤ C e−κt ,

where C depends on κ , γ and ‖(u0, w0)‖L2 . (3.8) is then reduced to

‖u(t)‖2
L2 ≤ C e−κt + 2κ

t∫
t
2

e−2κ(t−s)‖u(s)‖L2‖∇w(s)‖L2ds. (3.9)

Multiplying (3.9) by (1 + t) yields

(1 + t)‖u(t)‖2
L2 ≤ C (1 + t)e−κt

+ 2κ(1 + t)

t∫
t
2

e−2κ(t−s)(1 + s)−1
(
(1 + s)

1
2 ‖u(s)‖L2(1 + s)

1
2 ‖∇w(s)‖L2

)
ds,

which would allow us to show that

(1 + t)
1
2 ‖u(t)‖L2 → 0 as t → ∞. (3.10)

We first show that (1 + t)
1
2 ‖u(t)‖L2 ≤ C for all t ≥ 0 and then show (3.10). Writing

M(t) = sup
0≤s≤t

{
(1 + s)

1
2 ‖u(s)‖L2

}
and using the uniform bounds (1 + t)e−κt ≤ C and (1 + t)

1
2 ‖∇w(t)‖L2 ≤ C, we have

M2(t) ≤ C + 2κ(1 + t)M(t)

t∫
t
2

e−2κ(t−s)(1 + s)−1ds

≤ C + CM(t) ≤ 1

2
M2(t) + C,

which implies the uniform bound M(t) ≤ C for all t ≥ 0. We then show (3.10). If we use this 
uniform bound, we have

(1 + t)‖u(t)‖2
L2 ≤ C (1 + t)e−κt + 2κ(1 + t)M(t) N (t)

t∫
t
2

e−2κ(t−s)(1 + s)−1ds

≤ C (1 + t)e−κt + CN (t) → 0 as t → ∞,
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where we have used the fact (see (3.7)) that

N (t) ≡ sup
t
2 ≤s≤t

{
(1 + t)

1
2 ‖∇w(t)‖L2

}
→ 0 as t → ∞.

This completes the proof of Theorem 1.2. �
4. Proofs of Proposition 1.3 and Theorem 1.4

This section is devoted to the proofs of Proposition 1.3 and Theorem 1.4. We first explain why 
it is hard to derive a decay rate for ‖w(t)‖L2 via the standard approach. In fact, if we write the 
equation of w in (1.6) as

w(t) = eγ t�w0 + 2κ

t∫
0

eγ (t−s)�∇ × u(s) ds −
t∫

0

eγ (t−s)�(u · ∇w)(s) ds

and estimate ‖w(t)‖L2 directly, we would have trouble extracting an explicit decay rate for the 
linear term

t∫
0

eγ (t−s)�∇ × u(s) ds

if we only know that (1 + t)
1
2 ‖∇ × u(t)‖L2 → 0 as t → ∞. In order to obtain a decay rate for 

‖w(t)‖L2 , we need to diagonalize the system in (1.8), namely{
∂t� + κ� + u · ∇� + 2κ�w = 0,

∂tw − γ�w − 2κ∇ × u + u · ∇w = 0
(4.1)

to remove the linear part. The process appears to be complex, but it offers a general framework 
for handling similar and more general situations. The details are in the proof of Proposition 1.3.

Proof of Proposition 1.3. We rewrite (4.1) in the Fourier space as

[
∂t �̂(ξ)

∂t ŵ(ξ)

]
=
[−κ 2κ|ξ |2

2κ −γ |ξ |2
][

�̂(ξ)

ŵ(ξ)

]
+
[

−û · ∇�(ξ)

−û · ∇w(ξ)

]
, (4.2)

where we have suppressed the t -variable for notational brevity. The corresponding characteristic 
equation

λ2 + (κ + γ |ξ |2)λ + (κγ − 4κ2)|ξ |2 = 0,

whose roots are given by



B.-Q. Dong et al. / J. Differential Equations 262 (2017) 3488–3523 3509
λ1,2 = −(κ + γ |ξ |2) ±√(κ + γ |ξ |2)2 − 4(κγ − 4κ2)|ξ |2
2

= −(κ + γ |ξ |2) ±√(κ − γ |ξ |2)2 + 16κ2|ξ |2
2

.

λ1 denotes the one with the negative sign in the front of the square root sign. It is easy to check 
that, if γ > 4κ ,

λ1,2 < 0.

Otherwise one of the eigenvalues may be zero or positive. The associated eigenvectors are given 
by

f =
[

2κ|ξ |2
λ1 + κ

]
, g =

[
2κ|ξ |2
λ2 + κ

]
.

f and g are independent and

[−κ 2κ|ξ |2
2κ −γ |ξ |2

]
[f g] = [f g]

[
λ1 0
0 λ2

]
.

The inverse of the matrix [f g] is given by

[f g]−1 = 1

2κ|ξ |2√(κ − γ |ξ |2)2 + 16κ2|ξ |2
[

λ2 + κ −2κ|ξ |2
−(λ1 + κ) 2κ|ξ |2

]
. (4.3)

If we define [
Â

B̂

]
= [f g]−1

[
�̂

ŵ

]
(4.4)

Then Â and B̂ satisfy

[
∂t Â(ξ)

∂t B̂(ξ)

]
=
[

λ1 0
0 λ2

][
Â(ξ)

B̂(ξ)

]
+ [f g]−1

[
−û · ∇�(ξ)

−û · ∇w(ξ)

]
.

Invoking (4.3), we have

∂t Â(ξ) = λ1 Â(ξ) + F̂1(ξ),

∂t B̂(ξ) = λ2 B̂(ξ) + F̂2(ξ), (4.5)

where
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F̂1(ξ) = −(λ2 + κ)û · ∇�(ξ) + 2κ|ξ |2 û · ∇w(ξ)

2κ|ξ |2√(κ − γ |ξ |2)2 + 16κ2|ξ |2 ,

F̂2(ξ) = (λ1 + κ)û · ∇�(ξ) − 2κ|ξ |2 û · ∇w(ξ)

2κ|ξ |2√(κ − γ |ξ |2)2 + 16κ2|ξ |2 .

We further write (4.5) in the integral form,

Â(ξ, t) = eλ1(ξ)t Â(ξ,0) +
t∫

0

eλ1(ξ)(t−τ) F̂1(ξ, τ ) dτ, (4.6)

B̂(ξ, t) = eλ2(ξ)t B̂(ξ,0) +
t∫

0

eλ2(ξ)(t−τ) F̂2(ξ, τ ) dτ, (4.7)

where, according to (4.4),

Â(ξ,0) = (λ2 + κ)�̂0(ξ) − 2κ|ξ |2 ŵ0(ξ)

2κ|ξ |2√(κ − γ |ξ |2)2 + 16κ2|ξ |2 ,

B̂(ξ,0) = −(λ1 + κ)�̂0(ξ) + 2κ|ξ |2 ŵ0(ξ)

2κ|ξ |2√(κ − γ |ξ |2)2 + 16κ2|ξ |2 .

We can then find �̂ and ŵ via (4.4),[
�̂

ŵ

]
= [f g]

[
Â

B̂

]
=
[

2κ|ξ |2(Â + B̂)

(λ1 + κ)Â + (λ2 + κ)B̂

]
. (4.8)

To obtain a more explicit representation for �̂ and ŵ, we give more explicit representations of 
λ1 + κ , λ2 + κ , Â(ξ, 0), B̂(ξ, 0), F̂1(ξ) and F̂2(ξ),

λ1 + κ = κ − γ |ξ |2
2

− 1

2

√
(κ − γ |ξ |2)2 + 16κ2|ξ |2,

λ2 + κ = κ − γ |ξ |2
2

+ 1

2

√
(κ − γ |ξ |2)2 + 16κ2|ξ |2,

Â(ξ,0) = 1

4κ|ξ |2
(

κ − γ |ξ |2√
(κ − γ |ξ |2)2 + 16κ2|ξ |2 + 1

)
�̂0(ξ)

− ŵ0(ξ)√
(κ − γ |ξ |2)2 + 16κ2|ξ |2 ,

B̂(ξ,0) = −1

4κ|ξ |2
(

κ − γ |ξ |2√
(κ − γ |ξ |2)2 + 16κ2|ξ |2 − 1

)
�̂0(ξ)

+ ŵ0(ξ)√
(κ − γ |ξ |2)2 + 16κ2|ξ |2 ,
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F̂1(ξ) = −1

4κ|ξ |2
(

κ − γ |ξ |2√
(κ − γ |ξ |2)2 + 16κ2|ξ |2 + 1

)
û · ∇�(ξ)

+ û · ∇w(ξ)√
(κ − γ |ξ |2)2 + 16κ2|ξ |2 ,

F̂2(ξ) = 1

4κ|ξ |2
(

κ − γ |ξ |2√
(κ − γ |ξ |2)2 + 16κ2|ξ |2 − 1

)
û · ∇�(ξ)

− û · ∇w(ξ)√
(κ − γ |ξ |2)2 + 16κ2|ξ |2 .

Combining the formulas above and (4.6), (4.7) and (4.8), we are then led to the desired represen-
tation in Proposition 1.3. This completes the proof of Proposition 1.3. �

We now prove Theorem 1.4.

Proof of Theorem 1.4. We now use (1.12) in Proposition 1.3 to extract the decay rate for 
‖w(t)‖L2 . To do so, we note the following uniform bounds,

|D1(ξ)| ≤ 1, |D3(ξ)| ≤ 1, |D4(ξ)| ≤ C(κ, γ ),

where C(κ, γ ) is a constant depending on κ and γ only. The bound for D1 and D3 is obvious 
and the bound for D4 can be seen as follows,

D4(ξ) ≤
{

4, if γ |ξ |2 ≤ κ/2,√
γ /(2κ), if γ |ξ |2 > κ/2.

We now estimate the terms in the representation of ŵ in (1.12). We start with the first term. Using 
the fact that

λ1 ≤ −κ + γ |ξ |2
2

,

we have ∥∥∥ eλ1(ξ)t
(−D4(ξ) �̂0(ξ) + D3(ξ) ŵ0(ξ)

)∥∥∥
L2

≤C(κ, γ ) e− κ
2 t

∥∥∥∥e− |ξ |2
2 t
(|�̂0(ξ)| + |ŵ0(ξ)|)∥∥∥∥

L2

≤C(κ, γ ) (‖u0‖L2 + ‖w0‖L2) e− κ
2 t ,

where we have used the fact that

|�̂0(ξ)| ≤ |ξ | |̂u0(ξ)|.
To estimate the second term in (1.12), we note that
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λ2(ξ) = −(κ + γ |ξ |2) +√(κ − γ |ξ |2)2 + 16κ2|ξ |2
2

= 2κ (4κ − γ ) |ξ |2
κ + γ |ξ |2 +√(κ − γ |ξ |2)2 + 16κ2|ξ |2

≤ κ (4κ − γ ) |ξ |2
κ + γ |ξ |2 ,

where we have used the following facts in the last inequality,

4κ < γ, κ + γ |ξ |2 ≥
√

(κ − γ |ξ |2)2 + 16κ2|ξ |2.

Therefore, for small |ξ |, λ2 behaves like the heat operator, and for large |ξ |, it behaves like the 
exponential decay operator. More precisely,

λ2(ξ) ≤
{ 1

2 (4κ − γ )|ξ |2, if γ |ξ |2 ≤ κ,

κ(4κ−γ )
2γ

, if γ |ξ |2 > κ.
(4.9)

Therefore,

‖eλ2(ξ)t D4(ξ) �̂0(ξ)‖L2

≤‖eλ2(ξ)t �̂0(ξ)‖L2({ξ : γ |ξ |2≤κ}) + ‖eλ2(ξ)t �̂0(ξ)‖L2({ξ : γ |ξ |2>κ})

≤
∥∥∥e 1

2 (4κ−γ )|ξ |2 t |ξ | |̂u0(ξ)|
∥∥∥

L2({ξ : γ |ξ |2≤κ}) +
∥∥∥∥e κ(4κ−γ )

2γ
t |�̂0(ξ)|

∥∥∥∥
L2({ξ : γ |ξ |2>κ})

≤C t−
1
2 ‖u0‖L2 + C e

κ(4κ−γ )
2γ

t ‖�0‖L2 ≤ C t−
1
2 ‖u0‖H 1

for t ≥ 1. We can bound ‖eλ2(ξ)t D1(ξ) ̂w0(ξ)‖L2 similarly. In fact,

‖eλ2(ξ)t D1(ξ) ŵ0‖L2

≤‖eλ2(ξ)t ŵ0(ξ)‖L2({ξ : γ |ξ |2≤κ}) + ‖eλ2(ξ)t ŵ0(ξ)‖L2({ξ : γ |ξ |2>κ})

≤
∥∥∥e 1

2 (4κ−γ )|ξ |2 t |ŵ0(ξ)|
∥∥∥

L2({ξ : γ |ξ |2≤κ}) +
∥∥∥∥e κ(4κ−γ )

2γ
t |ŵ0(ξ)|

∥∥∥∥
L2({ξ : γ |ξ |2>κ})

for t ≥ 1. When the initial data w0 ∈ L1(R2), or more generally, w0 satisfies, for t > 0,

‖e�tw0‖L2 ≤ C t−
1
2 , (4.10)

we can easily show that

‖eλ2(ξ)t D1(ξ) ŵ0(ξ)‖L2 ≤ C t−
1
2 .

We now turn to the third term in (1.12). Splitting the time integral into two parts, we have
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∥∥∥∥∥∥
t∫

0

eλ1(ξ)(t−τ) D4(ξ) û · ∇�(ξ)dτ

∥∥∥∥∥∥
L2

≤
t∫

0

∥∥∥eλ1(ξ)(t−τ) û · ∇�(ξ, τ )

∥∥∥
L2

dτ

≤
t∫

0

∥∥∥e− 1
2 (κ+γ |ξ |2)(t−τ) û · ∇�(ξ, τ )

∥∥∥
L2

dτ

=
t
2∫

0

· · · +
t∫

t
2

· · · . (4.11)

The first time integral decays exponentially. In fact, by Lemma 3.1,

t
2∫

0

∥∥∥e− 1
2 (κ+γ |ξ |2)(t−τ) û · ∇�(ξ, τ )

∥∥∥
L2

dτ

≤ e− 1
4 κt

t
2∫

0

∥∥∥e− 1
2 γ |ξ |2(t−τ) û · ∇�(ξ, τ )

∥∥∥
L2

dτ

≤C e− 1
4 κt

t
2∫

0

(t − τ)−1‖u(τ)‖L2 ‖�(τ)‖L2 dτ

≤C e− 1
4 κt (1 + t)−1 ln(1 + t), (4.12)

where we have used the uniform bounds

(1 + t)
1
2 ‖u(t)‖L2 ≤ C and (1 + t)

1
2 ‖�(t)‖L2 ≤ C.

We now estimate the second time integral in (4.11). For any ε > 0 small, by Lemma 3.1,

t∫
t
2

e− κ
2 (t−τ)

∥∥∥e− 1
2 γ |ξ |2(t−τ)û · ∇�(ξ, τ )

∥∥∥
L2

dτ

≤C

t∫
t

e− κ
2 (t−τ) (t − τ)−1+ε ‖u(τ)�(τ)‖

L
1

1−ε
dτ
2
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≤C

t∫
t
2

e− κ
2 (t−τ) (t − τ)−1+ε ‖�(τ)‖1+2ε

L2 ‖u(τ)‖1−2ε

L2 dτ

≤C t−1+ε, (4.13)

where C = C(ε, κ, γ ) is a constant. The estimate for the part

t∫
0

eλ1(ξ)(t−τ) D3(ξ)û · ∇w(ξ)dτ

is very similar, although the decay rate is not as fast. As in (4.12), we have

t
2∫

0

‖eλ1(ξ)(t−τ) D3(ξ)û · ∇w(ξ)‖L2 dτ ≤ C e− 1
4 κt (1 + t)−

1
2 .

As in (4.13),

t∫
t
2

‖eλ1(ξ)(t−τ) D3(ξ)û · ∇w(ξ)‖L2 dτ

≤C

t∫
t
2

e− κ
2 (t−τ) (t − τ)−

1
2 ‖u(τ)‖L2 ‖∇w(τ)‖L2 dτ

≤C

t∫
t
2

e− κ
2 (t−τ) (t − τ)−

1
2 (1 + τ)−1 dτ

≤C t−
1
2 for t ≥ 1.

We now estimate the last term in (1.12). We start with

t∫
0

‖eλ2(ξ)(t−τ) D4(ξ) û · ∇�(ξ)‖L2 dτ.

Realizing the bound for λ2 in (4.9), we divide the integral above into two parts,
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t∫
0

‖eλ2(ξ)(t−τ) D4(ξ) û · ∇�(ξ)‖L2 dτ

=
t∫

0

‖eλ2(ξ)(t−τ) D4(ξ) û · ∇�(ξ)‖L2({ξ : γ |ξ |2≤κ}) dτ

+
t∫

0

‖eλ2(ξ)(t−τ) D4(ξ) û · ∇�(ξ)‖L2({ξ : γ |ξ |2>κ}) dτ

≤
t∫

0

‖e 1
2 (4κ−γ )|ξ |2 (t−τ)û · ∇�(ξ)‖L2 dτ

+
t∫

0

‖e κ(4κ−γ )
2γ

(t−τ)
D4(ξ)|ξ | û�(ξ)‖L2({ξ : γ |ξ |2>κ}) dτ. (4.14)

As in (4.12) and (4.13), we have, for any ε > 0 small,

t∫
0

‖e 1
2 (4κ−γ )|ξ |2 (t−τ)û · ∇�(ξ)‖L2 dτ ≤ C (1 + t)−1 ln(1 + t) + C(ε, κ, γ ) (1 + t)−1+ε .

To estimate the second part, we invoke the bound, for γ |ξ |2 > κ ,

D4(ξ) |ξ |2 ≤ C(κ, γ ).

For any ε > 0 small, by the Hardy–Littlewood–Sobolev inequality,

t∫
0

‖e κ(4κ−γ )
2γ

(t−τ)
D4(ξ)|ξ |2−2ε |ξ |−1+2ε û�(ξ)‖L2({ξ : γ |ξ |2>κ}) dτ

≤C

t∫
0

e
κ(4κ−γ )

2γ
(t−τ) ‖|ξ |−1+2ε û�(ξ)‖L2({ξ : γ |ξ |2>κ}) dτ

≤C

t∫
0

e
κ(4κ−γ )

2γ
(t−τ) ‖u(τ)�(τ)‖

L
1

1−ε
dτ

≤C

t∫
e

κ(4κ−γ )
2γ

(t−τ) ‖u(τ)‖1−2ε

L2 ‖�(τ)‖1+2ε

L2 dτ
0
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≤C e
κ(4κ−γ )

4γ
t

t
2∫

0

‖u(τ)‖1−2ε

L2 ‖�(τ)‖1+2ε

L2 dτ

+ C

t∫
t
2

e
κ(4κ−γ )

2γ
(t−τ)

τ−1 dτ

≤C e
κ(4κ−γ )

4γ
t + C t−1, (4.15)

where we have used the facts that

4κ < γ, t
1
2 ‖u(t)‖L2 ≤ C, t

1
2 ‖�(t)‖L2 ≤ C,

∞∫
0

‖u(t)‖2
L2 dt ≤ C,

∞∫
0

‖�(t)‖2
L2 dt ≤ C.

The L2-norm of the term

t∫
0

eλ2(ξ)(t−τ) D1(ξ)û · ∇w(ξ)dτ

can be similarly bounded. As in (4.14), we have

t∫
0

‖eλ2(ξ)(t−τ)D1(ξ)û · ∇w(ξ)‖L2 dτ

≤
t∫

0

‖e 1
2 (4κ−γ )|ξ |2 (t−τ)û · ∇w(ξ)‖L2 dτ

+
t∫

0

‖e κ(4κ−γ )
2γ

(t−τ)
D1(ξ) û · ∇w(ξ)‖L2({ξ : γ |ξ |2>κ}) dτ.

As in (4.12) and (4.13),

t∫
0

‖e 1
2 (4κ−γ )|ξ |2 (t−τ)û · ∇w(ξ)‖L2 dτ ≤ C (1 + t)−

1
2 .

Finally we show that, for any small ε > 0,

t∫
‖e κ(4κ−γ )

2γ
(t−τ)

D1(ξ) û · ∇w(ξ)‖L2({ξ : γ |ξ |2>κ}) dτ ≤ C t−1+ε. (4.16)
0
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Due to the fact that |D1| ≤ 1 and by Plancherel’s theorem,

t∫
0

‖e κ(4κ−γ )
2γ

(t−τ)
D1(ξ) û · ∇w(ξ)‖L2({ξ : γ |ξ |2>κ}) dτ

≤
t∫

0

‖e κ(4κ−γ )
2γ

(t−τ)
û · ∇w(ξ)‖L2({ξ : γ |ξ |2>κ}) dτ

≤
t∫

0

e
κ(4κ−γ )

2γ
(t−τ) ‖u · ∇w‖L2 dτ.

We choose r1 = 1
ε

and r2 = 2
1−2ε

. Clearly 1
r1

+ 1
r2

= 1
2 . By Hölder’s inequality and Sobolev’s 

inequality,

t∫
0

e
κ(4κ−γ )

2γ
(t−τ) ‖u · ∇w‖L2 dτ

≤
t∫

0

e
κ(4κ−γ )

2γ
(t−τ) ‖u‖Lr1 ‖∇w‖Lr2 dτ

≤C

t∫
0

e
κ(4κ−γ )

2γ
(t−τ) ‖u‖

2
r1
L2 ‖∇u‖1− 2

r1
L2 ‖∇w‖

2
r2
L2 ‖�w‖1− 2

r2
L2 dτ

≤C e
κ(4κ−γ )

4γ
t

t
2∫

0

‖u‖
2
r1
L2 ‖∇u‖1− 2

r1
L2 ‖∇w‖

2
r1
L2 ‖�w‖1− 2

r2
L2 dτ

+ C

t∫
t
2

e
κ(4κ−γ )

2γ
(t−τ)

τ− 1
2 τ

− 1
r2 ‖�w(τ)‖1− 2

r2
L2 dτ

≤C e
κ(4κ−γ )

4γ
t + C t−1+ε,

which verifies (4.16). Here we have used the facts that

4κ < γ, t
1
2 ‖u(t)‖L2 ≤ C, t

1
2 ‖∇u(t)‖L2 ≤ C,

t
1
2 ‖∇w(t)‖L2 ≤ C,

∞∫
0

‖�w(t)‖2
L2 dt ≤ C.

Collecting the estimates for the terms in (1.12), we conclude that, for t ≥ 1,
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‖w(t)‖L2 ≤ C(1 + t)−
1
2

if the initial data w0 satisfies w0 ∈ L1 or more generally (1.14). This completes the proof of 
Theorem 1.4. �
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Appendix A. The micropolar equations with full dissipation

This appendix includes the global existence and uniqueness results for the micropolar equa-

tions with full dissipation. For the 3D equations, any small initial data u0 ∈ H̊
1
2 and w0 ∈ H̊

1
2

lead to a unique global solution. The solution in this functional setting is stable. In the 2D case, 
any u0 ∈ L2 and w0 ∈ L2 generate a unique global solution. The well-posedness result for the 
3D micropolar equation extends the work of Fujita and Kato on the 3D Navier–Stokes equations 
to a nonlinearly coupled system. The result for the 2D micropolar equation involves the weakest 
initial data for which one can still deduce the uniqueness.

We start with the 3D result.

Theorem A.1. Consider the 3D micropolar equations (1.1) with ν > 0, κ > 0 and γ > 0. Assume 
that u0 ∈ H̊

1
2 (R3) with ∇ · u0 = 0 and w0 ∈ H̊

1
2 (R3). The following results hold:

(a) There exists a constant C0 > 0 such that, if

‖(u0,w0)‖
H̊

1
2

≤ C0 min{ν, γ }, (A.1)

then (1.1) has a unique global solution (u, w) satisfying, for any T > 0,

u,w ∈ C([0, T ]; H̊ 1
2 ) ∩ L2([0, T ]; H̊ 3

2 ). (A.2)

As a special consequence, u, w ∈ Lq([0, T ]; H̊ 1
2 + 2

q ) with

‖(u,w)‖
Lq(0,T ;H̊ 1

2 + 2
q )

≤ ‖(u,w)‖(1− 2
q
)

L∞(0,T ;H̊ 1
2 )

‖(u,w)‖
2
q

L2(0,T ;H̊ 3
2 )

(A.3)

(b) The solution given by (a) is stable in the sense that any two solutions (u(1), w(1)) and 
(u(2), w(2)) obey the estimate
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‖(u(1)(t),w(1)(t)) − (u(2)(t),w(2)(t))‖2

H̊
1
2

+ (κ/2 + ν)

t∫
0

‖u(1)(τ ) − u(2)(τ )‖2

H̊
3
2
dτ + γ

t∫
0

‖w(1)(τ ) − w(2)(τ )‖2

H̊
3
2

dτ

≤ ‖(u(1)(0),w(1)(0)) − (u(2)(0),w(2)(0))‖2

H̊
1
2
e
C
∫ t

0 (1+‖∇u(1)‖4
L2 +‖∇w(1)‖4

L2 ) dτ
.

(A.4)

Note that, due to (A.3) with q = 4, the right-hand side of (A.4) is bounded.

Proof. For the sake of conciseness, we shall just provide the key component of the proof for (a), 
namely the global a priori bound for ‖(u, w)‖

H̊
1
2

. To obtain the desired global bound, we per-

form the energy estimate to obtain

1

2

d

dt

(
‖u‖2

H̊
1
2

+ ‖w‖2

H̊
1
2

)
+ (ν + κ)‖∇u‖2

H̊
1
2

+ γ ‖∇w‖2

H̊
1
2

+ 4κ‖w‖2

H̊
1
2

+ μ‖∇ · w‖2

H̊
1
2

= 2κ

∫
�

1
2 ∇ × w · � 1

2 u +
∫

�
1
2 (u · ∇u) · � 1

2 u

+ 2κ

∫
�

1
2 (∇ × u) · � 1

2 w −
∫

�
1
2 (u · ∇w) · � 1

2 w (A.5)

The terms on the right can be bounded as follows. By Hölder’s inequality,∣∣∣∣∫ �
1
2 ∇ × w · � 1

2 u

∣∣∣∣ , ∣∣∣∣∫ �
1
2 ∇ × u · � 1

2 w

∣∣∣∣≤ ‖w‖
H̊

1
2
‖∇u‖

H̊
1
2
.

Therefore,

2κ

∣∣∣∣∫ �
1
2 ∇ × w · � 1

2 u

∣∣∣∣+ 2κ

∣∣∣∣∫ �
1
2 ∇ × u · � 1

2 w

∣∣∣∣≤ 4κ ‖w‖2

H̊
1
2

+ κ ‖∇u‖2

H̊
1
2
.

By Hölder’s inequality and Sobolev’s inequality,∣∣∣∣∫ �
1
2 (u · ∇u) · � 1

2 u

∣∣∣∣≤ ‖� 3
2 u‖L2 ‖�− 1

2 (u · ∇u)‖L2

≤ C ‖� 3
2 u‖L2 ‖u · ∇u‖

L
3
2

≤ C ‖� 3
2 u‖L2 ‖u‖L6 ‖∇u‖L2

≤ C ‖� 3
2 u‖L2 ‖∇u‖2

L2

≤ C ‖� 1
2 u‖L2 ‖� 3

2 u‖2
L2 .
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Similarly,∣∣∣∣∫ �
1
2 (u · ∇w) · � 1

2 w

∣∣∣∣≤ C ‖� 3
2 w‖L2 ‖�− 1

2 (u · ∇w)‖L2

≤ C ‖� 3
2 w‖L2 ‖u · ∇w‖

L
3
2

≤ C ‖� 3
2 w‖L2 ‖u‖L6 ‖∇w‖L2

≤ C ‖� 3
2 w‖L2 ‖∇u‖L2 ‖∇w‖L2

≤ C ‖� 1
2 u‖

1
2
L2 ‖� 3

2 u‖
1
2
L2 ‖� 1

2 w‖
1
2
L2 ‖� 3

2 w‖
3
2
L2

≤ C (‖� 1
2 u‖L2 + ‖� 1

2 w‖L2)(‖� 3
2 u‖2

L2 + ‖� 3
2 w‖2

L2)

≤ C

√
‖� 1

2 u‖2
L2 + ‖� 1

2 w‖2
L2 (‖� 3

2 u‖2
L2 + ‖� 3

2 w‖2
L2).

Combining these estimates yields

d

dt

(
‖u‖2

H̊
1
2

+ ‖w‖2

H̊
1
2

)
+ μ‖∇ · w‖2

L2

+
(

2 min{ν, γ } − C

√
‖u‖2

H̊
1
2

+ ‖w‖2

H̊
1
2

)
(‖� 3

2 u‖2
L2 + ‖� 3

2 w‖2
L2) ≤ 0.

This inequality indicates that, if the initial data (u0, w0) satisfies

2 min{ν, γ } − C

√
‖u0‖2

H̊
1
2

+ ‖w0‖2

H̊
1
2

> 0,

the corresponding solution will remain so for all time.
To show the stability estimate, we consider the difference (̃u, ̃w) between two solutions 

(u(1), w(1)) and (u(2), w(2)), which satisfies

∂t ũ + ũ · ∇u(1) + u(2) · ∇ũ + ∇p̃ − 2κ∇ × w̃ = (κ + ν)�ũ,

∂t w̃ + ũ · ∇w(1) + +u(2) · ∇w̃ + 4κw̃ − 2κ∇ × ũ = γ�w̃,

where p̃ denotes the corresponding difference between the pressures. Therefore,

1

2

d

dt
‖ũ‖2

H̊
1
2

+ (κ + ν)‖∇ũ‖2

H̊
1
2

= −〈̃u · ∇u(1), ũ〉
H̊

1
2

+ 2κ〈∇ × w̃, ũ〉
H̊

1
2
,

1

2

d

dt
‖w̃‖2

H̊
1
2

+ γ ‖∇w̃‖2

H̊
1
2

+ 4κ‖w̃‖2

H̊
1
2

= −〈̃u · ∇w(1), w̃〉
H̊

1
2

+ 2κ〈∇ × ũ, w̃〉
H̊

1
2
,

where

〈F,G〉
H̊ s = 1

∫
|ξ |2s(F̂ (ξ) Ĝ(ξ) + F̂ (ξ) Ĝ(ξ)) dξ.
2
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We estimate the terms on the right-hand side as follows.∣∣∣〈̃u · ∇u(1), ũ〉
H̊

1
2

∣∣∣≤ ‖�− 1
2 (̃u · ∇u(1))‖L2 ‖ũ‖

H̊
3
2

≤ C ‖ũ · ∇u(1))‖
L

3
2
‖ũ‖

H̊
3
2

≤ C ‖ũ‖L6 ‖∇u(1)‖L2 ‖ũ‖
H̊

3
2

≤ C ‖∇ũ‖L2 ‖∇u(1)‖L2 ‖ũ‖
H̊

3
2

≤ C ‖ũ‖
H̊

1
2
‖∇u(1)‖L2 ‖ũ‖

3
2

H̊
3
2

≤ κ + ν

4
‖ũ‖2

H̊
3
2

+ C
1

κ + ν
‖ũ‖2

H̊
1
2
‖∇u(1)‖4

L2 .

The term 〈̃u · ∇w(1), ̃w〉
H̊

1
2

can be bounded similarly,

∣∣∣〈̃u · ∇w(1), w̃〉
H̊

1
2

∣∣∣≤ γ

2
‖w̃‖

H̊
3
2

+ κ + ν

4
‖ũ‖2

H̊
3
2

+ C ‖ũ‖2

H̊
1
2
‖∇w(1)‖4

L2 .

In addition,

2κ〈∇ × w̃, ũ〉
H̊

1
2
, 2κ〈∇ × ũ, w̃〉

H̊
1
2

≤ κ

16
‖ũ‖

H̊
3
2

+ 16κ‖w̃‖2

H̊
1
2

Therefore,

d

dt

(
‖ũ‖2

H̊
1
2

+ ‖w̃‖2

H̊
1
2

)
+ (κ/2 + ν)‖ũ‖2

H̊
3
2

+ γ ‖w̃‖2

H̊
3
2

≤ 12κ‖w̃‖2

H̊
1
2

+ C (‖∇u(1)‖4
L2 + ‖∇w(1)‖4

L2)‖ũ‖2

H̊
1
2
.

Gronwall’s inequality then implies (A.4). This completes the proof of Theorem A.1. �
We now turn to the 2D micropolar equation given by (1.2). The result presented here states 

that any L2 data (u0, w0) yields a unique global solution.

Theorem A.2. Assume u0 ∈ L2(R2) with ∇ · u0 = 0 and w0 ∈ L2(R2). Then (1.2) has a unique 
global solution (u, w) satisfying

(u,w) ∈ L∞(0,∞;L2(R2)) ∩ L2(0,∞; H̊ 1(R2)). (A.6)

In addition, for any t0 > 0,

(u,w) ∈ C∞(R2 × [t0,∞)).
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Proof. The proof of this theorem follows from standard approach. (A.6) is a consequence of 
a simple energy estimate. We briefly indicate the uniqueness. Consider the difference (̃u, ̃w)

between two solutions (u(1), w(1)) and (u(2), w(2)),

∂t ũ + ũ · ∇u(1) + u(2) · ∇ũ + ∇p̃ = (κ + ν)�ũ + 2κ∇ × w̃,

∂t w̃ + ũ · ∇w(1) + u(2) · ∇w̃ = γ�w̃ + 2κ∇ × ũ.

Due to the divergence-free condition and integrations by parts,

d

dt

(
‖ũ‖2

L2 + ‖w̃‖2
L2

)
+ 2(κ + ν)‖∇ũ‖2

L2 + 2γ ‖∇w̃‖2
L2 + 4κ‖w̃‖2

L2

= −
∫

ũ · ∇u(1) · ũ + 2κ

∫
(∇ × w̃) · ũ −

∫
ũ · ∇w(1) · w̃ + 2κ

∫
(∇ × ũ) · w̃.

The terms on the right can be bounded as follows.∣∣∣∣∫ ũ · ∇u(1) · ũ
∣∣∣∣≤ ‖∇u(1)‖L2 ‖ũ‖2

L4

≤ ‖∇u(1)‖L2 ‖ũ‖L2 ‖∇ũ‖L2

≤ 1

4
(κ + ν)‖∇ũ‖2

L2 + C ‖∇u(1)‖2
L2 ‖ũ‖2

L2 .

Similarly,∣∣∣∣∫ ũ · ∇w(1) · w̃
∣∣∣∣≤ 1

4
(κ + ν)‖∇ũ‖2

L2 + γ

2
‖∇w̃‖2

L2 + C ‖∇w(1)‖2
L2

(
‖ũ‖2

L2 + ‖w̃‖2
L2

)
.

In addition,

2κ

∫
(∇ × w̃) · ũ + 2κ

∫
(∇ × ũ) · w̃ ≤ κ

2
‖∇ũ‖2

L2 + C ‖w̃‖2
L2 .

Combining the estimates above and applying Gronwall’s inequality yield the desired uniqueness. 
This completes the proof of Theorem A.2. �
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