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1. Introduction

The Boussinesq system reflects the basic physics laws obeyed by buoyancy-driven flu-
ids. It is one of the most frequently used models for atmospheric and oceanographic flows 
and serves as the centerpiece in the study of the Rayleigh-Bénard convection (see, e.g., 
[11,15,20,25]). The Boussinesq equations are mathematically significant. The 2D Boussi-
nesq equations serve as a lower dimensional model of the 3D hydrodynamics equations. 
In fact, the 2D Boussinesq equations retain some key features of the 3D Euler and Navier-
Stokes equations such as the vortex stretching mechanism. The inviscid 2D Boussinesq 
equations can be identified as the Euler equations for the 3D axisymmetric swirling 
flows [21]. Furthermore, the Boussinesq equations have some special characteristics of 
their own and offer many opportunities for new discoveries.

Due to their broad physical applications and mathematical significance, the Boussi-
nesq equations have recently attracted considerable interests. Two fundamental prob-
lems, the global regularity problem and the stability problem, have been among the 
main driving forces in advancing the mathematical theory on the Boussinesq equations. 
Significant progress has been made on the global regularity of the 2D Boussinesq equa-
tions, especially those with only partial or fractional dissipation or no dissipation at all. 
Our attention here will be focused on the stability problem. The study of the stabil-
ity problem on two physically important steady states has gained strong momentum. 
The first steady state is the hydrostatic equilibrium, which is a prominent topic in fluid 
dynamics and astrophysics. Understanding this stability problem may help gain insight 
into some weather phenomena. Important progress has been made on the stability and 
large-time behavior ([9,16,28,31]). The second steady state is the shear flow, which is the 
focus of this paper. The aim here is to fully understand the stability of perturbations 
near the Couette flow and their large-time behavior. Our consideration will cover both 
the Boussinesq equations with full dissipation and the Boussinesq equations with only 
vertical dissipation. Our emphasis is on the case when the dissipation is degenerate and 
only in the vertical direction.

The 2D Boussinesq system with full dissipation is given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tu + (u∂x + v∂y)u = −∂xp + νΔu,

∂tv + (u∂x + v∂y)v = −∂yp + νΔv + θ,

∂xu + ∂yv = 0,
∂tθ + (u∂x + v∂y)θ = μΔθ,

(1.1)

where u = (u, v) denotes the 2D velocity field, p the pressure, θ the temperature, ν
the viscosity and μ the thermal diffusivity. The first three equations in (1.1) are the 
incompressible Navier-Stokes equation with buoyancy forcing in the vertical direction. 
The last equation is a balance of the temperature convection and diffusion. The spatial 
domain Ω here is taken to be
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Ω = T ×R

with T = [0, 2π] being the periodic box and R being the whole line. In suitable physical 
regimes or under suitable scaling, the Boussinesq equations may involve only vertical 
dissipation ([22]), namely

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tu + (u∂x + v∂y)u = −∂xp + ν∂yyu,

∂tv + (u∂x + v∂y)v = −∂yp + ν∂yyv + θ,

∂xu + ∂yv = 0,
∂tθ + (u∂x + v∂y)θ = μ∂yyθ.

(1.2)

Cao and Wu previously examined the 2D Boussinesq system with only vertical dissipation 
and established its global regularity [10]. The Couette flow,

ush = (y, 0), psh = 0, θsh = 0,

is clearly a stationary solution of (1.1) and also of (1.2). Our goal is to understand the 
stability and large-time behavior of perturbations near the Couette flow. The perturba-
tions

ũ = u− y, ṽ = v, p̃ = p, θ̃ = θ,

satisfy, in the case of full dissipation,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂tũ + y∂xũ + ṽ + (ũ · ∇)ũ = −∂xp̃ + νΔũ,

∂tṽ + y∂xṽ + (ũ · ∇)ṽ = −∂yp̃ + νΔṽ + θ̃,

∂xũ + ∂y ṽ = 0,
∂tθ̃ + y∂xθ̃ + (ũ · ∇)θ̃ = μΔθ̃.

The corresponding perturbed vorticity near the steady vorticity ωsh = −1

ω̃ = ∂xṽ − ∂yũ

verifies, together with θ̃, the following system⎧⎪⎪⎨⎪⎪⎩
∂tω̃ + y∂xω̃ + (ũ · ∇)ω̃ = νΔω̃ + ∂xθ̃,

∂tθ̃ + y∂xθ̃ + (ũ · ∇)θ̃ = μΔθ̃,

ũ = −∇⊥(−Δ)−1ω̃.

(1.3)

In the case when there is only vertical dissipation, the vorticity perturbation ω̃ and the 
temperature perturbation θ̃ satisfy
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⎧⎪⎪⎨⎪⎪⎩
∂tω̃ + y∂xω̃ + (ũ · ∇)ω̃ = ν∂yyω̃ + ∂xθ̃,

∂tθ̃ + y∂xθ̃ + (ũ · ∇)θ̃ = μ∂yy θ̃,

ũ = −∇⊥(−Δ)−1ω̃.

(1.4)

The stability problem proposed for study here on (1.3) or (1.4) is not trivial. Due 
to the presence of the buoyancy forcing term, the Sobolev norms or even the L2-norm 
of the velocity field could grow in time if the two linear terms y∂xω̃ and y∂xθ̃ were not 
included in (1.3) or (1.4). In fact, Brandolese and Schonbek have shown in [8] that the L2-
norm of the velocity to the Boussinesq system with full viscous dissipation and thermal 
diffusion can grow in time even for very nice initial data (say, data that are smooth, 
fast spatial decaying and small in some strong norm). The stability of the Couette flow 
on (1.3) and (1.4) is only possible because of the enhanced dissipation generated by 
the non-self-adjoint operator y∂x − ν∂yy, which is the linear part of the system (1.4). 
Even though the linear operator y∂x − ν∂yy involves only vertical dissipation, the non-
commutativity between its real part and imaginary part actually creates smoothing effect 
in the horizontal direction, a phenomenon that is called the hypoellipticity. Operators of 
this type are investigated by Hörmander [17]. For the standard heat equation ∂tf = νΔf , 
the dissipation time scale is O(ν−1) while, for the drift diffusion equations

∂tf + y∂xf = νΔf and ∂tf + y∂xf = ν∂yyf,

the dissipation time scale is O(ν− 1
3 ), which is much faster than O(ν−1) for small ν. A 

more detailed explanation will be provided later. This enhanced dissipation effect plays 
an extremely important role in the stability problem studied here.

The phenomenon of enhanced dissipation has been widely observed and studied in 
physics literature (see, e.g., [7,18,30,26]). It has recently attracted enormous attention 
from the mathematics community and significant progress has been made. One of the 
earliest rigorous results on the enhanced dissipation is obtained by Constantin, Kiselev, 
Ryzhik and Zlatos on the enhancement of diffusive mixing [12]. Many remarkable results 
have since been established. In particular, the stability of the shear flows to passive 
scale equations and to the Navier-Stokes equations has been intensively investigated in 
a sequence of outstanding papers (see, e.g., [1–6,23,24,32,33]).

The study of the stability problem on the Boussinesq system near the shear flow is 
very recent. The work of Tao and Wu [27] was able to establish the stability and the 
enhanced dissipation phenomenon for the linearized 2D Boussinesq equations with only 
vertical dissipation, using the method of hypocoercivity introduced by C. Villani [29]. The 
Boussinesq system is different from the Navier-Stokes equations. The buoyancy force in 
the velocity equation could drive the growth of the energy and more generally the growth 
of the Sobolev norms. In addition, when there is only vertical dissipation, the control of 
the nonlinear terms becomes much more difficult. New techniques and estimates have 
to be created in order to handle the degenerate dissipation. It also appears that no 
previous work has handled the degenerate case. Since the Boussinesq system reduces to 
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the Navier-Stokes equation when θ is identically zero, the stability results presented in 
this paper fill the gap on the Navier-Stokes equations with only vertical dissipation.

1.1. Results

We present three main results. The first result is on the linearized Boussinesq equations 
with either full dissipation or with only vertical dissipation. The upper bounds are explicit 
and sharp. The second result assesses the nonlinear stability and large-time behavior of 
the Boussinesq system with full dissipation. The third stability result is for the case with 
only vertical dissipation. Both nonlinear stability results are presented in order to make 
a direct comparison between the full dissipation and the degenerate dissipation cases.

For notational convenience, we shall write ω for ω̃ and θ for θ̃ from now on. To explain 
the linear stability result, we rewrite the equation for both the full dissipation case and 
the vertical dissipation case as⎧⎪⎪⎨⎪⎪⎩

∂tω + y∂xω = ν(σ∂xx + ∂yy)ω + ∂xθ,

∂tθ + y∂xθ = μ(σ∂xx + ∂yy)θ,
ω|t=0 = ω(0), θ|t=0 = θ(0).

(1.5)

σ = 1 corresponds to the full dissipation case while σ = 0 to the vertical dissipation case. 
To help understand the stability results presented below, we explicitly solve the linear 
equation

∂tF + y∂xF = ν(σ∂xx + ∂yy)F, F (x, y, 0) = F0(x, y). (1.6)

Taking the Fourier transform yields

∂tF̂ − k∂ξF̂ = −ν(σk2 + ξ2)F̂ , F̂ (k, ξ, 0) = F̂0(k, ξ),

where the Fourier transform is given by

F̂ (k, ξ) = FF = 1
(2π)2

∫
y∈R

∫
x∈T

F (x, y)e−i(kx+ξy) dxdy.

Making the natural change of variables

η := ξ + kt, H(k, η, t) := F̂ (k, ξ, t),

we find that

∂tH(k, η, t) = −ν(σk2 + (η − kt)2)H(k, η, t), H(k, η, 0) = F̂0(k, η).

Integrating in time yields
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H(k, η, t) = F̂0(k, η)e−ν
∫ t
0 (σk2+(η−kτ)2) dτ .

Therefore,

F̂ (k, ξ, t) = H(k, η, t) = F̂0(k, ξ + kt) e−ν
∫ t
0 σk2+(ξ+k(t−τ))2 dτ

= F̂0(k, ξ + kt) e−ν(σk2+ξ2)t e−
1
3νk

2t3−νkξt2 . (1.7)

This explicit representation reflects the enhanced dissipation. Even when there is only 
vertical dissipation, namely σ = 0, the solution is dissipated and regularized in both 
directions. The dissipation time scale is O(ν− 1

3 ), which is much faster than the standard 
dissipation time scale O(ν−1). Clearly the dissipation rate is inhomogeneous and depends 
on the frequencies k.

Solutions of (1.5) share the same properties as that of (1.6). The linear stability results 
on (1.5) are stated in Proposition 1.1 and Proposition 1.2. To make the statement precise, 
we define, for f = f(x, y) with (x, y) ∈ T ×R and k ∈ Z,

fk(y) := 1
2π

∫
T

f(x, y)e−ikxdx.

In addition, we write D = 1
i ∂. The linear stability result for (1.5) can then be stated as 

follows.

Proposition 1.1. Let (ω, θ) be the solution to (1.5) with initial data (ω(0), θ(0)). Assuming 
that ν ≤ Lμ for some positive constant L, there exist constants c > 0, C > 0 such that 
for any k ∈ Z, t > 0,

‖θk(t)‖L2
y
≤ C‖θ(0)

k ‖L2
y
e−

1
16μ

1
3 |k|

2
3 t,

‖ωk(t)‖L2
y
≤ C

(
‖ω(0)

k ‖L2
y

+ (νμ)− 1
6 |k| 13 ‖θ(0)

k ‖L2
y

)
e−cν

1
3 |k|

2
3 t.

(1.8)

More generally, for any integer N ≥ 0, there exist cN > 0 and CN > 0 such that for any 
k ∈ Z, t > 0,

‖DN
y θk(t)‖L2

y
≤ CNe−cNμ

1
3 |k|

2
3 t
(
‖DN

y θ
(0)
k ‖L2

y
+ (μ−1|k|)N

3 ‖θ(0)
k ‖L2

y

)
,

‖DN
y ωk(t)‖L2

y
≤ CNe−cNν

1
3 |k|

2
3 t
(
‖DN

y ω
(0)
k ‖L2

y
+ (νμ)− 1

6 |k| 13 ‖DN
y θ

(0)
k ‖L2

y

+ (ν−1|k|)N
3
(
‖ω(0)

k ‖L2
y

+ (νμ)− 1
6 |k| 13 ‖θ(0)

k ‖L2
y

))
.

(1.9)

A similar linear stability result for a slightly different domain was obtained in [27], 
but the proof presented here is different, simpler and more compact. The estimates in 
Proposition 1.1 can be converted into a more elegant statement that allows a direct 
comparison with the nonlinear stability results to be presented. We explain and define 
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a few notations. (1.7) clearly reveals the distinction between the zero mode case k = 0
and the nonzero modes k �= 0. This triggers the definitions

f0 := (P0f)(y) = 1
2π

∫
T

f(x, y)dx, f�= := P �=f = f − P0f, (1.10)

which represents the projection onto 0 frequency and the projection onto non-zero fre-
quencies. In the process of deriving (1.7), we made the change of variable η = ξ + tk, 
which naturally invites the definition of the time-dependent elliptic operator, for t ≥ 0,

Λ2
t = 1 − ∂2

x − (∂y + t∂x)2, (1.11)

or, in terms of its symbol, Λ2
t (k, ξ) = 1 + k2 + (ξ + tk)2. In general, we denote Λb

t with 

b ∈ R to be the Fourier multiplier with symbol Λb
t(k, ξ) =

(
1 + k2 + (ξ + tk)2

) b
2 . It is 

easy to check that the operator Λb
t commutes with the differential operator with variable 

coefficients ∂t + y∂x, namely

Λb
t (∂t + y∂x) = (∂t + y∂x) Λb

t . (1.12)

Therefore, applying Λb
t allows us to obtain the derivative estimates without destroying 

the structure of the linearized equation (1.5). Furthermore, Λb
t shares similarities with 

the standard fractional Laplacian operators. For example, for any b > 0,

‖Λb
t(fg)‖L2 ≤ ‖f‖L∞‖Λb

tg‖L2 + ‖g‖L∞‖Λb
tf‖L2

and, for b > 1,

‖f(t)‖L∞(Ω) ≤ C‖f̂(t)‖L1(Ω) ≤ C‖Λb
tf(t)‖L2(Ω).

To precisely state the second linear stability result, we define the horizontal fractional 
derivative by

̂|Dx|γf(k, ξ) = |k|γ f̂(k, ξ).

The linear stability result in Proposition 1.1 can be converted into an estimate in the 
physical space.

Proposition 1.2. Let (ω, θ) be the solution to (1.5) with initial data (ω(0), θ(0)). Then 
there exists C > 0 such that for b ∈ R,
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‖Λb
tω‖L∞

t (L2) + ν
1
2 ‖DyΛb

tω‖L2
t (L2) + σν

1
2 ‖DxΛb

tω‖L2
t (L2) + ν

1
6 ‖|Dx|

1
3 Λb

tω‖L2
t (L2)

+ (νμ)− 1
6

(
‖|Dx|

1
3 Λb

tθ‖L∞
t (L2) + μ

1
2 ‖Dy|Dx|

1
3 Λb

tθ‖L2
t (L2) + σμ

1
2 ‖|Dx|

4
3 Λb

tθ‖L2
t (L2)

+ μ
1
6 ‖|Dx|

2
3 Λb

tθ‖L2
t (L2)

)
≤ C

(
‖ω(0)‖Hb + (νμ)− 1

6 ‖|Dx|
1
3 θ(0)‖Hb

)
.

We assume ν = μ for simplicity from now on. The main focus of this paper is actually 
the nonlinear stability. We are able to establish the stability and large-time behavior for 
both the full dissipation case and the case with only vertical dissipation. Certainly the 
proof for the vertical dissipation case also works for the full dissipation. Both results 
are presented here for a direct comparison. When the dissipation is degenerate, more 
strict assumptions have to be made on the initial data. The stability result for the fully 
dissipative Boussinesq equation is stated in the following theorem.

Theorem 1.3. Assume b > 1, β ≥ 1
2 , δ ≥ β + 1

3 , α ≥ δ − β + 2
3 and that the initial data 

(ω(0), θ(0)) satisfies

‖ω(0)‖Hb ≤ ενβ , ‖θ(0)‖Hb ≤ ενα, ‖|Dx|
1
3 θ(0)‖Hb ≤ ενδ,

for some sufficiently small ε > 0. Then the solution (ω, θ) to (1.3) satisfies that

‖Λb
tω‖L∞

t (L2) + ν
1
2 ‖∇Λb

tω‖L2
t (L2) + ν

1
6 ‖|Dx|

1
3 Λb

tω‖L2
t (L2)

+‖(−Δ)− 1
2 Λb

tω �=‖L2
t (L2) ≤ Cενβ ,

‖Λb
tθ‖L∞

t (L2) + ν
1
2 ‖∇Λb

tθ‖L2
t (L2) + ν

1
6 ‖|Dx|

1
3 Λb

tθ‖L2
t (L2)

+‖(−Δ)− 1
2 Λb

tθ �=‖L2
t (L2) ≤ Cενα

and

‖|Dx|
1
3 Λb

tθ‖L∞
t (L2) + ν

1
2 ‖∇|Dx|

1
3 Λb

tθ‖L2
t (L2) + ν

1
6 ‖|Dx|

2
3 Λb

tθ‖L2
t (L2)

+‖(−Δ)− 1
2 |Dx|

1
3 Λb

tθ �=‖L2
t (L2) ≤ Cενδ.

In the case when there is only vertical dissipation, the stability and large-time behavior 
result is stated as follows.

Theorem 1.4. Let b > 4
3 , β ≥ 2

3 , δ ≥ β + 1
3 , α ≥ δ − β + 2

3 . Assume that

‖ω(0)‖Hb ≤ ενβ , ‖θ(0)‖Hb ≤ ενα, ‖|Dx|
1
3 θ(0)‖Hb ≤ ενδ

for some sufficiently small ε > 0. Then the solution to the system (1.4) with initial data 
(ω(0), θ(0)) satisfies
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‖Λb
tω‖L∞

t (L2) + ν
1
2 ‖DyΛb

tω‖L2
t (L2) + ν

1
6 ‖|Dx|

1
3 Λb

tω‖L2
t (L2)

+‖(−Δ)− 1
2 Λb

tω �=‖L2
t (L2) ≤ Cενβ ,

‖Λb
tθ‖L∞

t (L2) + ν
1
2 ‖DyΛb

tθ‖L2
t (L2) + ν

1
6 ‖|Dx|

1
3 Λb

tθ‖L2
t (L2)

+‖(−Δ)− 1
2 Λb

tθ �=‖L2
t (L2) ≤ Cενα

and

‖|Dx|
1
3 Λb

tθ‖L∞
t (L2) + ν

1
2 ‖Dy|Dx|

1
3 Λb

tθ‖L2
t (L2) + ν

1
6 ‖|Dx|

2
3 Λb

tθ‖L2
t (L2)

+‖(−Δ)− 1
2 |Dx|

1
3 Λb

tθ �=‖L2
t (L2) ≤ Cενδ.

Special consequences of Theorem 1.3 and Theorem 1.4 are the nonlinear stability for 
the 2D Navier-Stokes equation with full dissipation or with only vertical dissipation. 
When θ ≡ 0, the system (1.3) reduces to the 2D Navier-Stokes vorticity equation with 
full dissipation. The stability problem of the 2D Couette flow or more general shear 
flows near the Couette flow has previously been investigated on the 2D Navier-Stokes 
equations with full dissipation, we refer to the references [6,23,24]. In particular, we 
recover the threshold index estimate β ≥ 1

2 with data in Hb, b > 1 established firstly 
in [6]. Moreover, we also obtain the 1/3-horizontal regularity, which is better than the 
enhanced dissipation quantity ‖Λb

tω �=‖L2(L2) obtained in [6, Theorem 1.1]. This is due 
to the different choice of the multipliers that are used in the proof. On the other hand, 
since the stability result for the 2D Navier-Stokes equation with only vertical dissipation 
is completely new, we state it as a corollary. When θ ≡ 0, the system (1.4) reduces to 
the 2D Navier-Stokes vorticity equation with only vertical dissipation,{

∂tω + y∂xω + (u · ∇)ω = ν∂yyω,

u = −∇⊥(−Δ)−1ω.
(1.13)

Theorem 1.4 yields the following stability result for (1.13).

Corollary 1.5. Let b > 4
3 and β ≥ 2

3 . Assume the initial vorticity ω(0) satisfies

‖ω(0)‖Hb ≤ ενβ

for some suitable small number ε > 0. Then the corresponding solution ω to (1.13)
satisfies

‖Λb
tω‖L∞

t (L2) + ν
1
2 ‖DyΛb

tω‖L2
t (L2) + ν

1
6 ‖|Dx|

1
3 Λb

tω‖L2
t (L2)

+‖(−Δ)− 1
2 Λb

tω �=‖L2
t (L2) ≤ Cενβ .

Remark 1.6. Various works [3,6,23,24] for Couette flow are done with the change of coor-
dinates X = x −yt, Y = y. Our results and proofs can be translated into the coordinates 
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(X, Y ) as well. In this paper, we choose to work in the standard physical variables, since 
we would like to highlight the role played by the non self-adjoint operator y∂x − ν∂yy. 
The multiplier M1 defined in (1.14) which allows us to prove the optimal enhanced 
dissipation estimates, is constructed according to the first-order bracket structure of the 
linear operator.

Remark 1.7. As observed in [19], we can prove an exponential converge of the non-zero 
modes for both the full dissipation case and the vertical dissipation case. See Remark 4.1.

Remark 1.8. After we posted the first version of this paper, C. Zillinger kindly informed 
us of his very recent manuscript on a similar topic [34]. He studied the stability on 
perturbations near both the Couette flow and the hydrostatic balance simultaneously. 
In particular, he obtained the linear stability of the Couette flow for the 2D Boussinesq 
system with partial dissipation by using explicit solution formulas. In addition, he also 
showed the nonlinear stability of the Couette flow for the 2D Boussinesq system with full 
dissipation by using the multipliers constructed in [6], with weaker enhanced dissipation 
terms obtained. Compared with [34], this paper focuses on the nonlinear stability for 
the 2D Boussinesq system with only vertical dissipation, and the gain of 1/3-horizontal 
derivative is well characterized by carefully choosing the multiplier.

1.2. Sketch of the proof

The proofs of the nonlinear stability results stated in Theorem 1.3 and Theorem 1.4
are not trivial. As aforementioned, due to the presence of the buoyancy force, it is not 
plausible to establish the desired stability results without taking full advantage of the 
enhanced dissipation, created by the combination of y∂xω with ∂yyω in the vorticity 
equation and of y∂xθ with ∂yyθ in the temperature equation.

Let us explain how to extract the enhanced dissipation, especially the regularity in the 
horizontal direction, generated by the non-self-adjoint operator y∂x− ν∂yy. We design a 
Fourier multiplier operator M defined as follows. Choose a real-valued, non-decreasing 

function ϕ ∈ C∞(R) satisfying 0 ≤ ϕ ≤ 1, ϕ(τ) =
{

0, τ ∈ (−∞,−2],
1, τ ∈ [2,∞),

and ϕ′ = 1
4

on [−1, 1]. Define the Fourier multiplier M = M(Dx, Dy) as M = M1 + M2 + 1 with 
symbols M1 and M2 given by

M1(k, ξ) = ϕ
(
ν

1
3 |k|− 1

3 sgn(k)ξ
)
, k �= 0,

M2(k, ξ) = 1
k2

(
arctan ξ

k
+ π

2

)
, k �= 0,

M1(0, ξ) = M2(0, ξ) = 0.

(1.14)

Then M is a self-adjoint Fourier multiplier acting on L2(Ω) and verifies that
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1 ≤ M ≤ 2 + π.

The construction of the multiplier M is inspired by the works [13,14] on the (non-self-
adjoint) linearized operator of the 2D Navier-Stokes equation around the Oseen vortices. 
Before we show the key point of our proof, let us remark the fact that for a self-adjoint 
operator A = A∗ and a skew-adjoint operator B = −B∗ on L2, we have the following 
identity

2Re〈Af,Bf〉L2 = 〈Af,Bf〉L2 + 〈Bf,Af〉L2

= 〈B∗Af, f〉L2 + 〈A∗Bf, f〉L2

= 〈(AB −BA)f, f〉L2 = 〈[A,B]f, f〉L2 ,

(1.15)

where [A, B] := AB −BA denotes the commutator between A and B.
Now taking the inner product of (y∂x − ν∂yy)ω with Mω leads to the quantity

R := 2Re〈y∂xω,Mω〉L2 − 2νRe〈∂yyω,Mω〉L2 ,

for which we intend to prove a lower bound. Using the fact that M is self-adjoint and 
y∂x is skew-adjoint, we have

2Re〈y∂xω,Mω〉L2 = 〈[M, y∂x]ω, ω〉L2

=
∑
k

∫
R

(k∂ξM) |ω̂(k, ξ)|2 dξ,

where we have used Plancherel’s theorem in the last step. Consequently,

R =
∑
k

∫
R

(
k∂ξM + 2νMξ2) |ω̂(k, ξ)|2 dξ.

The Fourier multiplier M1 is constructed in order to capture the regularity in the hori-
zontal direction: according to the definition of M1, for any k �= 0 and ξ ∈ R,

k∂ξM1(k, ξ) = ν
1
3 |k| 23ϕ′(ν 1

3 |k|− 1
3 sgn(k)ξ

)
,

which is bounded from below by 1
4ν

1
3 |k| 23 when |ξ| ≤ ν−

1
3 |k| 13 , thanks to the special 

choice of the function ϕ. One finds the following important inequality

νξ2 + k∂ξM1 ≥ 1
4ν

1
3 |k| 23 , ∀ξ ∈ R, k ∈ Z.

The choice of the multiplier M1 is not unique, for example one may use the multiplier 
M1(k, ξ) = c arctan(ν 1

3 sgn(k)|k|− 1
3 ξ) + C.
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The Fourier multiplier M2 is designed to control the velocity in the nonlinear term 
since we have

k∂ξM2(k, ξ) = 1
k2 + ξ2 .

Combining the above estimates, one achieves the lower bound

R ≥ ν‖∂yω‖2
L2 + 1

4ν
1
3 ‖|Dx|

1
3ω‖2

L2 + ‖(−Δ)− 1
2ω �=‖2

L2 . (1.16)

(1.16) leads to a control of 13 -horizontal derivative of ω and this is the main reason why we 
can possibly control the buoyancy force, as well as the nonlinear terms. Let us also remark 
that the exponent 1/3 on the right hand side of (1.16) is sharp in the sense that there 
exist c > 0 and functions ων ∈ L2 such that the equality ‖(y∂x − ν∂yy)ων‖L2‖ων‖L2 =
cν

1
3 ‖|Dx|

1
3ων‖2

L2 holds for all 0 < ν < 1. This is due to the special first-order bracket 
structure of the operator y∂x − ν∂yy, see [17], [13] for more details.

Standard Sobolev type energy estimates would not work since they would destroy the 
combination, see Proposition 1.1. We shall apply the operator Λb

t defined below (1.11)
which allows to differentiate the equations in (1.3) and (1.4) without changing the linear 
structures of the system, and then apply the multiplier M to obtain the desired enhanced 
dissipations for higher-order derivatives.

The buoyancy term in the equation of the vorticity ω takes the form ∂xθ, which con-
tains full one horizontal derivative. In the process of estimating ‖Λb

tω‖L2 , the buoyancy 
term can be bounded by

|〈∂xΛb
tθ,MΛb

tω〉L2 | ≤ ‖|Dx|
2
3 Λb

tθ‖L2‖|Dx|
1
3 Λb

tω‖L2 ,

which contains 2
3 -horizontal derivative on θ. Since the enhanced dissipation in the esti-

mate of ‖Λb
tθ‖L2 contains only 1

3 -horizontal derivative dissipation, we need to estimate 
‖|Dx|

1
3 Λb

tθ‖L2 in order to control the buoyancy term. This explains why we combine the 
estimates of ‖Λb

tω‖L2 , ‖Λb
tθ‖L2 and ‖|Dx|

1
3 Λb

tω‖L2 .
Most of the efforts are devoted to obtaining suitable upper bounds on the nonlinear 

terms. This is a very delicate process especially when there is only vertical dissipation. 
Let us explain some of the difficulties and our approach in dealing with them when we 
estimate the nonlinear term u · ∇θ. The velocity u is represented in terms of ω via the 
Biot-Savart law

u = −∇⊥(−Δ)−1ω.

To distinguish between the different behaviors of the zeroth mode and the nonzero modes, 
we split the velocity into two parts according to (1.10)

u = u0 + u�= =
(
u0
0

)
+

(
u �=
v

)
=

(
u0
0

)
+

(
∂y(−Δ)−1ω �=
−∂ (−Δ)−1ω

)
,

�= x �=
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where u0 = ∂y(−∂2
y)−1ω0. Accordingly, u · ∇θ is decomposed into three parts,

u · ∇θ = u0∂xθ + ∂y(−Δ)−1ω �=∂xθ − ∂x(−Δ)−1ω �=∂yθ.

Due to the lack of dissipation in the horizontal direction, it is impossible to derive suitable 
bounds for the first two terms in u ·∇θ directly. Our strategy to overcome this difficulty 
is to estimate the scalar product

H := 〈Λb
t(u · ∇θ),MΛb

tθ〉L2 .

With the help of the Fourier multiplier M, the frequency space is divided into dif-
ferent subdomains to facilitate cancellations and derivative distributions. Commutator 
estimates are employed to shift derivatives so that we are able to control the nonlinear 
terms. Detailed estimates are very technical and left to the proof of Theorem 1.4 in 
Section 4.

The rest of this paper is divided into three sections. Section 2 proves the linear stability 
stated in Propositions 1.1 and 1.2. Theorem 1.3 is proved in Section 3 while Section 4
presents the proof of Theorem 1.4.

2. Proofs of Propositions 1.1 and 1.2

This section is devoted to the proofs of the linear stability results stated in Proposi-
tions 1.1 and 1.2. These results are valid for both the full dissipation case and the case 
with only vertical dissipation. Notice that the two equations of the linear system (1.5)
are decoupled. As a result, an explicit solution formula to (1.5) is available using Fourier 
transform as for the model problem (1.6). Indeed, by a direct computation, we have

θ̂(k, ξ, t) = θ̂0(k, ξ + kt)e−μ
∫ t
0 (σk2+(ξ+kt−kτ)2)dτ ,

ω̂(k, ξ, t) = ω̂0(k, ξ + kt)e−ν
∫ t
0 (σk2+(ξ+kt−kτ)2)dτ

+ ik

t∫
0

e−ν
∫ t−s
0 (σk2+(ξ+kt−kτ)2)dτ θ̂(k, ξ, s)ds.

Then it is immediate to infer the bounds of Proposition 1.1 and 1.2. Here we present 
the multiplier method in order to make it more accessible to the nonlinear case. These 
multiplier operators are constructed to extract the enhanced dissipation from the non-
self-adjoint operators y∂x − ν∂yy and y∂x − μ∂yy. Moreover, the multiplier method is 
flexible and may be used to study more general models, for which an explicit solution 
formula might not be available.

We are ready to prove Proposition 1.1.

Proof of Proposition 1.1. By projecting the equations in (1.5) onto each frequency, we 
obtain the system in the y-variable only,
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⎧⎪⎪⎨⎪⎪⎩
∂tωk + ν(D2

y + σk2)ωk + ikyωk = ikθk,

∂tθk + μ(D2
y + σk2)θk + ikyθk = 0,

ωk|t=0 = ω
(0)
k , θk|t=0 = θ

(0)
k ,

(2.1)

where we have used the notation D = 1
i ∂. We note that σ = 1 corresponds to the full 

dissipation case while σ = 0 to the case with only vertical dissipation. Since ωk and θk
may be complex-valued, the L2

y-inner product is given by

〈f, g〉L2
y

=
∫
R

f(y) ḡ(y) dy.

By taking the L2
y-inner product of θk with the second equation in (2.1), we have

1
2
d

dt
‖θk‖2

L2
y

+ μ‖Dyθk‖2
L2

y
+ σμk2‖θk‖2

L2
y

= 0. (2.2)

To further the estimates, we define and apply Fourier multiplier operators. If k > 0, we 
define a multiplier Mk by

Mkθk := ϕ(μ 1
3 |k|− 1

3Dy)θk,

where ϕ is a real-valued, non-decreasing function, ϕ ∈ C∞(R) satisfying 0 ≤ ϕ ≤ 1
and ϕ′ = 1

4 on [−1, 1]. Clearly, Mk is a self-adjoint and non-negative Fourier multiplier 
operator. We take the L2

y-inner product of the second equation in (2.1) with Mkθk. The 
following basic identities hold,

2Re〈∂tθk,Mkθk〉L2
y

= d

dt
〈Mkθk, θk〉L2

y
,

2Re〈μ(D2
y + σk2)θk,Mkθk〉L2

y
= 〈2μ(D2

y + σk2)Mkθk, θk〉L2
y
,

2Re〈ikyθk,Mkθk〉L2
y

= 〈
[
Mk, iky

]
θk, θk〉L2

y
,

where in the last equation we have used the fact that Mk is self-adjoint and iky is 
skew-adjoint. Here the bracket in 

[
Mk, iky

]
denotes the standard commutator. Noticing 

that

[Mk, iky] =
[
ϕ(μ 1

3 |k|− 1
3Dy), iky

]
= μ

1
3 |k| 23ϕ′(μ 1

3 |k|− 1
3Dy),

we obtain

d

dt
〈Mkθk, θk〉L2

y
+ 〈2μ(D2

y + σk2)ϕ(μ 1
3 |k|− 1

3Dy)θk, θk〉L2
y

+〈μ 1
3 |k| 23ϕ′(μ 1

3 |k|− 1
3Dy)θk, θk〉L2 = 0.
y
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Together with (2.2), this gives

d

dt

(
‖θk‖2

L2
y

+ 〈Mkθk, θk〉L2
y

)
+
〈(

2μ(D2
y + σk2)

(
1 + ϕ(μ 1

3 |k|− 1
3Dy)

)
+ μ

1
3 |k| 23ϕ′(μ 1

3 |k|− 1
3Dy)

)
θk, θk

〉
L2

y

= 0.

By the choice of the function ϕ, there holds

μ(ξ2 + σk2)
(
1 + 2ϕ(μ 1

3 |k|− 1
3 ξ)

)
+ μ

1
3 |k| 23ϕ′(μ 1

3 |k|− 1
3 ξ) ≥ 1

4μ
1
3 |k| 23

for all k > 0, μ > 0, ξ ∈ R. Therefore,

d

dt

(
〈(1 + Mk)θk, θk〉L2

y

)
+ μ‖Dyθk‖2

L2
y

+ σμk2‖θk‖2
L2

y
+ 1

4μ
1
3 |k| 23 ‖θk‖2

L2
y
≤ 0. (2.3)

Integrating in t and using properties of Mk, we obtain the first inequality in (1.8) for 
k > 0. In the case when k < 0, we define the multiplier Mk by

Mkθk := ϕ(−μ
1
3 |k|− 1

3Dy)θk,

and define M0 = 0, we can deduce the first inequality in (1.8) for k ≤ 0.
We prove the first inequality in (1.9) by induction. Differentiating the second equation 

in (2.1) N times with respect to y leads to

∂tD
N
y θk + μ(D2

y + σk2)DN
y θk + ikyDN

y θk + kNDN−1
y θk = 0.

Taking the L2
y-inner product with (1 + Mk)DN

y θk then gives

d

dt
〈(1 + Mk)DN

y θk, D
N
y θk〉L2

y
+ μ‖DN+1

y θk‖2
L2

y
+ σμk2‖DN

y θk‖2
L2

y

+ 1
4μ

1
3 |k| 23 ‖DN

y θk‖2
L2

y
≤ −2Re〈kNDN−1

y θk, (1 + Mk)DN
y θk〉L2

y

≤ 1
8μ

1
3 |k| 23 ‖DN

y θk‖2
L2

y
+ 32N2μ− 1

3 |k| 43 ‖DN−1
y θk‖2

L2
y
.

Integrating in t yields

‖DN
y θk(t)‖2

L2
y
≤ 2‖DN

y θ
(0)
k ‖2

L2
y
e−

1
16μ

1
3 |k|

2
3 t

+CNμ− 1
3 |k| 43

t∫
0

‖DN−1
y θk(s)‖2

L2
y
e−

1
16μ

1
3 |k|

2
3 (t−s)ds.

Then the first inequality in (1.9) follows from the induction assumption.
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To handle the second inequality in (1.8), we define

Mk := ϕ(ν 1
3 |k|− 1

3 sgn(k)Dy) for k �= 0, M0 = 0

and multiply the ωk equation in (2.1) by ωk and Mkωk to obtain

d

dt
〈(1 + Mk)ωk, ωk〉L2

y
+ ν‖Dyωk‖2

L2
y

+ σνk2‖ωk‖2
L2

y
+ 1

4ν
1
3 |k| 23 ‖ωk‖2

L2
y

≤ 2Re〈ikθk, (1 + Mk)ωk〉L2
y
.

Applying Young’s inequality to the right-hand side yields

d

dt

(
〈(1 + Mk)ωk, ωk〉L2

y

)
+ ν‖Dyωk‖2

L2
y

+ σ νk2‖ωk‖2
L2

y
+ 1

8ν
1
3 |k| 23 ‖ωk‖2

L2
y

≤ 32ν− 1
3 |k| 43 ‖θk‖2

L2
y
.

(2.4)

Due to ν ≤ Lμ, we take a small enough constant c so that c ≤ 1
8 , cν 1

3 ≤ 1
32μ

1
3 . Then 

we get, by multiplying the above inequality by ecν
1
3 |k|

2
3 t and using the first inequality in 

(1.8), that

d

dt

(
〈(1 + Mk)ωk, ωk〉L2

y
ecν

1
3 |k|

2
3 t
)
≤32ν− 1

3 |k| 43 ‖θk‖2
L2

y
ecν

1
3 |k|

2
3 t

≤Cν−
1
3 |k| 43 ‖θ(0)

k ‖L2
y
e

(
cν

1
3 − 1

16μ
1
3
)
|k|

2
3 t
.

Integrating in t, we obtain

‖ωk(t)‖2
L2

y
≤ C

(
‖ω(0)

k ‖2
L2

y
+ (νμ)− 1

3 |k| 23 ‖θ(0)
k ‖2

L2
y

)
e−cν

1
3 |k|

2
3 t.

Differentiating the equation of ωk in (2.1) and using the estimates for θk, we can deduce 
the second inequality in (1.9), under the assumption that ν ≤ Lμ. This completes the 
proof of Proposition 1.1. �

Proposition 1.2 is a consequence of Proposition 1.1. We recall that the operator Λt

defined in (1.11) commutes with ∂t + y∂x, namely, for any b ∈ R, there holds (1.12). 
Therefore it commutes with the linear equation in (1.5).

Proof of Proposition 1.2. For any b ∈ R, we apply Λb
t to the equations in (1.5). Since Λb

t

commutes the equations in (1.5), the upper bounds in Proposition 1.1 and the estimates 
in the proof of Proposition 1.1 remain valid if we replace ω and θ by Λb

tω and Λb
tθ, 

respectively, in Proposition 1.1. Similarly, since any horizontal derivatives also commute 
with the linear equations in (1.5), |Dx|

1
3 Λb

tθ enjoys similar estimates as those for θ. In 
particular, similar to (2.3), one has
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d

dt

(
〈(1 + Mk)|Dx|

1
3 (Λb

tθ)k,|Dx|
1
3 (Λb

tθ)k〉L2
y

)
+ μ‖Dy|Dx|

1
3 (Λb

tθ)k‖2
L2

y

+ σμk2‖|Dx|
1
3 (Λb

tθ)k‖2
L2

y
+ 1

4μ
1
3 |k| 23 ‖|Dx|

1
3 (Λb

tθ)k‖2
L2

y
≤ 0.

Integrating in t and summing up the resulting inequalities for k ∈ Z, we find

‖|Dx|
1
3 Λb

tθ‖2
L∞

t (L2) + μ‖Dy|Dx|
1
3 Λb

tθ‖2
L2

t (L2) + σμ‖|Dx|
4
3 Λb

tθ‖2
L2

t (L2)

+ 1
4μ

1
3 ‖|Dx|

2
3 Λb

tθ‖2
L2

t (L2) ≤ 2‖|Dx|
1
3 θ(0)‖2

Hb .
(2.5)

While similar to (2.4), we have

d

dt

(
〈(1 + Mk)(Λb

tω)k, (Λb
tω)k〉L2

y

)
+ ν‖Dy(Λb

tω)k‖2
L2

y
+ σ νk2‖(Λb

tω)k‖2
L2

y

+ 1
8ν

1
3 |k| 23 ‖(Λb

tω)k‖2
L2

y
≤ 32ν− 1

3 |k| 43 ‖(Λb
tθ)k‖2

L2
y
.

Integrating in t and summing up the resulting inequalities for k ∈ Z, we obtain

‖Λb
tω‖2

L∞
t (L2) + ν‖DyΛb

tω‖2
L2

t (L2) + σ ν‖|Dx|Λb
tω‖2

L2
t (L2)

+1
8ν

1
3 ‖|Dx|

1
3 Λb

tω‖2
L2

t (L2) ≤ 2‖ω(0)‖2
Hb + 32ν− 1

3 ‖|Dx|
2
3 Λb

tθ‖2
L2

t (L2)

≤ 2‖ω(0)‖2
Hb + C(νμ)− 1

3 ‖|Dx|
1
3 θ(0)‖2

Hb ,

(2.6)

where in the last step, we used (2.5).
By summing up (νμ)− 1

3× (2.5) and (2.6), we obtain the desired estimates in Propo-
sition 1.2. We remark that the coefficient (νμ)− 1

6 in the estimate of Proposition 1.2
helps unify the bound in terms of the initial data. This completes the proof of Proposi-
tion 1.2. �
3. Proof of Theorem 1.3

This section presents the proof of Theorem 1.3 stating the nonlinear stability for (1.3). 
The framework is the bootstrap argument, which consists of two main steps. The first 
step is to establish the a priori bounds while the second is to apply and complete the 
bootstrap argument by using the a priori bounds. Main efforts are devoted to obtaining 
suitable a priori bounds. As described in the introduction, one component in achieving 
the bounds is to extract the enhanced dissipation by constructing and applying suitable 
Fourier multipliers. Another one is to bound the nonlinear terms suitably. To do so, 
we separate the horizontal zeroth mode from the non-zeroth modes to distinguish their 
different behaviors. We make use of sharp commutator estimates.

To help prepare for the proof, we recall several notations and basic facts. We make 
extensive use of the operator Λb

t defined below (1.11). The basic properties stated in the 
following lemma will be used frequently.
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Lemma 3.1. The operator Λb
t defined below (1.11) satisfies the following properties

(1) For any b ∈ R, Λb
t commutes with ∂t + y∂x, namely

Λb
t (∂t + y∂x) = (∂t + y∂x) Λb

t .

(2) For any b > 0,

‖Λb
t(fg)‖L2 ≤ ‖f‖L∞‖Λb

tg‖L2 + ‖g‖L∞‖Λb
tf‖L2 .

Moreover, for b > 1, we have

‖f(t)‖L∞ ≤ C‖f̂(t)‖L1 ≤ C‖Λb
tf(t)‖L2 ,

and consequently,

‖Λb
t(fg)‖L2 ≤ C ‖Λb

tf‖L2 ‖Λb
tg‖L2 .

Remark 3.2. It is easy to observe that for any s non-negative and b > 1, there holds

‖|Dx|sΛb
t(fg)‖L2 ≤ C

(
‖|Dx|sΛb

tf‖L2 ‖Λb
tg‖L2 + ‖Λb

tf‖L2 ‖|Dx|sΛb
tg‖L2

)
. (3.1)

Indeed, by applying Plancherel’s theorem, we have

‖|Dx|sΛb
t(fg)‖2

L2 =
∑
k∈Z

|k|2s
∫
R

(
Λb
t(k, ξ)

)2(∑
�∈Z

∫
R

f̂(k − �, ξ − η)ĝ(�, η) dη
)2

dξ

≤Cs

∑
k∈Z

∫
R

(
Λb
t(k, ξ)

)2(∑
�∈Z

(
|k − �|s + |�|s

)
×
∫
R

f̂(k − �, ξ − η)ĝ(�, η) dη
)2

dξ

≤Cs

(
‖Λb

t(g|Dx|sf)‖2
L2 + ‖|Λb

t(f |Dx|sg)‖2
L2

)
,

from which and Lemma 3.1, we deduce (3.1).

Recall that we now assume that μ = ν. The Fourier multiplier operator M employed 
here is defined in (1.14). We also recall the projectors onto the horizontal zeroth mode 
and the non-zeroth modes defined in (1.10).

Proof of Theorem 1.3. Applying Λb
t to (1.3) and invoking the properties of Λb

t in 
Lemma 3.1, we have



W. Deng et al. / Journal of Functional Analysis 281 (2021) 109255 19
{
∂tΛb

tω + y∂xΛb
tω − νΔΛb

tω + Λb
t

(
(u · ∇)ω

)
= ∂xΛb

tθ,

∂tΛb
tθ + y∂xΛb

tθ − νΔΛb
tθ + Λb

t

(
(u · ∇)θ

)
= 0.

(3.2)

We then multiply the equations above by MΛb
tω and MΛb

tθ, respectively, and inte-
grate over T × R. The combination y∂x − νΔ creates the enhanced dissipation. As we 
explained in the introduction, we do not need the full Laplacian dissipation and the 
vertical dissipation is sufficient. By (1.15), we have

2Re〈y∂xf,Mf〉L2 = 〈
[
M, y∂x

]
f, f〉L2 = 〈(k∂ξM)(D)f, f〉L2

since M is self-adjoint and y∂x is skew-adjoint. Invoking the equality above, we have

d

dt
‖
√
MΛb

tθ‖2
L2 + 2ν‖∇

√
MΛb

tθ‖2
L2 + 〈(k∂ξM)(D)Λb

tθ,Λb
tθ〉L2

+ 2Re〈Λb
t

(
u · ∇θ

)
,MΛb

tθ〉L2 = 0.
(3.3)

Similarly,

d

dt
‖
√
MΛb

tω‖2
L2 + 2ν‖∇

√
MΛb

tω‖2
L2 + 〈(k∂ξM)(D)Λb

tω,Λb
tω〉L2

+ 2Re〈Λb
t

(
u · ∇ω

)
,MΛb

tω〉L2 = 2Re〈∂xΛb
tθ,MΛb

tω〉L2 .

(3.4)

Taking L2 inner product of the θ equation in (3.2) with M|Dx|
2
3 Λb

tθ gives

d

dt
‖
√
M|Dx|

1
3 Λb

tθ‖2
L2 + 2ν‖∇

√
M|Dx|

1
3 Λb

tθ‖2
L2

+ 〈|Dx|
2
3 (k∂ξM)(D)Λb

tθ,Λb
tθ〉L2 + 2Re〈Λb

t

(
u · ∇θ

)
, |Dx|

2
3MΛb

tθ〉L2 = 0.
(3.5)

According to the definition (1.14) of M, we have

k∂ξM(k, ξ) = ν
1
3 |k| 23ϕ′(ν 1

3 |k|− 1
3 sgn(k)ξ

)
+ 1

k2 + ξ2 (3.6)

for k �= 0, ξ ∈ R. This implies that, for k �= 0, ξ ∈ R,

2ν(ξ2 + k2)M(k, ξ) + k∂ξM(k, ξ) ≥ ν(ξ2 + k2) + 1
4ν

1
3 |k| 23 + 1

ξ2 + k2 .

Therefore,

2ν‖∇
√
Mf‖2

L2 + 〈(k∂ξM)(D)f, f〉L2

≥ ν‖∇f‖2
L2 + 1

4ν
1
3 ‖|Dx|

1
3 f‖2

L2 + ‖(−Δ)− 1
2 f�=‖2

L2 ,

where f�= is defined by (1.10). (3.4), (3.3) and (3.5) then becomes
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d

dt
‖
√
MΛb

tω‖2
L2 + ν‖∇Λb

tω‖2
L2 + 1

4ν
1
3 ‖|Dx|

1
3 Λb

tω‖2
L2 + ‖(−Δ)− 1

2 Λb
tω �=‖2

L2

≤ 2Re 〈∂xΛb
tθ,MΛb

tω〉L2︸ ︷︷ ︸
=I1

−2Re 〈Λb
t

(
u · ∇ω

)
,MΛb

tω〉L2︸ ︷︷ ︸
=I2

,
(3.7)

d

dt
‖
√
MΛb

tθ‖2
L2 + ν‖∇Λb

tθ‖2
L2 + 1

4ν
1
3 ‖|Dx|

1
3 Λb

tθ‖2
L2 + ‖(−Δ)− 1

2 Λb
tθ �=‖2

L2

≤ −2Re 〈Λb
t

(
u · ∇θ

)
,MΛb

tθ〉L2︸ ︷︷ ︸
=I3

(3.8)

and

d

dt
‖
√
M|Dx|

1
3 Λb

tθ‖2
L2 + ν‖∇|Dx|

1
3 Λb

tθ‖2
L2 + 1

4ν
1
3 ‖|Dx|

2
3 Λb

tθ‖2
L2

+ ‖(−Δ)− 1
2 |Dx|

1
3 Λb

tθ �=‖2
L2 ≤ −2Re 〈Λb

t

(
u · ∇θ

)
, |Dx|

2
3MΛb

tθ〉L2︸ ︷︷ ︸
=I4

.
(3.9)

Using the L2-boundedness of M, we have

|I1| = |〈∂xΛb
tθ,MΛb

tω〉L2 | ≤ ‖|Dx|
2
3 Λb

tθ‖L2‖|Dx|
1
3 Λb

tω‖L2 . (3.10)

• Estimates for I2 and I3.

Recall that the velocity field u is given by the Biot-Savart law

u = −∇⊥(−Δ)−1ω =
(

∂y(−Δ)−1ω
−∂x(−Δ)−1ω

)
=:

(
u
v

)
.

According to (1.10), u can be decomposed into u0 and u�=,

u0 = P0u =
(
u0
0

)
, with u0 = ∂y(−∂2

y)−1ω0,

u�= = P �=u = −∇⊥(−Δ)−1ω �= =
(

∂y(−Δ)−1ω �=
−∂x(−Δ)−1ω �=

)
=

(
u �=
v�=

)
.

(3.11)

Therefore we can write

I2 = 〈Λb
t

(
u · ∇ω

)
,MΛb

tω〉L2 = I21 + I22,

with

I21 = 〈Λb
t

(
u�= · ∇ω

)
,MΛb

tω〉L2 , I22 = 〈Λb
t

(
u0 · ∇ω

)
,MΛb

tω〉L2 .

Using the boundedness of M and Lemma 3.1, we have for b > 1,

|I21| ≤ ‖Λb
t

(
u�= · ∇ω

)
‖L2‖Λb

tω‖L2 ≤ C‖Λb
tu�=‖L2‖∇Λb

tω‖L2‖Λb
tω‖L2 .
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By (3.11),

‖Λb
tu�=‖L2 ≤ ‖∇⊥(−Δ)−1Λb

tω �=‖L2 ≤ ‖(−Δ)− 1
2 Λb

tω �=‖L2 .

Therefore, for b > 1,

|I21| ≤ C‖(−Δ)− 1
2 Λb

tω �=‖L2‖∇Λb
tω‖L2‖Λb

tω‖L2 .

The key point is to bound I22. To simplify the notation, we write Mb
t =

√
MΛb

t or

Mb
t(k, ξ) :=

√
M(k, ξ) Λb

t(k, ξ) =
√
M(k, ξ) (1 + k2 + (ξ + kt)2)b/2. (3.12)

It follows from (3.11) that u0 · ∇ω = u0∂xω = u0∂xω �= since ω0 is independent of x. 
Therefore,

I22 = 〈Λb
t

(
u0 · ∇ω

)
,MΛb

tω〉L2 = 〈Mb
t(u0∂xω �=),Mb

tω〉L2 .

Due to the cancellations

〈Mb
t(u0∂xω �=),Mb

tω0〉L2 = 0,

〈u0∂x(Mb
tω �=),Mb

tω �=〉L2 = 0,

we have

I22 = 〈Mb
t(u0∂xω �=),Mb

tω �=〉L2

= 〈Mb
t(u0∂xω �=) − u0∂x(Mb

tω �=),Mb
tω �=〉L2 .

By Plancherel’s theorem,

I22 =
∑
k �=0

∫∫ (
Mb

t(k, ξ) −Mb
t(k, ξ − η)

)
û(0, η)ikω̂(k, ξ − η)Mb

t(k, ξ)ω̂(k, ξ)dξdη

= −
∑
k �=0

∫∫ (
Mb

t(k, ξ) −Mb
t(k, ξ − η)

)1
η
ω̂(0, η)kω̂(k, ξ − η)Mb

t(k, ξ)ω̂(k, ξ)dξdη.

By Taylor’s formula,

|Mb
t(k, ξ) −Mb

t(k, ξ − η)| ≤
1∫

0

|∂ξMb
t(k, ξ − sη)||η|ds.

Using the explicit expression of Mb
t we deduce that

|∂ξMb
t(k, ξ)| ≤ C

(
ν

1
3 |k|− 1

3 + 1 )(
1 + k2 + (ξ + kt)2

) b
2 . (3.13)
|k|
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Therefore,

|I22| ≤
∑
k �=0

C(ν 1
3 |k| 23 + 1)

∫∫ ((
1 + k2 + (ξ + kt)2

) b
2 +

(
1 + k2 + (ξ − η + kt)2

) b
2
)

× |ω̂(0, η)||ω̂(k, ξ − η)|Mb
t(k, ξ)|ω̂(k, ξ)|dξdη

≤ Cν
1
3 ‖Λb

tω0‖L2‖|Dx|
1
3 Λb

tω‖2
L2 + C‖Λb

tω0‖L2‖Λb
tω �=‖2

L2 .

Consequently,

|I2| ≤C ‖(−Δ)− 1
2 Λb

tω �=‖L2‖∇Λb
tω‖L2‖Λb

tω‖L2

+ C ν
1
3 ‖Λb

tω0‖L2‖|Dx|
1
3 Λb

tω‖2
L2 + C ‖Λb

tω0‖L2‖Λb
tω �=‖2

L2

≤C ‖(−Δ)− 1
2 Λb

tω �=‖L2‖∇Λb
tω‖L2‖Λb

tω‖L2

+ C ν
1
3 ‖Λb

tω0‖L2‖|Dx|
1
3 Λb

tω‖2
L2

+ C ‖Λb
tω0‖L2 ‖(−Δ)− 1

2 Λb
tω �=‖L2 ‖∇Λb

tω‖L2 .

(3.14)

I3 can be bounded similarly as I2. We write I3 as I3 = I31 + I32 with

I31 = 〈Λb
t

(
u�= · ∇θ

)
,MΛb

tθ〉L2 , I32 = 〈Λb
t

(
u0 · ∇θ

)
,MΛb

tθ〉L2

and obtain the following bound

|I3| ≤‖(−Δ)− 1
2 Λb

tω �=‖L2‖∇Λb
tθ‖L2‖Λb

tθ‖L2

+ Cν
1
3 ‖Λb

tω0‖L2‖|Dx|
1
3 Λb

tθ‖2
L2 + C‖Λb

tω0‖L2‖Λb
tθ �=‖2

L2

≤‖(−Δ)− 1
2 Λb

tω �=‖L2‖∇Λb
tθ‖L2‖Λb

tθ‖L2

+ C ν
1
3 ‖Λb

tω0‖L2‖|Dx|
1
3 Λb

tθ‖2
L2

+ C ‖Λb
tω0‖L2‖(−Δ)− 1

2 Λb
tθ �=‖L2 ‖∇Λb

tθ‖L2 .

(3.15)

• Estimates for I4.

We first decompose I4 as I4 = I41 + I42 with

I41 = 〈Λb
t

(
u �= · ∇θ

)
, |Dx|

2
3MΛb

tθ〉L2 , I42 = 〈Λb
t

(
u0 · ∇θ

)
, |Dx|

2
3MΛb

tθ〉L2 .

The estimates for I42 are the same as those for I22,

|I42| ≤ Cν
1
3 ‖Λb

tω0‖L2‖|Dx|
2
3 Λb

tθ‖2
L2 + C‖Λb

tω0‖L2‖|Dx|
1
3 Λb

tθ �=‖2
L2 .

For I41, we have
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|I41| ≤ ‖|Dx|
1
3 Λb

t

(
u �= · ∇θ

)
‖L2‖|Dx|

1
3 Λb

tθ‖L2 .

Furthermore, it follows from (3.1) that

‖|Dx|
1
3 Λb

t

(
u�= · ∇θ

)
‖L2 ≤ ‖Λb

tu�=‖L2‖|Dx|
1
3 Λb

t∇θ‖L2 + ‖|Dx|
1
3 Λb

tu�=‖L2‖Λb
t∇θ‖L2

and

‖Λb
tu�=‖L2 ≤ ‖(−Δ)− 1

2 Λb
tω �=‖L2 , ‖|Dx|

1
3 Λb

tu�=‖L2 ≤ ‖|Dx|
1
3 Λb

tω‖L2 .

Therefore, we deduce that

|I4| ≤Cν
1
3 ‖Λb

tω0‖L2‖|Dx|
2
3 Λb

tθ‖2
L2 + C‖Λb

tω0‖L2‖|Dx|
1
3 Λb

tθ �=‖2
L2

+ C ‖(−Δ)− 1
2 Λb

tω �=‖L2 ‖|Dx|
1
3 Λb

t∇θ‖L2‖|Dx|
1
3 Λb

tθ‖L2

+ C ‖|Dx|
1
3 Λb

tω‖L2 ‖Λb
t∇θ‖L2 ‖|Dx|

1
3 Λb

tθ‖L2 .

(3.16)

• The closing of the energy estimate.
Inserting the upper bounds (3.10), (3.14), (3.15) and (3.16) in (3.7), (3.8) and (3.9)

and integrating in time, we obtain

‖Λb
tω‖2

L∞
t (L2) + ν‖∇Λb

tω‖2
L2

t (L2) + 1
8ν

1
3 ‖|Dx|

1
3 Λb

tω‖2
L2

t (L2) + ‖(−Δ)− 1
2 Λb

tω �=‖2
L2

t (L2)

≤ 2‖Λb
0ω

(0)‖2
L2 + 8ν− 1

3 ‖|Dx|
2
3 Λb

tθ‖2
L2

t (L2) + C1ν
1
3 ‖Λb

tω‖L∞
t (L2)‖|Dx|

1
3 Λb

tω‖2
L2

t (L2)

+ C1‖(−Δ)− 1
2 Λb

tω �=‖L2
tL

2‖∇Λb
tω‖L2

t (L2)‖Λb
tω‖L∞

t (L2), (3.17)

and

‖Λb
tθ‖2

L∞
t (L2) + ν‖∇Λb

tθ‖2
L2

t (L2) + 1
4ν

1
3 ‖|Dx|

1
3 Λb

tθ‖2
L2

t (L2) + ‖(−Δ)− 1
2 Λb

tθ �=‖2
L2

t (L2)

≤ 2‖Λb
0θ

(0)‖2
L2 + C2 ‖(−Δ)− 1

2 Λb
tω �=‖L2

t (L2)‖∇Λb
tθ‖L2

t (L2)‖Λb
tθ‖L∞

t (L2)

+ C2ν
1
3 ‖Λb

tω‖L∞
t (L2)‖|Dx|

1
3 Λb

tθ‖2
L2

t (L2) (3.18)

+ C2 ‖Λb
tω‖L∞

t (L2) ‖(−Δ)− 1
2 Λb

tθ �=‖L2
t (L2) ‖∇Λb

tθ‖L2
t (L2),

and

‖|Dx|
1
3 Λb

tθ‖2
L∞

t (L2) + ν‖∇|Dx|
1
3 Λb

tθ‖2
L2

t (L2) + 1
4ν

1
3 ‖|Dx|

2
3 Λb

tθ‖2
L2

t (L2)

+ ‖(−Δ)− 1
2 |Dx|

1
3 Λb

tθ �=‖2
L2

t (L2)

≤ 2‖|Dx|
1
3 Λb

0θ
(0)‖2

L2 + C3ν
1
3 ‖Λb

tω‖L∞
t (L2)‖|Dx|

2
3 Λb

tθ‖2
L2

t (L2) (3.19)

+ C3 ‖Λb
tω0‖L∞(L2)‖|Dx|

1
3 Λb

tθ �=‖2
L2(L2)
t t
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+ C3 ‖(−Δ)− 1
2 Λb

tω �=‖L2
t (L2) ‖|Dx|

1
3 Λb

t∇θ‖L2
t (L2)‖|Dx|

1
3 Λb

tθ‖L∞
t (L2)

+ C3‖|Dx|
1
3 Λb

tω‖L2
t (L2) ‖Λb

t∇θ‖L2
t (L2) ‖|Dx|

1
3 Λb

tθ‖L∞
t (L2).

The a priori bounds in (3.17), (3.18) and (3.19) allow us to prove Theorem 1.3 through 
the bootstrap argument. We recall the assumptions on the initial data (ω(0), θ(0)),

‖ω(0)‖Hb ≤ ενβ , ‖θ(0)‖Hb ≤ ενα, ‖|Dx|
1
3 θ(0)‖Hb ≤ ενδ, (3.20)

where ε > 0 is sufficiently small and

β ≥ 1
2 , δ ≥ β + 1

3 , α ≥ δ − β + 2
3 . (3.21)

To apply the bootstrap argument, we make the ansatz that, for T ≤ ∞, the solution of 
(1.3) obeys

‖Λb
tω‖L∞

T (L2) + ν
1
2 ‖∇Λb

tω‖L2
T (L2) + ν

1
6 ‖|Dx|

1
3 Λb

tω‖L2
T (L2)

+‖(−Δ)− 1
2 Λb

tω �=‖L2
T (L2) ≤ Cενβ , (3.22)

‖Λb
tθ‖L∞

T (L2) + ν
1
2 ‖∇Λb

tθ‖L2
T (L2) + ν

1
6 ‖|Dx|

1
3 Λb

tθ‖L2
T (L2)

+‖(−Δ)− 1
2 Λb

tθ �=‖L2
T (L2) ≤ Cενα, (3.23)

‖|Dx|
1
3 Λb

tθ‖L∞
T (L2) + ν

1
2 ‖∇|Dx|

1
3 Λb

tθ‖L2
T (L2) + ν

1
6 ‖|Dx|

2
3 Λb

tθ‖L2
T (L2)

+‖(−Δ)− 1
2 |Dx|

1
3 Λb

tθ �=‖L2
T (L2) ≤ C̃ενδ. (3.24)

We then show that (3.22), (3.23) and (3.24) actually hold with C replaced by C/2 and 
C̃ by C̃/2. In fact, if we insert the initial condition (3.20) and the ansatz (3.22), (3.23)
and (3.24) in (3.17), (3.18) and (3.19), we find

‖Λb
tω‖2

L∞
t (L2) + ν‖∇Λb

tω‖2
L2

t (L2) + 1
8ν

1
3 ‖|Dx|

1
3 Λb

tω‖2
L2

t (L2) + ‖(−Δ)− 1
2 Λb

tω �=‖2
L2

t (L2)

≤ 2ε2ν2β + 8C̃2ε2ν2δ− 2
3 + C1 C

3ε3(ν3β− 1
3 + ν3β− 1

2 ),

‖Λb
tθ‖2

L∞
t (L2) + ν‖∇Λb

tθ‖2
L2

t (L2) + 1
4ν

1
3 ‖|Dx|

1
3 Λb

tθ‖2
L2

t (L2) + ‖(−Δ)− 1
2 Λb

tθ �=‖2
L2

t (L2)

≤ 2ε2ν2α + C2C
3ε3(3νβ+2α− 1

2 + νβ+2α− 1
3 ),

‖|Dx|
1
3 Λb

tθ‖2
L∞

t (L2) + ν‖∇|Dx|
1
3 Λb

tθ‖2
L2

t (L2) + 1
4ν

1
3 ‖|Dx|

2
3 Λb

tθ‖2
L2

t (L2)

+‖(−Δ)− 1
2 |Dx|

1
3 Λb

tθ �=‖2
L2

t (L2)

≤ 2ε2ν2δ + C3CC̃ε3(2C̃νβ+2δ + Cνβ+2α− 1
3 + 2Cνβ+α+δ− 2

3 ).

If we invoke (3.21) and choose
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C̃ ≥ 8, C ≥ 32C̃, ε = min
( 1
128C1C

,
1

128C2C
,

C̃

64C3C

)
,

then the inequalities (3.22)-(3.23) hold with C replaced by C/2 and (3.24) holds with C̃
replaced by C̃/2. This completes the proof of Theorem 1.3. �
4. Proof of Theorem 1.4

This section proves the nonlinear stability result stated in Theorem 1.4. We recall 
that the Boussinesq system concerned here has only vertical dissipation, namely⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tω + y∂xω + (u · ∇)ω = ν∂yyω + ∂xθ,

∂tθ + y∂xθ + (u · ∇)θ = ν∂yyθ,

u = −∇⊥(−Δ)−1ω,

ω(x, 0) = ω(0), θ(x, 0) = θ(0).

(4.1)

The proof is much more involved than the full dissipation case. The framework is still 
the bootstrap argument, but it is now much more difficult to prove the desired a priori
bounds due to the lack of horizontal dissipation. The Fourier multiplier operator is the 
same as that is designed for the full dissipation case, but the nonlinear terms are now 
difficult to control. Various techniques are combined to achieve suitable upper bounds. 
The quantities are decomposed into horizontal zeroth mode and the non-zeroth modes 
to distinguish their different behaviors. Commutator estimates are employed to shift 
derivatives. In addition, the frequency space is divided into different subdomains to 
facilitate cancellations and derivative distribution.

Proof of Theorem 1.4. Applying the operator Λb
t to (4.1) and making use of the fact 

that Λb
t commutes with ∂t + y∂x, we obtain{

∂tΛb
tω + y∂xΛb

tω − ν∂2
yΛb

tω + Λb
t

(
(u · ∇)ω

)
= ∂xΛb

tθ,

∂tΛb
tθ + y∂xΛb

tθ − ν∂2
yΛb

tθ + Λb
t

(
(u · ∇)θ

)
= 0.

(4.2)

We then take the scalar product of the equations with MΛb
tω and MΛb

tθ, respectively, 
where the Fourier multiplier M is defined in (1.14). Using (1.15), due to the fact that 
M is self-adjoint and y∂x is skew-adjoint,

2Re〈y∂xf,Mf〉L2 = 〈
[
M, y∂x

]
f, f〉L2 = 〈(k∂ξM)(D)f, f〉L2 .

Invoking this equality, we have

d

dt
‖
√
MΛb

tω‖2
L2 + 2ν‖Dy

√
MΛb

tω‖2
L2 + 〈(k∂ξM)(D)Λb

tω,Λb
tω〉L2

b
( )

b
2

b b
2

(4.3)

+ 2Re〈Λt u · ∇ω ,MΛtω〉L = 2Re〈∂xΛtθ,MΛtω〉L
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and

d

dt
‖
√
MΛb

tθ‖2
L2 + 2ν‖Dy

√
MΛb

tθ‖2
L2 + 〈(k∂ξM)(D)Λb

tθ,Λb
tθ〉L2

+ 2Re〈Λb
t

(
u · ∇θ

)
,MΛb

tθ〉L2 = 0.
(4.4)

Similarly, taking the L2-inner product of M|Dx|
2
3 Λb

tθ with the θ equation of (4.2) gives

d

dt
‖
√
M|Dx|

1
3 Λb

tθ‖2
L2 + 2ν‖Dy

√
M|Dx|

1
3 Λb

tθ‖2
L2

+ 〈|Dx|
2
3 (k∂ξM)(D)Λb

tθ,Λb
tθ〉L2 + 2Re〈Λb

t

(
u · ∇θ

)
, |Dx|

2
3MΛb

tθ〉L2 = 0.
(4.5)

Using (3.6) and the properties of the function ϕ, especially ϕ′(τ) = 1
4 when |τ | ≤ 1, we 

have, for k �= 0, ξ ∈ R

2νξ2M(k, ξ) + k∂ξM(k, ξ) ≥ νξ2 + 1
4ν

1
3 |k| 23 + 1

ξ2 + k2 .

As a consequence, it comes out

2ν‖Dy

√
Mf‖2

L2 + 〈(k∂ξM)(D)f, f〉L2

≥ ν‖Dyf‖2
L2 + 1

4ν
1
3 ‖|Dx|

1
3 f‖2

L2 + ‖(−Δ)− 1
2 f�=‖2

L2 ,
(4.6)

where f�= is given in (1.10). Inserting (4.6) into (4.3), (4.4), (4.5) yields

d

dt
‖
√
MΛb

tω‖2
L2 + ν‖DyΛb

tω‖2
L2 + 1

4ν
1
3 ‖|Dx|

1
3 Λb

tω‖2
L2 + ‖(−Δ)− 1

2 Λb
tω �=‖2

L2

≤ 2Re 〈∂xΛb
tθ,MΛb

tω〉L2︸ ︷︷ ︸
=I1

−2Re 〈Λb
t

(
u · ∇ω

)
,MΛb

tω〉L2︸ ︷︷ ︸
=I2

,
(4.7)

d

dt
‖
√
MΛb

tθ‖2
L2 + ν‖DyΛb

tθ‖2
L2 + 1

4ν
1
3 ‖|Dx|

1
3 Λb

tθ‖2
L2 + ‖(−Δ)− 1

2 Λb
tθ �=‖2

L2

≤ −2Re 〈Λb
t

(
u · ∇θ

)
,MΛb

tθ〉L2︸ ︷︷ ︸
=I3

(4.8)

and

d

dt
‖
√
M|Dx|

1
3 Λb

tθ‖2
L2 + ν‖Dy|Dx|

1
3 Λb

tθ‖2
L2 + 1

4ν
1
3 ‖|Dx|

2
3 Λb

tθ‖2
L2

+ ‖(−Δ)− 1
2 |Dx|

1
3 Λb

tθ �=‖2
L2 ≤ −2Re 〈Λb

t

(
u · ∇θ

)
, |Dx|

2
3MΛb

tθ〉L2︸ ︷︷ ︸
=I4

.
(4.9)

The term I1 is easy to deal with, using the L2-boundedness of M, we have
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|I1| = |〈∂xΛb
tθ,MΛb

tω〉L2 | ≤ ‖|Dx|
2
3 Λb

tθ‖L2‖|Dx|
1
3 Λb

tω‖L2

≤ 1
16ν

1
3 ‖|Dx|

1
3 Λb

tω‖2
L2 + 8ν− 1

3 ‖|Dx|
2
3 Λb

tθ‖2
L2 .

(4.10)

• Estimates for I2 and I3.

The terms I2 and I3 have the same structure so that we only estimate I3. In view of 
(3.11), we write

u · ∇θ = u0∂xθ + ∂y(−Δ)−1ω �=∂xθ − ∂x(−Δ)−1ω �=∂yθ.

Correspondingly, we decompose I3 as

I3 = 〈Λb
t

(
u · ∇θ

)
,MΛb

tθ〉L2 = I31 + I32 + I33, with

I31 := −〈Λb
t

(
∂x(−Δ)−1ω �=∂yθ

)
,MΛb

tθ〉L2 ,

I32 := 〈Λb
t

(
u0∂xθ

)
,MΛb

tθ〉L2 ,

I33 := 〈Λb
t

(
∂y(−Δ)−1ω �=∂xθ

)
,MΛb

tθ〉L2 .

For the term I31, we have

I31 ≤ ‖Λb
t

(
∂x(−Δ)−1ω �=∂yθ

)
‖L2‖Λb

tθ‖L2

≤ ‖(−Δ)− 1
2 Λb

tω �=‖L2‖DyΛb
tθ‖L2‖Λb

tθ‖L2 .
(4.11)

The estimates for I32 and I33 are much more elaborate since we only have 1
3 -derivative 

enhanced dissipation in the x-direction, which is not enough to control ∂xθ directly. By 
(1.10), we write θ = θ0 + θ �=. Since θ0 is independent of x, we have ∂xθ0 = 0 and the 
cancellations

〈Mb
t(u0∂xθ �=),Mb

tθ0〉L2 = 0, 〈u0∂x(Mb
tθ �=),Mb

tθ �=〉L2 = 0,

for Mb
t =

√
MΛb

t with symbol Mb
t(k, ξ) given by (3.12). Therefore,

I32 = 〈Mb
t(u0∂xθ �=),Mb

tθ �=〉L2

= 〈Mb
t(u0∂xθ �=) − u0∂x(Mb

tθ �=),Mb
tθ �=〉L2 .

Using Plancherel’s theorem, we have

I32 =
∑
k �=0

∫∫ (
Mb

t(k, ξ) −Mb
t(k, ξ − η)

)
û(0, η)ikθ̂ �=(k, ξ − η)Mb

t(k, ξ)θ̂ �=(k, ξ)dξdη

= −
∑
k �=0

∫∫ (
Mb

t(k, ξ) −Mb
t(k, ξ − η)

)1
η
ω̂(0, η)kθ̂ �=(k, ξ − η)Mb

t(k, ξ)θ̂ �=(k, ξ)dξdη,

where we used û(0, η) = iη−1ω̂(0, η) by (3.11). Therefore, in view of (3.13), we get, by 
applying Young’s convolution inequality, that
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|I32| ≤
∑
k �=0

C(ν 1
3 |k| 23 + 1)

∫∫ (
Λb
t(k, ξ − η) + Λb

t(0, η)
)
|ω̂(0, η)|

× |θ̂ �=(k, ξ − η)|Λb
t(k, ξ)|θ̂ �=(k, ξ)|dξdη

≤ C
(
ν

1
3 ‖ω̂0‖L1‖|Dx|

1
3 Λb

tθ �=‖2
L2 + ν

1
3 ‖Λb

tω0‖L2‖ ̂|Dx|
1
3 θ �=‖L1‖|Dx|

1
3 Λb

tθ �=‖L2

+ ‖ω̂0‖L1‖Λb
tθ �=‖2

L2 + ‖Λb
tω0‖L2‖θ̂ �=‖L1‖Λb

tθ �=‖L2
)

≤ Cν
1
3 ‖Λb

tω0‖L2‖|Dx|
1
3 Λb

tθ‖2
L2 + C‖Λb

tω0‖L2‖Λb
tθ �=‖2

L2 .

(4.12)

Due to div u�= = 0, we have the cancellation

〈u�= · ∇(Mb
tθ),Mb

tθ〉L2 = 0

and we can rewrite

I33 = 〈Mb
t(u �=∂xθ) − u �=∂x(Mb

tθ),Mb
tθ〉L2︸ ︷︷ ︸

=:J

−〈v�=∂y(Mb
tθ),Mb

tθ〉L2︸ ︷︷ ︸
=:J ′

.

The term J ′ is easy to control

|J ′| ≤ ‖v�=‖L∞‖DyMb
tθ‖L2‖Mb

tθ‖L2

≤ ‖(−Δ)− 1
2 Λb

tω �=‖L2‖DyΛb
tθ‖L2‖Λb

tθ‖L2 .
(4.13)

It remains to estimate the term J . Noticing that ∂xθ0 = ∂x(Mb
tθ0) = 0, we can write

J = 〈Mb
t(u �=∂xθ �=) − u �=∂x(Mb

tθ �=),Mb
tθ〉L2 = J1 + J2with

J1 := 〈Mb
t(u �=∂xθ �=) − u �=∂x(Mb

tθ �=),Mb
tθ �=〉L2 ,

J2 := 〈Mb
t(u �=∂xθ �=) − u �=∂x(Mb

tθ �=),Mb
tθ0〉L2 .

By Plancherel’s theorem,

J1 =
∑
k,l

∫∫ (
Mb

t(k, ξ) −Mb
t(k − l, ξ − η)

)
×û �=(l, η) · i(k − l)θ̂ �=(k − l, ξ − η) · Mb

t(k, ξ)θ̂ �=(k, ξ)dξdη

= −
∑

k �=0,l �=0
k−l �=0

∫∫ (
Mb

t(k, ξ) −Mb
t(k − l, ξ − η)

)

×η(k − l)
l2 + η2 ω̂ �=(l, η)θ̂ �=(k − l, ξ − η) · Mb

t(k, ξ)θ̂ �=(k, ξ)dξdη,

where in the last equality we used û�=(l, η) = iη(l2 + η2)−1ω̂ �=(l, η) by (3.11). In order 
to estimate J1, the idea is to use Taylor’s formula for Mb

t(k, ξ) −Mb
t(k − l, ξ − η) as in 
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the estimates of I32. However, M(k, ξ) and Mb
t(k, ξ) are not smooth at k = 0. We then 

have to divide into four different cases:

A1 = {k > 0, k − l > 0}, A2 = {k < 0, k − l < 0},
A3 = {k > 0, k − l < 0}, A4 = {k < 0, k − l > 0} (4.14)

and denote by

J1i := −
∑

(k,l)∈Ai

∫∫ (
Mb

t(k, ξ) −Mb
t(k − l, ξ − η)

)
×η(k − l)

l2 + η2 ω̂ �=(l, η)θ̂ �=(k − l, ξ − η) · Mb
t(k, ξ)θ̂ �=(k, ξ)dξdη.

We first estimate J11 and J12. When k > 0, k − l > 0, we use Taylor’s formula,

|Mb
t(k, ξ) −Mb

t(k − l, ξ − η)| ≤
1∫

0

|∂ξMb
t(k − sl, ξ − sη)||η|ds

+
1∫

0

|∂kMb
t(k − sl, ξ − sη)||l|ds.

A direct computation gives

|∂kΛb
t(k, ξ)| ≤ CΛb−2

t (k, ξ)(|k| + |ξ + kt||t|), |t| ≤ 1
|k|

(
|ξ| + Λt(k, ξ)

)
,

which implies

|∂kMb
t(k, ξ)| ≤

(1
k

+ |ξ|
k2

)
Λb
t(k, ξ) for k > 0.

Together with (3.13), we obtain

|Mb
t(k, ξ) −Mb

t(k − l, ξ − η)|

≤
1∫

0

( ν
1
3 |η|

(k − sl) 1
3

+ |η| + |l|
k − sl

+ |ξ − sη||l|
(k − sl)2

)
Λb
t(k − sl, ξ − sη)ds

�
( ν

1
3 |η|

min(k − l, k) 1
3

+ |η| + |l|
min(k − l, k) + (|ξ| + |ξ − η|)|l|

(k − l)k
)(

Λb
t(k − l, ξ − η) + Λb

t(l, η)
)
.

Here and in all that follows, a � b always means that there is a uniform constant C so 
that a ≤ Cb. Therefore, by the convolution inequality,
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|J (1)
11 | :=

∣∣∣ ∑
(k,l)∈A1

l>0

∫∫ (
Mb

t(k, ξ) −Mb
t(k − l, ξ − η)

)

×η(k − l)
l2 + η2 ω̂ �=(l, η)θ̂ �=(k − l, ξ − η) · Mb

t(k, ξ)θ̂ �=(k, ξ)dξdη
∣∣∣

�
∑

(k,l)∈A1
l>0

∫∫ ( ν
1
3 |η|

(k − l) 1
3

+ |η| + |l|
k − l

+ (|ξ| + |ξ − η|)|l|
(k − l)k

)(
Λb
t(k − l, ξ − η) + Λb

t(l, η)
)

×|η|(k − l)
l2 + η2 |ω̂ �=(l, η)θ̂ �=(k − l, ξ − η)Λb

t(k, ξ)θ̂ �=(k, ξ)|dξdη

�
∑

(k,l)∈A1
l>0

∫∫ (
ν

1
3 (k − l) 2

3 + 1 + |ξ| + |ξ − η|
(l2 + η2) 1

2

)(
Λb
t(k − l, ξ − η) + Λb

t(l, η)
)

×|ω̂ �=(l, η)θ̂ �=(k − l, ξ − η)Λb
t(k, ξ)θ̂ �=(k, ξ)|dξdη,

from which, we infer

|J (1)
11 | � ‖ω̂ �=‖L1

(
ν

1
3 ‖|Dx|

1
3 Λb

tθ �=‖2
L2 + ‖Λb

tθ �=‖2
L2

)
+‖ ̂(−Δ)− 1

2ω �=‖L1‖Λb
tθ �=‖L2‖DyΛb

tθ �=‖L2

+‖Λb
tω �=‖L2

(
ν

1
3 ‖ ̂|Dx|

1
3 θ �=‖L1‖|Dx|

1
3 Λb

tθ �=‖L2 + ‖θ̂ �=‖L1‖Λb
tθ �=‖L2

)
+‖(−Δ)− 1

2 Λb
tω �=‖L2

(
‖θ̂ �=‖L1‖DyΛb

tθ �=‖L2 + ‖̂Dyθ �=‖L1‖Λb
tθ �=‖L2

)
� ‖Λb

tω �=‖L2‖|Dx|
1
3 Λb

tθ �=‖2
L2 + ‖(−Δ)− 1

2 Λb
tω �=‖L2‖Λb

tθ �=‖L2‖DyΛb
tθ �=‖L2 ,

where we have used that (k − l) 2
3 ≤ (k − l) 1

3 k
1
3 for k > 0, k − l > 0, l > 0.

On the other hand, when k ≥ 1, l < 0, we have the inequalities

k − l

k
1
3

≤ min
(
(k − l) 1

3 k
1
3 + (k − l) 1

3 |l| 23 , 2(k − l) 2
3 |l| 13

)
,

k − l

k
≤ 2 min

(
(k − l) 1

3 |l| 23 , (k − l) 2
3 |l| 13

)
.

J
(2)
11 can be estimated as follows,

|J (2)
11 | :=

∣∣∣ ∑
(k,l)∈A1

l<0

∫∫ (
Mb

t(k, ξ) −Mb
t(k − l, ξ − η)

)

×η(k − l)
l2 + η2 ω̂ �=(l, η)θ̂ �=(k − l, ξ − η) ·Mb

t(k, ξ)θ̂ �=(k, ξ)dξdη
∣∣∣

�
∑

(k,l)∈A1

∫∫ (ν 1
3 |η|
k

1
3

+ |η| + |l|
k

+ (|ξ| + |ξ − η|)|l|
(k − l)k

)(
Λb
t(k − l, ξ − η) + Λb

t(l, η)
)

l<0
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×|η|(k − l)
l2 + η2 |ω̂ �=(l, η)θ̂ �=(k − l, ξ − η)Λb

t(k, ξ)θ̂ �=(k, ξ)|dξdη

�
∑

(k,l)∈A1
l<0

∫∫ ((
ν

1
3 (k − l) 1

3 k
1
3 + |ξ| + |ξ − η|

)(
Λb
t(k − l, ξ − η) + Λb

t(l, η)
)

+(k − l) 1
3 |l| 23 Λb

t(k − l, ξ − η) + (k − l) 2
3 |l| 13 Λb

t(l, η)
)

×|ω̂ �=(l, η)θ̂ �=(k − l, ξ − η)Λb
t(k, ξ)θ̂ �=(k, ξ)|dξdη,

which ensures that

|J (2)
11 | � ν

1
3 ‖ω̂ �=‖L1‖|Dx|

1
3 Λb

tθ �=‖2
L2 + ‖ ̂|Dx|

2
3ω �=‖L1‖|Dx|

1
3 Λb

tθ �=‖L2‖Λb
tθ �=‖L2

+‖ω̂ �=‖L1‖Λb
tθ �=‖L2‖DyΛb

tθ �=‖L2 + ν
1
3 ‖Λb

tω �=‖L2‖ ̂|Dx|
1
3 θ �=‖L1‖|Dx|

1
3 Λb

tθ �=‖L2

+‖|Dx|
1
3 Λb

tω �=‖L2‖ ̂|Dx|
2
3 θ �=‖L1‖Λb

tθ �=‖L2

+‖Λb
tω �=‖L2

(
‖θ̂ �=‖L1‖DyΛb

tθ �=‖L2 + ‖̂Dyθ �=‖L1‖Λb
tθ �=‖L2

)
� ‖Λb

tω �=‖L2
(
ν

1
3 ‖|Dx|

1
3 Λb

tθ �=‖2
L2 + ‖Λb

tθ �=‖L2‖DyΛb
tθ �=‖L2

)
+‖|Dx|

1
3 Λb

tω �=‖L2‖|Dx|
1
3 Λb

tθ �=‖L2‖Λb
tθ �=‖L2 ,

where we have used

‖ ̂|Dx|
2
3ω �=‖L1 ≤ ‖|Dx|

1
3 Λb

tω �=‖L2 , provided that b >
4
3 .

Combining the bounds for J (1)
11 and J (2)

11 yields

|J11| � ‖Λb
tω �=‖L2

(
‖|Dx|

1
3 Λb

tθ �=‖2
L2 + ‖Λb

tθ �=‖L2‖DyΛb
tθ �=‖L2

)
+ ‖|Dx|

1
3 Λb

tω �=‖L2‖|Dx|
1
3 Λb

tθ �=‖L2‖Λb
tθ �=‖L2 .

The term J12 can be treated in the same way.
To estimate J13 and J14, we notice that, when k > 0, k− l < 0 or k < 0, k− l > 0, we 

have |k − l| < |l| and thus

|J13 + J14| ≤
∑

(k,l)∈A3∪A4

∫∫ (
Λb
t(k − l, ξ − η) + Λb

t(l, η)
) |η||k − l|
l2 + η2 |ω̂ �=(l, η)|

× |θ̂ �=(k − l, ξ − η)Λb
t(k, ξ)θ̂ �=(k, ξ)|dξdη

� ‖ω̂ �=‖L1‖Λb
tθ �=‖2

L2 + ‖θ̂ �=‖L1‖Λb
tω �=‖L2‖Λb

tθ �=‖L2

� ‖Λb
tω �=‖L2‖Λb

tθ �=‖2
L2 .

This finishes the estimate for J1,
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|J1| � ‖Λb
tω �=‖L2

(
‖|Dx|

1
3 Λb

tθ �=‖2
L2 + ‖Λb

tθ �=‖L2‖DyΛb
tθ �=‖L2

)
+ ‖|Dx|

1
3 Λb

tω �=‖L2‖|Dx|
1
3 Λb

tθ �=‖L2‖Λb
tθ �=‖L2 .

To estimate J2, we observe that

Λb
t(0, ξ) ≤ C

(
Λb
t(l, η) + Λb

t(−l, ξ − η)
)
.

We thus apply Plancherel’s theorem and (3.11) to write

|J2| =
∣∣∣∑
l �=0

∫∫ (
Mb

t(0, ξ) −Mb
t(−l, ξ − η)

)
û �=(l, η)i(−l)θ̂ �=(−l, ξ − η)Mb

t θ̂(0, ξ)dξdη
∣∣∣

�
∑
l �=0

∫∫ (
Λb
t(−l, ξ − η) + Λb

t(l, η)
) |l||η|
l2 + η2 |ω̂ �=(l, η)θ̂ �=(−l, ξ − η)Λb

t θ̂(0, ξ)|dξdη

� ‖ω̂ �=‖L1‖Λb
tθ �=‖L2‖Λb

tθ0‖L2 + ‖θ̂ �=‖L1‖Λb
tω �=‖L2‖Λb

tθ0‖L2

� ‖Λb
tω �=‖L2‖Λb

tθ �=‖L2‖Λb
tθ0‖L2 .

Combining the bounds for J1 and J2, we obtain

|J | � ‖Λb
tω �=‖L2

(
‖|Dx|

1
3 Λb

tθ �=‖2
L2 + ‖Λb

tθ �=‖L2‖DyΛb
tθ �=‖L2 + ‖Λb

tθ �=‖L2‖Λb
tθ0‖L2

)
+ ‖|Dx|

1
3 Λb

tω �=‖L2‖|Dx|
1
3 Λb

tθ �=‖L2‖Λb
tθ �=‖L2 .

Together with (4.13), we finish the estimates for I33:

|I33| � ‖Λb
tω �=‖L2‖|Dx|

1
3 Λb

tθ‖2
L2 + ‖|Dx|

1
3 Λb

tω‖L2‖|Dx|
1
3 Λb

tθ‖L2‖Λb
tθ �=‖L2

+ ‖Λb
tω �=‖L2‖Λb

tθ‖L2
(
‖DyΛb

tθ‖L2 + ‖Λb
tθ �=‖L2

)
.

(4.15)

It follows from (4.11), (4.12) and (4.15) that

|I3| � ‖Λb
tω‖L2‖|Dx|

1
3 Λb

tθ‖2
L2 + ‖|Dx|

1
3 Λb

tω‖L2‖|Dx|
1
3 Λb

tθ‖L2‖Λb
tθ �=‖L2

+ ‖Λb
tω �=‖L2‖Λb

tθ‖L2
(
‖DyΛb

tθ‖L2 + ‖Λb
tθ �=‖L2

)
.

(4.16)

Similarly, the upper bound for I2 is given by

|I2| � ‖Λb
tω‖L2‖|Dx|

1
3 Λb

tω‖2
L2 + ‖Λb

tω‖L2‖Λb
tω �=‖L2‖DyΛb

tω‖L2 . (4.17)

• Estimates for I4.

As in the estimates of I3, we decompose the term I4 as

I4 = I41 + I42 + I43 with I41 := 〈Λb
t

(
v�=∂yθ

)
, |Dx|

2
3MΛb

tθ〉L2 ,

I42 := 〈Λb
t

(
u0∂xθ

)
, |Dx|

2
3MΛb

tθ〉L2 ,

b
( ) 2

3 b
2
I43 := 〈Λt u �=∂xθ , |Dx| MΛtθ〉L .
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By (3.1), one has

I41 � ‖|Dx|
1
3 Λb

t(v�=∂yθ)‖L2‖|Dx|
1
3 Λb

tθ‖L2

�
(
‖|Dx|

1
3 Λb

tv�=‖L2‖DyΛb
tθ‖L2 + ‖Λb

tv�=‖L2‖|Dx|
1
3DyΛb

tθ‖L2
)
‖|Dx|

1
3 Λb

tθ‖L2 .
(4.18)

Setting N b
t (k, ξ) := |k| 13Mb

t(k, ξ) and N b
t the corresponding Fourier multiplier, we can 

write

I42 = 〈N b
t (u0∂xθ �=) − u0∂xN b

t θ �=,N b
t θ �=〉L2 .

The estimates for I42 are similar to those for I32,

|I42| � ν
1
3 ‖Λb

tω0‖L2‖|Dx|
2
3 Λb

tθ �=‖2
L2 + ‖Λb

tω0‖L2‖|Dx|
1
3 Λb

tθ �=‖2
L2 . (4.19)

In order to estimate the term I43, we decompose it as

I43 = 〈N b
t (u �=∂xθ),N b

t θ〉L2 = K + K ′ with

K = 〈N b
t (u �=∂xθ) − u �=∂x(N b

t θ),N b
t θ〉L2 ,

K ′ = −〈v�=∂y(N b
t θ),N b

t θ〉L2 .

The term K ′ can be bounded easily,

|K ′| ≤ ‖v�=‖L∞‖∂yN b
t θ‖L2‖N b

t θ‖L2

� ‖(−Δ)− 1
2 Λb

tω �=‖L2‖Dy|Dx|
1
3 Λb

tθ‖L2‖|Dx|
1
3 Λb

tθ‖L2 .
(4.20)

For the term K, due to ∂xθ0 = ∂xN b
t θ0 = 0,

K = 〈N b
t (u �=∂xθ �=) − u �=∂x(N b

t θ �=),N b
t θ �=〉L2 .

By Plancherel’s theorem and (3.11),

K = −
∑
k,l

∫∫ (
N b

t (k, ξ) −N b
t (k − l, ξ − η)

)η(k − l)
l2 + η2 ω̂ �=(l, η)

× θ̂ �=(k − l, ξ − η)N b
t (k, ξ)θ̂ �=(k, ξ)dξdη

= K1 + K2 + K3 + K4,

where, for i = 1, 2, 3, 4,

Ki := −
∑

(k,l)∈Ai

∫∫ (
N b

t (k, ξ) −N b
t (k − l, ξ − η)

)η(k − l)
l2 + η2 ω̂ �=(l, η)

̂ b ̂
× θ �=(k − l, ξ − η)Nt (k, ξ)θ �=(k, ξ)dξdη



34 W. Deng et al. / Journal of Functional Analysis 281 (2021) 109255
with Ai being defined in (4.14). For any k �= 0,

|∂ξN b
t (k, ξ)| � (ν 1

3 + |k|− 2
3 )Λb

t(k, ξ),

|∂kN b
t (k, ξ)| � (|k|− 2

3 + |k|− 5
3 |ξ|)Λb

t(k, ξ).

When k > 0, k − l > 0, using Taylor’s formula, we have

|N b
t (k, ξ) −N b

t (k − l, ξ − η)|

�
(
ν

1
3 |η| + |l| + |ξ − η| + |ξ|

min(k − l, k) 2
3

)(
Λb
t(k − l, ξ − η) + Λb

t(l, η)
)
.

Therefore, by the convolution inequality,

|K(1)
1 | =

∣∣∣ ∑
(k,l)∈A1

l>0

∫∫ (
N b

t (k, ξ) −N b
t (k − l, ξ − η)

)η(k − l)
l2 + η2 ω̂ �=(l, η)

×θ̂ �=(k − l, ξ − η)N b
t (k, ξ)θ̂ �=(k, ξ)dξdη

∣∣∣
�

∑
(k,l)∈A1

l>0

∫∫ (
ν

1
3 |η| + |l| + |ξ − η| + |ξ|

(k − l) 2
3

)(
Λb
t(k − l, ξ − η) + Λb

t(l, η)
)

×η(k − l)
l2 + η2 |ω̂ �=(l, η)θ̂ �=(k − l, ξ − η)N b

t θ̂ �=(k, ξ)|dξdη

�
∑

(k,l)∈A1
l>0

∫∫ (
ν

1
3 (k − l) + (k − l) 1

3 + (|ξ − η| + |ξ|)(k − l) 1
3
)

×
(
Λb
t(k − l, ξ − η) + Λb

t(l, η)
)
|ω̂ �=(l, η)θ̂ �=(k − l, ξ − η)N b

t θ̂ �=(k, ξ)|dξdη,

from which, we deduce that

|K(1)
1 | � ‖ω̂ �=‖L1

(
ν

1
3 ‖|Dx|

2
3 Λb

tθ �=‖L2‖|Dx|
1
3N b

t θ �=‖L2 + ‖|Dx|
1
3 Λb

tθ �=‖L2‖N b
t θ �=‖L2

+‖Dy|Dx|
1
3 Λb

tθ �=‖L2‖N b
t θ �=‖L2 + ‖|Dx|

1
3 Λb

tθ �=‖L2‖DyN b
t θ �=‖L2

)
+‖Λb

tω �=‖L2
(
ν

1
3 ‖ ̂|Dx|

2
3 θ �=‖L1‖|Dx|

1
3N b

t θ �=‖L2 + ‖ ̂|Dx|
1
3 θ �=‖L1‖N b

t θ �=‖L2

+‖ ̂Dy|Dx|
1
3 θ �=‖L1‖N b

t θ �=‖L2 + ‖ ̂|Dx|
1
3 θ �=‖L1‖DyN b

t θ �=‖L2
)

� ‖Λb
tω �=‖L2

(
‖|Dx|

2
3 Λb

tθ �=‖2
L2 + ‖Dy|Dx|

1
3 Λb

tθ �=‖L2‖|Dx|
1
3 Λb

tθ �=‖L2
)
,

where we used k − l ≤ (k − l) 2
3 k

1
3 for k > 0, k − l > 0, l > 0.

On the other hand, using the fact that, for k > 0, l < 0,

k − l ≤ (k − l) 2
3 (k 1

3 + |l| 13 ), k − l
2
3

≤ 2(k − l) 2
3 |l| 13 , k − l

2
3

≤ 2(k − l) 1
3 ,
k k |l|
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we have

|K(2)
1 | =

∣∣∣ ∑
(k,l)∈A1

l<0

∫∫ (
N b

t (k, ξ) −N b
t (k − l, ξ − η)

)η(k − l)
l2 + η2 ω̂ �=(l, η)

×θ̂ �=(k − l, ξ − η)N b
t (k, ξ)θ̂ �=(k, ξ)dξdη

∣∣∣
�

∑
(k,l)∈A1

l>0

∫∫ (
ν

1
3 |η| + |l| + |ξ − η| + |ξ|

k
2
3

)(
Λb
t(k − l, ξ − η) + Λb

t(l, η)
)

×η(k − l)
l2 + η2 |ω̂ �=(l, η)θ̂ �=(k − l, ξ − η)N b

t θ̂ �=(k, ξ)|dξdη

�
∑

(k,l)∈A1
l>0

∫∫ (
ν

1
3 (k − l) 2

3 k
1
3 + (k − l) 2

3 |l| 13 + (|ξ − η| + |ξ|)(k − l) 1
3
)

×
(
Λb
t(k − l, ξ − η) + Λb

t(l, η)
)
|ω̂ �=(l, η)θ̂ �=(k − l, ξ − η)N b

t θ̂ �=(k, ξ)|dξdη.

As a result, it comes out

|K(2)
1 | �ν

1
3
(
‖|Dx|

2
3 Λb

tθ �=‖L2‖ω̂ �=‖L1‖|Dx|
1
3N b

t θ �=‖L2

+ ‖Λb
tω �=‖L2‖ ̂|Dx|

2
3 θ �=‖L1‖|Dx|

1
3N b

t θ �=‖L2
)

+ ‖|Dx|
2
3 Λb

tθ �=‖L2‖ ̂|Dx|
1
3ω �=‖L1‖N b

t θ �=‖L2

+ ‖|Dx|
1
3 Λb

tω �=‖L2‖ ̂|Dx|
2
3 θ �=‖L1‖N b

t θ �=‖L2

+ ‖ω̂ �=‖L1
(
‖Dy|Dx|

1
3 Λb

tθ �=‖L2‖N b
t θ �=‖L2 + ‖|Dx|

1
3 Λb

tθ �=‖L2‖DyN b
t θ �=‖L2

)
+ ‖Λb

tω �=‖L2
(
‖ ̂Dy|Dx|

1
3 θ �=‖L1‖N b

t θ �=‖L2 + ‖ ̂|Dx|
1
3 θ �=‖L1‖DyN b

t θ �=‖L2
)

�‖Λb
tω �=‖L2

(
ν

1
3 ‖|Dx|

2
3 Λb

tθ �=‖2
L2 + ‖Dy|Dx|

1
3 Λb

tθ �=‖L2‖|Dx|
1
3 Λb

tθ �=‖L2
)

+ ‖|Dx|
1
3 Λb

tω �=‖L2‖|Dx|
2
3 Λb

tθ �=‖L2‖|Dx|
1
3 Λb

tθ �=‖L2 .

This completes the estimates for K1,

K1 � ‖Λb
tω �=‖L2

(
‖|Dx|

2
3 Λb

tθ �=‖2
L2 + ‖Dy|Dx|

1
3 Λb

tθ �=‖L2‖|Dx|
1
3 Λb

tθ �=‖L2
)

+ ‖|Dx|
1
3 Λb

tω �=‖L2‖|Dx|
2
3 Λb

tθ �=‖L2‖|Dx|
1
3 Λb

tθ �=‖L2 .

We can estimate the term K2 in the same way.
To estimate K3 and K4, we notice that when k > 0, k − l < 0 or k < 0, k − l > 0, 

|k − l| < |l|. Therefore,

|K3 + K4| ≤
∑

(k,l)∈A3∪A4

∫∫ (
N b

t (k, ξ) + N b
t (k − l, ξ − η)

)
×|ω̂ �=(l, η)θ̂ �=(k − l, ξ − η)N b

t θ̂ �=(k, ξ)|dξdη
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�
∑

(k,l)∈A3∪A4

∫∫ (
(|k| 13 + |k − l| 13 )Λb

t(k − l, ξ − η) + |k| 13 Λb
t(�, η)

)
×|ω̂ �=(l, η)θ̂ �=(k − l, ξ − η)N b

t θ̂ �=(k, ξ)|dξdη,

so that we have

|K3 + K4| � ‖ω̂ �=‖L1
(
‖Λb

tθ �=‖L2‖|Dx|
1
3N b

t θ �=‖L2 + ‖|Dx|
1
3 Λb

tθ �=‖L2‖N b
t θ �=‖L2

)
+‖Λb

tω �=‖L2‖θ̂ �=‖L1‖|Dx|
1
3N b

t θ �=‖L2

� ‖Λb
tω �=‖L2

(
‖Λb

tθ �=‖L2‖|Dx|
2
3 Λb

tθ �=‖L2 + ‖|Dx|
1
3 Λb

tθ �=‖2
L2

)
.

Summarizing the estimates, we achieve that

|K| � ‖Λb
tω �=‖L2

(
‖|Dx|

2
3 Λb

tθ �=‖2
L2 + ‖Dy|Dx|

1
3 Λb

tθ �=‖L2‖|Dx|
1
3 Λb

tθ �=‖L2
)

+ ‖|Dx|
1
3 Λb

tω �=‖L2‖|Dx|
2
3 Λb

tθ �=‖L2‖|Dx|
1
3 Λb

tθ �=‖L2 .

Together with (4.20), we obtain

|I43| � ‖Λb
tω �=‖L2

(
‖|Dx|

2
3 Λb

tθ‖2
L2 + ‖Dy|Dx|

1
3 Λb

tθ‖L2‖|Dx|
1
3 Λb

tθ‖L2
)

+ ‖|Dx|
1
3 Λb

tω‖L2‖|Dx|
2
3 Λb

tθ‖L2‖|Dx|
1
3 Λb

tθ‖L2 .
(4.21)

Then by (4.18), (4.19) and (4.21), we finish the estimates for I4,

|I4| � ‖Λb
tω‖L2‖|Dx|

2
3 Λb

tθ‖2
L2 + ‖Λb

tω �=‖L2‖Dy|Dx|
1
3 Λb

tθ‖L2‖|Dx|
1
3 Λb

tθ‖L2

+ ‖|Dx|
1
3 (−Δ)− 1

2 Λb
tω �=‖L2‖DyΛb

tθ‖L2‖|Dx|
1
3 Λb

tθ‖L2

+ ‖|Dx|
1
3 Λb

tω‖L2‖|Dx|
2
3 Λb

tθ‖L2‖|Dx|
1
3 Λb

tθ‖L2 .

(4.22)

• The closing of the energy estimate.
Integrating (4.7), (4.8) and (4.9) in time and making use of the upper bounds in 

(4.10), (4.16), (4.17) and (4.22), we obtain, for b > 4
3 ,

‖Λb
tω‖2

L∞
t (L2) + ν‖DyΛb

tω‖2
L2

t (L2) + 1
8ν

1
3 ‖|Dx|

1
3 Λb

tω‖2
L2

t (L2) + ‖(−Δ)− 1
2 Λb

tω �=‖2
L2

t (L2)

≤ 2‖Λb
0ω

(0)‖2
L2 + 8ν− 1

3 ‖|Dx|
2
3 Λb

tθ‖2
L2

t (L2) + C1‖Λb
tω‖L∞

t (L2)‖|Dx|
1
3 Λb

tω‖2
L2

t (L2)

+C1‖Λb
tω‖L∞

t (L2)‖Λb
tω �=‖L2

t (L2)‖DyΛb
tω‖L2

t (L2), (4.23)

and

‖Λb
tθ‖2

L∞
t (L2) + ν‖DyΛb

tθ‖2
L2

t (L2) + 1
4ν

1
3 ‖|Dx|

1
3 Λb

tθ‖2
L2

t (L2) + ‖(−Δ)− 1
2 Λb

tθ �=‖2
L2

t (L2)

≤ 2‖Λb
0θ

(0)‖2
L2 + C2‖Λb

tω‖L∞(L2)‖|Dx|
1
3 Λb

tθ‖2
L2(L2) (4.24)
t t



W. Deng et al. / Journal of Functional Analysis 281 (2021) 109255 37
+C2‖|Dx|
1
3 Λb

tω‖L2
t (L2)‖|Dx|

1
3 Λb

tθ‖L2
t (L2)‖Λb

tθ �=‖L∞
t (L2)

+C2‖Λb
tω �=‖L2

t (L2)‖Λb
tθ‖L∞

t (L2)
(
‖DyΛb

tθ‖L2
t (L2) + ‖Λb

tθ �=‖L2
t (L2)

)
and

‖|Dx|
1
3 Λb

tθ‖2
L∞

t (L2) + ν‖Dy|Dx|
1
3 Λb

tθ‖2
L2

t (L2) + 1
4ν

1
3 ‖|Dx|

2
3 Λb

tθ‖2
L2

t (L2)

+‖(−Δ)− 1
2 |Dx|

1
3 Λb

tθ �=‖2
L2

t (L2)

≤ 2‖|Dx|
1
3 Λb

0θ
(0)‖2

L2 + C3‖Λb
tω‖L∞

t (L2)‖|Dx|
2
3 Λb

tθ‖2
L2

t (L2) (4.25)

+C3‖Λb
tω �=‖L2

t (L2)
(
‖Dy|Dx|

1
3 Λb

tθ‖L2
t (L2) + ‖DyΛb

tθ‖L2
t (L2)

)
‖|Dx|

1
3 Λb

tθ‖L∞
t (L2)

+C3‖|Dx|
1
3 Λb

tω‖L2
t (L2)‖|Dx|

2
3 Λb

tθ‖L2
t (L2)‖|Dx|

1
3 Λb

tθ‖L∞
t (L2).

With these a priori bounds at our disposal, our final step is to prove Theorem 1.4 via 
the bootstrap argument. We assume that the initial data (ω(0), θ(0)) satisfies

‖ω(0)‖Hb ≤ ενβ , ‖θ(0)‖Hb ≤ ενα, ‖|Dx|
1
3 θ(0)‖Hb ≤ ενδ,

where ε > 0 is sufficiently small, and β, α, δ are constants satisfying

β ≥ 2
3 , δ ≥ β + 1

3 , α ≥ δ − β + 2
3 . (4.26)

The bootstrap argument starts with the ansatz that, for T ≤ ∞, the solution (ω, θ) of 
(4.1) satisfies

‖Λb
tω‖L∞

T (L2) + ν
1
2 ‖DyΛb

tω‖L2
T (L2) + ν

1
6 ‖|Dx|

1
3 Λb

tω‖L2
T (L2)

+‖(−Δ)− 1
2 Λb

tω �=‖L2
T (L2) ≤ Cενβ , (4.27)

‖Λb
tθ‖L∞

T (L2) + ν
1
2 ‖DyΛb

tθ‖L2
T (L2) + ν

1
6 ‖|Dx|

1
3 Λb

tθ‖L2
T (L2)

+‖(−Δ)− 1
2 Λb

tθ �=‖L2
T (L2) ≤ Cενα, (4.28)

‖|Dx|
1
3 Λb

tθ‖L∞
T (L2) + ν

1
2 ‖Dy|Dx|

1
3 Λb

tθ‖L2
T (L2) + ν

1
6 ‖|Dx|

2
3 Λb

tθ‖L2
T (L2)

+‖(−Δ)− 1
2 |Dx|

1
3 Λb

tθ �=‖L2
T (L2) ≤ C̃ενδ. (4.29)

The constants ε > 0, C, C̃ > 0 are suitably selected and will be specified later. Making 
use of the bounds in (4.23), (4.24) and (4.25), we show that (4.27), (4.28) and (4.29)
actually holds with C replaced by C/2 and C̃ replaced by C̃/2. The bootstrap argument 
then implies that T = +∞ and (4.27), (4.28) and (4.29) holds for all time.

In fact, if we substitute the ansatz given by (4.27), (4.28) and (4.29) in the a priori
estimates in (4.23), (4.24) and (4.25), we find
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‖Λb
tω‖2

L∞
t (L2) + ν‖DyΛb

tω‖2
L2

t (L2) + 1
8ν

1
3 ‖|Dx|

1
3 Λb

tω‖2
L2

t (L2) + ‖(−Δ)− 1
2 Λb

tω �=‖2
L2

t (L2)

≤ 2ε2ν2β + 8C̃2ε2ν2δ− 2
3 + C1C

3ε3(ν3β− 1
3 + ν3β− 2

3 ),

‖Λb
tθ‖2

L∞
t (L2) + ν‖DyΛb

tθ‖2
L2

t (L2) + 1
4ν

1
3 ‖|Dx|

1
3 Λb

tθ‖2
L2

t (L2) + ‖(−Δ)− 1
2 Λb

tθ �=‖2
L2

t (L2)

≤ 2ε2ν2α + C2C
3ε3(3νβ+2α− 1

3 + νβ+2α− 2
3 ),

‖|Dx|
1
3 Λb

tθ‖2
L∞

t (L2) + ν‖Dy|Dx|
1
3 Λb

tθ‖2
L2

t (L2) + 1
4ν

1
3 ‖|Dx|

2
3 Λb

tθ‖2
L2

t (L2)

+‖(−Δ)− 1
2 |Dx|

1
3 Λb

tθ �=‖2
L2

t (L2)

≤ 2ε2ν2δ + C3CC̃ε3(2C̃νβ+2δ− 1
3 + C̃ν2δ+β− 2

3 + Cνβ+α+δ− 2
3 ).

If we recall (4.26) and choose

C̃ ≥ 8, C ≥ 32C̃, ε = min
( 1
128C1C

,
1

128C2C
,

C̃

64C3C

)
,

then (4.27)-(4.28) hold with C replaced by C/2 and (4.29) holds with C̃ replaced by 
C̃/2. This completes the proof of Theorem 1.4. �
Remark 4.1. As observed in [19], once we have the bounds for the enhanced dissipation 
term, we can deduce an explicit exponential converge of the non-zero modes for both 
systems (1.3) and (1.4). Let us take the vertical dissipation case (1.4) for example. First 
apply the projection P �= to the system (4.2) and then take the scalar product of the 
equations with MΛb

tω �= and MΛb
tθ �=, respectively. Multiplying the energy inequality by 

a weight e2γν
1
3 t, we obtain

d

dt
‖eγν

1
3 t
√
MΛb

tω �=‖2
L2 + ν‖eγν

1
3 tDyΛb

tω �=‖2
L2 + ‖eγν

1
3 t(−Δ)− 1

2 Λb
tω �=‖2

L2

+ 1
4ν

1
3 ‖eγν

1
3 t|Dx|

1
3 Λb

tω �=‖2
L2 − 2γν 1

3 ‖eγν
1
3 t
√
MΛb

tω �=‖2
L2

≤ 2e2γν
1
3 tRe〈∂xΛb

tθ �=,MΛb
tω �=〉L2 − 2e2γν

1
3 tRe〈Λb

t

(
u · ∇ω

)
�=,MΛb

tω �=〉L2 ,

and similar energy inequalities for θ �=. By choosing γ > 0 small enough and using esti-
mates for the nonlinear terms, we can deduce

‖eγν
1
3 tΛb

tω �=‖L∞(L2) + ν
1
2 ‖eγν

1
3 tDyΛb

tω �=‖L2(L2) + ν
1
6 ‖eγν

1
3 t|Dx|

1
3 Λb

tω �=‖L2(L2)

+‖eγν
1
3 t(−Δ)− 1

2 Λb
tω �=‖L2(L2) � νβ ,

and similar bounds for θ �=.
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