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Abstract. Solutions of the complex KdV equation and the complex KdV-
Burgers equation are studied theoretically and numerically. Attention is fo-
cused on whether their solutions are regular for all time. This is a difficult
issue partially because the conservation laws of the KdV equation no longer
yield a priori bounds for its complex-valued solutions in the L2-space. The

problem is tackled here on several fronts including investigating how the regu-
larity of the real part is related to that of the imaginary part, studying blow-up

of series solutions, and assessing the impact of dissipation. Systematic numer-
ical simulations are performed to complement the theoretical results.

1. Introduction. In this paper we study solutions of the complex KdV equation

ut + 2uux + uxxx = 0 (1.1)

and of its dissipative counterpart, the complex KdV-Burgers equation

ut + 2uux + uxxx − νuxx = 0, (1.2)

where u = u(x, t) is a complex-valued function of the spatial variable x and the
temporal variable t, and ν is the diffusion coefficient. Although the real KdV
equation is normally the focus of attention, the complex KdV-type equations do
arise in physical circumstances. For example, the complex KdV equation with
a higher-order correction term models the diffusion-controlled directional crystal
growth [8] and the stationary complex KdV equation models small perturbations
about a reference velocity in an irrotational flow [12, 13]. In addition, the complex
KdV equation also has some remarkable mathematical features. Several authors
have previously explored some of the features. In [10], Kruskal represented solitons
as the poles of the complex KdV equation and viewed the motion of solitons as the
“parade of poles.” In [2], Birnir studied a class of elliptic solutions to the complex
KdV equation and proved that they blow up in a finite time as a second-order pole.
As revealed in the work of Bona and Weissler [5], the complex KdV equation also
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admits solutions with much richer structure than the real KdV equation. Despite
these outstanding researches, many fundamental issues concerning the complex KdV
equation remain open. Our aim here is to assess whether solutions of the complex
KdV equation remain regular for all time and determine how dissipation, in the form
of Burgers-type term, impacts the regularity. Results of both theoretical study and
numerical computation are presented.

We are mainly concerned with periodic solutions. Both (1.1) and (1.2) are sup-
plemented with the initial condition

u(x, 0) = u0(x), (1.3)

where u0 is a reasonably smooth, 2π-periodic complex-valued function. It is not
hard to show, by the method of Bourgain ([7]), that both of the initial-value prob-
lems (1.1)-(1.3) and (1.2)-(1.3) have at least a unique local (in time) solution ([14]).
Whether these local solutions can be extended into global ones depend on a pri-
ori bounds. Usually conservation laws are the sources of a priori bounds, but the
complication with the complex KdV equation is that the hierarchy of conservation
laws no longer leads to the boundedness of its solutions in the L2-space. To get
around the difficulty, we derive, for any complex-valued solution of the KdV equa-
tion, an explicit relationship between the regularity of the real part and that of the
imaginary part. In fact, we show a priori that the real part is bounded in L2 or
Hk (k ≥ 1) if and only if the imaginary part is bounded in the same space. As a
consequence, any solution of the complex KdV equation is regular for all time if its
real part remains so. This result is proved in Section 2.

Periodic solutions can be represented as Fourier series. In Section 3, we consider
solutions of the complex KdV equation that can be written in the form

u(x, t) =

∞
∑

k=1

ak(t) e
ikx, (1.4)

where ak(t) may be complex-valued. We emphasize that nontrivial real-valued
solutions of (1.1) are excluded by the form (1.4). The complex KdV equation is
then formally reduced into a system of infinite ordinary differential equations of ak’s.
These equations allow us to further represent each ak as a series in the temporal
variable t. That is, u can be written as a double series of the form

u(x, t) =

∞
∑

k=1

k3

∑

h=k

αk,h eiht eikx. (1.5)

Iterative relations for the coefficients αk,h’s are derived. These relations, in partic-
ular, imply that αk,h = 0 for any k ≥ 1 and k3 − 3k2 + 3k < h < k3. In addition,
an explicit formula for αk,k is found through these relations. As a consequence, we
prove that any solution in the form (1.4) becomes unbounded in L2([0, 2π]× [0, 2π])
in a finite time if |a1(0)| ≥ 6, where a1(0) is the first coefficient in the initial data
u0. This result is sharp in the sense that there exist a series with initial |a1(0)| < 6
that are regular for all time. However, we may not conclude that global in time
solutions exist merely under the hypothesis that |a1(0)| < 6.

Aiming at determining the L2-convergence of the double series (1.5), we com-
puted symbolically through a Maple procedure the expressions of ak(t)’s in terms of
the initial coefficients ak(0)’s. Using these formulas, we computed ‖u‖L2([0,2π]×[0,2π])
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for a special class of initial data u0, namely ak(0) = 1/kβ with β > 1/2. The numer-
ical results indicate that u is bounded and its L2-norm has an interesting connection
to its initial L2-norm when β = 1. We also investigated another interesting and
closely related issue: how many αk,h are non-zero for each fixed k ≥ 1? This appears
to be a fairly difficult combinatorial problem. Using a Maple code, we computed
the indices (k, h) for which αk,h 6= 0 for k up to 50. A careful examination of these
indices seems to imply that the number of non-zero αk,h’s for extremely large k is
about k3/6. More details are discussed in Section 3.

Section 4 is devoted to the complex KdV-Burgers equation. The point is to see
how dissipation, in the form of the Burgers-type term, modifies the regularity of
solutions to the complex KdV equation. We start with deriving an explicit bound
M0, for which

‖u(·, t)‖L2 ≤M0 for t < T ∗,

where T ∗ is represented in terms of the dissipation coefficient ν and the initial data
u0. Either increasing ν or decreasing ‖u0‖L2 lengthens T ∗. It is not known if u
remains bounded in L2 for t ≥ T ∗. However, if the L2-norm is indeed bounded
for all time, then we show that any Hk-norm with k ≥ 1 is also bounded for all
time. This result, in particular, implies that any possible finite-time singularity of
the complex KdV equation must develop in the L2-norm. This result is a little bit
surprising. Normally one needs the finiteness of L∞-norm in order to control the
Hk-norms such as in the celebrated result of Beale, Kato and Majda on the 3D
Navier-Stokes equations [1].

Section 5 presents the results of systematic numerical simulations. Numerical
experiments are carried out in this section to test how the “sizes” of initial data
and dissipation impact the regularity of the complex KdV equation. The fully
discrete schemes we are using here amount to the Gauss-Legendre methods on
the systems of ordinary differential equations that arise from the Galerkin semi-
discretization. Adaptive mechanisms are used to adjust the temporal and local
spatial grids to retain accuracy in the situation of large dependent variable. More
detailed description of the numerical method and its convergence rate is given in
Subsection 5.1. Subsection 5.2 reports numerical computations on the complex
KdV equation. Attention is focused on how the regularity of its solutions changes
with the magnitude of the initial data. In Subsection 5.3, numerical solutions of
the complex KdV-Burgers equation are computed. We place a special emphasis on
the role of dissipation in the regularity. Solutions corresponding to a range of ν are
computed. The results indicate that for any given initial datum u0 there exists a
critical value ν∗ such that the solution is smooth for all time if ν > ν∗, and blows
up in a finite time if ν < ν∗. Efforts are made to pin down the critical ν∗’s. Finally
we remark that the numerical experiments are very delicate and time-consuming.

2. Regularity. In this section, we prove a general regularity result for solutions of
the complex KdV equation

ut + 2uux + uxxx = 0. (2.1)

Roughly speaking, it states that the real part of any solution of (2.1) is as regular
as the imaginary part. The precise statement will be presented in Theorem 2.1
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below. Throughout this section, we assume that (2.1) is complemented by the
initial condition

u(x, 0) = u0(x)

with u0 fulfilling required regularity. In addition, the real and imaginary part of a
complex-valued solution u are denoted by f and g, respectively.

We now briefly recall the KdV-conversation laws given by Kruskal, Miura, Gard-
ner and Zabusky [11]. Obviously, complex-valued solutions of the KdV equation
obey the same laws. For each k = 1, 2, · · · , a sufficiently smooth solution u of the
KdV equation satisfies a sequence of identities of the form

∂

∂t
Ik(u) =

∂

∂x
Fk(u), (2.2)

where Ik and Fk are polynomials in u and the partial derivatives ∂j
xu, which we

write as u(j) for convenience, j = 1, 2, · · · . In more detail, Ik depends on u, ∂xu,

· · · , ∂k
xu and Fk depends on u, ∂xu, · · · , ∂k+2

x u. Moreover, suitably normalized, Ik
has the form

Ik(u) = u2
(k) + auu2

k−1 + · · · ,
which is a finite sum of terms of index k + 2 where the index of a monomial

uα1

(β1)
· · ·uαr

(βr)
(2.3)

is
r
∑

i=1

αi +
1

2

r
∑

i=1

αi βi.

The fluxes Fk have a similar form except that their general term, which is also of
the form (2.3), has index k + 3.

Integrating both sides of (2.2) with respect to x, there obtains

Qk(u) ≡
∫

Ik(u)dx =

∫

Ik(u0)dx = Qk(u0). (2.4)

Here we have written
∫

for the integral over the spatial domain.

Theorem 2.1. Let k ≥ 0 be an integer and T > 0. Let u0 ∈ Hk and u be the
solution of the complex KdV equation (2.1) with initial data u0. Denote the real
part of u by f and its imaginary part by g. Then for any t ≤ T ,

f(·, t) is in Hk if and only if g(·, t) is in Hk. (2.5)

Remark. One interpretation of this theorem is that any solution of the complex
KdV equation is regular for all time as long as its real part is so.

Proof. The theorem is proved by induction. With k = 0, the real parts of (2.4)
gives

∫

f2dx−
∫

g2dx = R(Q0(u0)),

where R stands for the operator that maps a complex number to its real part.
Therefore, f ∈ L2 if and only if g ∈ L2. For k = 1, we use the second conservation
law

Q1(u) =

∫ (

u2
x −

1

3
u3

)

dx = Q1(u0).
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In particular, the real parts of both sides are equal, i.e.,
∫ (

f2
x − g2

x −
1

3
f3 + fg2

)

dx = R(Q1(u0)). (2.6)

To prove (2.5) with k = 1, we first assume g ∈ H1. This implies that g ∈ L2 and
thus f ∈ L2. To show fx ∈ L2, we employ the following elementary estimates

∫

fg2dx ≤ C‖f‖L2 ‖g‖
3
2

L2 ‖gx‖
1
2

L2 ,

∫

f3dx ≤ C‖f‖L∞‖f‖2L2 ≤ C‖f‖
5
2

L2 ‖fx‖
1
2 .

Inserting these estimates in (2.6), we obtain, for σ(t) = ‖fx(·, t)‖L2 ,

σ2(t)− C‖f‖
5
2

L2 σ
1
2 (t) ≤ ‖gx‖2 + C‖f‖L2 ‖g‖

3
2

L2 ‖gx‖
1
2

L2 +R(Q1(u0)),

where C’s denote some pure constants. Applying Lemma 2.1 below, we conclude
that fx ∈ L2. On the other hand, if f ∈ H1, then f and g are in L2. From (2.6),
we easily see that gx is in L2. This proves (2.5) with k = 1.

Now we assume the truth of (2.5) for any k ≤ m with m ≥ 1. To show that (2.5)
holds for m+ 1, we invoke the conservation law

Qm+1(u) =

∫

(u2
(m+1) + auu2

(m) + · · · )dx = Qm+1(u0).

The above equation can be rearranged into the following form
∫

(u2
m+1 + auu2

(m))dx = Qm+1(u0)−
∫

P (u)dx,

where P (u) is a linear combination of the other monomials of indexm+3. Obviously,
the highest order of partial derivatives of u in P (u) is m− 1. The equation for the
real parts reads

∫

[

f2
(m+1) − g2

(m+1) + a(f(f2
(m) − g2

(m))− 2gf(m)g(m))
]

dx

=

∫

R(P (u))dx+R(Qm+1(u0)). (2.7)

We first assume that f ∈ Hm+1. Trivially, f is in Hm and, by the induction
hypothesis, g is also in Hm. Since the derivatives of u involved in P (u) have order
no more than m− 1, the terms on the right of (2.7) are bounded, according to the
induction hypothesis. The proof of g ∈ Hm+1 is then straightforward. It is quite
similar to prove that g ∈ Hm+1 implies f ∈ Hm+1. This concludes the proof of
Theorem 2.1.

Finally, we state the lemma that has been used in the proof of Theorem 2.1.

Lemma 2.1. Let P,Q and β < 2 be positive numbers. If Y ≥ 0 satisfies

Y 2 − PY β ≤ Q,

then Y is bounded by

Y ≤ max
{

(2P )
1

2−β ,
√

2Q
}

.
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3. Series solutions. In this section, we study a special type of solutions to the
complex KdV equation

ut + 2uux + uxxx = 0. (3.1)

More precisely, we seek solutions that can be represented in the form

u(x, t) =

∞
∑

k=1

ak(t)e
ikx, (3.2)

where the time-dependent coefficients ak(t) are complex-valued. The initial value
is given by

u(x, 0) =

∞
∑

k=1

ak(0)e
ikx. (3.3)

Formally, the KdV equation (3.1) is reduced to the following infinite system of
ordinary differential equations

d

dt
ak(t)− ik3ak(t) + ik

∑

k1+k2=k

ak1
(t) ak2

(t) = 0, k ≥ 1 (3.4)

where the indices k1 ≥ 1 and k2 ≥ 1 are integers. It is clear that each coefficient ak(t)
is determined by the first k equations. For sufficiently regular solutions, solutions
of the form (3.2) can be recovered from (3.4). Given initial data ak(0) for k ≥ 1,
(3.4) is equivalent to the integral equations

ak(t) = ak(0) e
ik3t − ik

∑

k1+k2=k

eik
3t

∫ t

0

e−ik3τ ak1
(τ) ak2

(τ)dτ, k ≥ 1. (3.5)

This equation constitutes a base for further analysis on the structure of ak. In
fact, ak can be written as a summation of terms of the form αk,he

iht with each
αk,h satisfying an iterative relation. The details are provided in Subsection 3.1.
In Subsection 3.2, we obtain an explicit formula for αk,k and prove a finite-time
singularity result for solutions of the form (3.2) corresponding to initial data (3.3)
with |a1(0)| > 6. In Subsection 3.3, we discuss the L2 convergence of solutions (3.2)
corresponding to any initial datum in L2. A special type of data considered here
has its coefficients {ak(0)} in l2.

3.1. Iterative relations for αk,h. We start with a representation for ak(t). For
notational convenience, we set I(k) = k3 − 3k2 + 3k.

Proposition 3.1. For each k ≥ 1, ak(t) is of the form

ak(t) =
k3

∑

h=k

αk,he
iht (3.6)

with real coefficients αk,h. In addition,

αk,h = 0 for I(k) < h < k3. (3.7)

As a special consequence, ak : R → C is a periodic function of period 2π.

Remarks. This proposition indicates that many αk,h’s are in fact equal to zero. For
example, for k = 2, I(k) = 2, so α2,3 = · · · = α2,7 = 0, α2,2 = 1

3a
2
1(0), α2,8 =

a2(0) − 1
3a

2
1(0); for k = 3, I(k) = 9, so α3,10 = · · · = α3,26 = 0, α3,3 = 1

12a
3
1(0),

α3,9 = 1
3a1(0) a2(0)− 1

9a
3
1(0) and α3,27 = a3(0)− 1

3a1(0)a2(0) +
1
36a

3
1(0).
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Proof. The proof is made by induction on k. For k = 1, the formula (3.6) is
obvious since (3.4) is reduced to

d

dt
a1(t)− ia1(t) = 0

and thus a1(t) = a1(0)e
it. Suppose that (3.6) has been shown to hold through k

with k ≥ 1. Now consider ak+1. According to (3.5),

ak+1(t) = ak+1(0) e
i(k+1)3t

−i(k + 1)
∑

k1+k2=k+1

ei(k+1)3t

∫ t

0

e−i(k+1)3τ ak1
(τ) ak2

(τ)dτ.

Using the induction hypothesis, we find that the integral on the right-hand side
reduces to a finite summation of terms of the form

k + 1

(k + 1)3 − (h1 + h2)
αk1,h1

αk2,h2

[

ei(h1+h2)t − ei(k+1)3t
]

(3.8)

where k1 ≥ 1, k2 ≥ 1, k1 + k2 = k + 1, h1 ≤ k3
1 and h2 ≤ k3

2. Since

h1 + h2 ≤ k3
1 + k3

2 ≤ (k1 + k2)
3 = (k + 1)3,

we conclude that ak+1 indeed has the desired representation (3.6). We now show
(3.7) by induction. According to (3.8), h1 + h2 < (k + 1)3 and αk+1,h1+h2

is a sum
of the terms of the form

k + 1

(k + 1)3 − (h1 + h2)
αk1,h1

αk2,h2
.

If αk1,h1
= 0 for I(k1) < h1 < k3

1 and αk2,h2
= 0 for I(k2) < h2 < k3

2, then

h1 + h2 ≤ k3
1 + k3

2 = (k1 + k2)
3 − 3k1k2(k1 + k2) = (k + 1)3 − 3k1k2(k + 1)

≤ (k + 1)3 − 3k(k + 1) = (k + 1)3 − 3(k + 1)2 + 3(k + 1) = I(k + 1),

where we have used k1 + k2 = k and k1, k2 ≤ k. In other words, there exits no h1

and h2 such that h1 + h2 > I(k + 1). This completes the proof of (3.7) and thus
that of Proposition 3.1.

The coefficients αk,h in (3.6) satisfy an iterative relation, as stated in the following
proposition.

Proposition 3.2. If k ≥ 1, then

(a) for k ≤ h ≤ I(k),

αk,h =
k

k3 − h

∑

k1+k2=k

∑

h1+h2=h

αk1,h1
αk2,h2

,

where 1 ≤ k1 < k, 1 ≤ k2 < k, k1 ≤ h1 ≤ k3
1 and k2 ≤ h2 ≤ k3

2;
(b) for h = k3,

αk,k3 = ak(0)−
∑

k≤h≤I(k)

αk,h,

or more explicitly,

αk,k3 = ak(0)−
∑

k≤h≤I(k)

k

k3 − h

∑

k1+k2=k

∑

h1+h2=h

αk1,h1
αk2,h2

,

where 1 ≤ k1 < k, 1 ≤ k2 < k, k1 ≤ h1 ≤ k3
1 and k2 ≤ h2 ≤ k3

2.
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Proof of Proposition 3.2. Inserting (3.6) in (3.5) and comparing the coefficients
of eiht, we obtain for k ≤ h < k3

αk,h =
k

k3 − h

∑

k1+k2=k

∑

h1+h2=h

αk1,h1
αk2,h2

, (3.9)

which, in particular, implies (a). To establish (b), it suffices to let t = 0 in (3.6).

3.2. Explicit formula for αk,k and a finite-time singularity result. The iter-
ative relationship in Proposition 3.2 allows us to derive an explicit formula for αk,k

with k ≥ 1.

Proposition 3.3. If a1(0) = a, then for all k ≥ 1

αk,k = 6k
(a

6

)k

. (3.10)

Remark. If the family of functions ak(t) is a solution to the system (3.5), then
the value of a1(0) alone determines all coefficients αk,k in the expansion (3.6). This
also indicates that not all αk,h are equal to zero when ak(0) = 0.

Proof. By (b) of Proposition 3.2, for k ≥ 1,

αk,k =
1

k2 − 1

∑

k1+k2=k

∑

h1+h2=k

αk1,h1
αk2,h2

.

Since h1 ≥ k1 and h2 ≥ k2, the terms on the right must be of the form αk1,k1
αk2,k2

.
That is,

αk,k =
1

k2 − 1

k−1
∑

k1=1

αk1,k1
αk−k1,k−k1

.

We now prove (3.10) by induction. Clearly, (3.10) holds for k = 1. Assume that it
holds through k for k ≥ 1. Then

αk+1,k+1 =
1

(k + 1)2 − 1

k
∑

k1=1

αk1,k1
αk+1−k1,k+1−k1

=
36

(k + 1)2 − 1

(a

6

)k+1 k
∑

k1=1

k1 (k + 1− k1)

Using the following basic identity

k
∑

k1=1

k1 (k + 1− k1) =
1

6
(k3 + 3k2 + 2k) =

1

6
(k + 1)

[

(k + 1)2 − 1
]

,

we obtain that αk+1,k+1 = 6(k + 1)(a/6)k+1. This completes the proof.

Consider a regular solution u(x, t) of the complex KdV equation (3.1) in the form
(3.2). Proposition 3.2 gives the form of the solution ak(t) in the formula (3.6). Let
a1(0) = a. Since the functions eiht eikx are orthogonal in L2([0, 2π] × [0, 2π]), we
can easily calculate the norm of u in this space. We obtain

‖u‖L2([0,2π]×[0,2π]) = 4π2
∑

k,h

|αk,h|2 ≥
∑

k≥1

|αk,k|2 =
∑

k≥1

36k2|a/6|2k.

Therefore, we have the following theorem.
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Theorem 3.1. There is no regular, global in time solution of the complex KdV
equation (3.1) of the form (3.2) with |a1(0)| ≥ 6.

Remark. This theorem can also be obtained as a special consequence of Theorem
3.1 in [5].

Remark. This result is sharp in the sense that (3.1) does have global in time
solution of the form (3.2) if a = a1(0) and a < 6. In fact, if ak = 6k(a/6)k, then

∞
∑

k=1

ake
ikt eikx =

a ei(x+t)

(1− (a/6)ei(x+t))2

is an associated traveling solution of the complex KdV equation.

The question that is not answered here is: does any solution of the form (3.2)
with |a1(0)| < 6 exist for all time? In the next subsection, we will have a discussion
on the L2 convergence for the case when ak(0) = 1/kβ .

3.3. A discussion on the L2-convergence. Assume that u is a solution of the
complex KdV equation (3.1) and u is of the form (3.2). A very interesting and
challenging issue is whether ‖u‖L2([0,2π]×[0,2π]) is bounded if |a1(0)| < 6. In this
subsection, we present some evidence we have on its boundedness for a special type
of initial data and defer the results of a systematic numerical computation to Section
5. Since u0 ∈ L2([0, 2π]) is equivalent to {ak(0)} ∈ l2, we focus our attention on

ak(0) =
1

kβ
. (3.11)

for β > 1
2 . Our test for the finiteness of ‖u‖L2([0,2π]×[0,2π]) is carried out in two

stages. First, we obtain an explicit dependence of each αk,h on ak(0)
′s by performing

a symbolic computation using Maple codes. In fact, αk,h only involves terms of the
form

C(h,m1,m2, · · · ,mk) a
m1

1 (0) am2

2 (0) · · · amk

k (0)

with
∑k

j=1 j ·mj = k, where C(h,m1,m2, · · · ,mk) is a pure number with depen-

dence on h,m1,m2, · · · , and mk. For large k and h < k3, C(h,m1,m2, · · · ,mk) is
found to be very small and this is probably due to the small factor k/(k3 − h) in
the iterative relations stated in Proposition 3.1. Here are two examples of αk,h:

α5,11 = − 25

2916
a5
1(0) +

25

972
a3
1(0) a2(0),

α7,133 = − 1

2099520
a7
1(0) +

7

233280
a5
1(0) a2(0)−

7

19440
a4
1(0) a3(0)

+
7

19440
a3
1(0) a

2
2(0) +

1

270
a3
1(0) a4(0)−

1

45
a2
1(0) a5(0) +

23

6480
a2
1(0) a2(0) a3(0)

+
1

90
a1(0) a2(0) a4(0) +

1

1215
a1(0) a

3
2(0)−

1

135
a2
2(0) a3(0) +

1

15
a2(0) a5(0).

In the second stage, we substitute (3.11) into the symbolic formulas and investi-
gate the convergence of the following sequence

sN =

N
∑

k=1

∑

k≤h≤k3

|αk,h|2.
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If sN converges, then it converges to ‖u‖2L2([0,2π]×[0,2π]). We computed sN for β = 1

and N = 10, 15, 20, 25, 30. The results for sN and its initial counterpart

sN (0) =

N
∑

k=1

|ak(0)|2

are recorded in the following table.

Table 1. Partial sum sN for L2-norm of u with ak(0) = 1/k
β = 1 N=10 N=15 N=20 N=25 N=30
sN 1.29954 1.32432 1.33790 1.34645 1.35232
sN (0) 1.54977 1.58044 1.59616 1.60572 1.61215
sN (0)− sN 0.2503 0.25612 0.25826 0.25927 0.25983

This table appears to indicate that

sN ≈ sN (0)− 0.26,

which implies that sN converges π2

6 − 0.26 as N → ∞ since sN (0) → π2

6 . There-

fore, this computation suggests that u ∈ L2([0, 2π] × [0, 2π]) for ak(0) = 1/k. We
remark that the summation of sN with N = 30 involves several thousands of non-
zero αk,h’s. The αk,h’s are computed symbolically using MAPLE and the process
becomes extremely slow when N is getting larger. It would be more convincing
if the values of sN for very large N are available. Similar computations involving
other values of β > 1/2 appear to lead to the same conclusion.

Another interesting and related issue is exactly how many αk,h’s are non-zero
for each k ≥ 1. According to Proposition 3.2, αk,h = 0 for k3 − 3k2 + 2k < h < k3.
Results from running a simple Maple procedure indicate that there are far few non-
zero terms than the predicted k3 − 3k2 + 3k + 1. The following table presents the
actual number of non-zero αk,h’s for k = 10, 20, 30, 40, 50. We have used Non(k) to
denote the number of non-zero αk,h’s for k ≥ 1.

Table 2. Actual number of non-zero αk,h’s vs. k3 − 3k2 + 3k + 1

k=10 k=20 k=30 k=40 k=50
Non(k) 36 278 1046 2710 5759
k3 − 3k2 + 3k + 1 731 6861 24391 59321 117651

The exact number of non-zero αk,h’s for k up to 50 can be fitted with the cubic curve
0.06169x3 − 0.7834x2. It is also interesting to observe that the difference between
h1 and h2 for two adjacent non-zero αk,h1

and αk,h2
is mostly 6. This leads us to

conjecture that the number of non-zero αk,h’s is k3/6 +O(k2) for very large k.

4. The complex KdV-Burgers equation. In this section, we investigate whether
the dissipative effects, in the form of the Burgers-type term, can overcome the non-
linear and dispersive effects and lead to global regularity. More precisely, attention
is paid to the regularity of solutions to the initial-value problem (IVP)







ut + 2uux − νuxx + uxxx = 0,

u(x, 0) = u0(x),
(4.1)
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where ν > 0 and u0(x) is a reasonably smooth, 2π-periodic complex-valued function
on R. For notational convenience, we will use T to denote the interval of one period
[0, 2π].

It is straightforward to show that the IVP (4.1) has unique solutions correspond-
ing to reasonably smooth initial data, at least locally in time [14]. A local (in time)
solution has a global extension if it is bounded a priori in certain norm. This section
is divided into two subsections. The first subsection derives an a priori bound for
‖u(·, t)‖L2 valid for t in an explicit finite-time interval. In the second subsection,
we bound the Sobolev norm ‖u(·, t)‖Hk (k ≥ 1) in terms of ‖u(·, t)‖L2 . As a con-
sequence, we conclude that there is no finite-time blow-up in the Hk-norm of any
solution u to the IVP (4.1) unless its L2-norm blows up in a finite-time.

4.1. A finite-time bound for the L2-norm. We show in this subsection that any
solution u of the IVP (4.1) with u0 ∈ L2 is bounded, at least for t in a finite-time
interval.

Theorem 4.1. Let ν > 0. Assume that u0 ∈ L2 and u is the corresponding solution
of the IVP (4.1). Then there exists a T ∗ > 0 such that ‖u(·, t)‖L2 is bounded for
any t ∈ [0, T ∗). In fact, u satisfies

‖u(·, t)‖L2 ≤M0(t) ≡
‖u0‖L2

(1− 216ν−3‖u0‖4L2 t)1/4

and
∫ t

0

‖ux(·, τ)‖2L2dτ ≤ N0(t) ≡ ν−1 ‖u0‖2L2 + 108ν−4 tM6
0 (t)

for

t < T ∗ =
ν3

216 ‖u0‖4L2

. (4.2)

Remark. We do not know at this moment if ‖u(·, t)‖L2 remains bounded for
t ≥ T ∗, but increasing the viscosity ν or decreasing ‖u0‖L2 lengthens T ∗, according
to (4.2).

Proof of Theorem 4.1. Multiplying the first equation in (4.1) by ū (the conjugate
of u) and its conjugate by u, adding the results and then integrating over T, we
obtain

d

dt

∫

|u|2dx+ 2ν

∫

|ux|2dx = −4
∫

R(ux) |u|2dx. (4.3)

Applying the basic inequality

‖u(·, t)‖L∞ ≤
√
2 ‖u(·, t)‖

1
2

L2 ‖ux(·, t)‖
1
2

L2

and Young’s inequality to the term on the right-hand side of (4.3) (denoted by K),
we obtain

|K| ≤ 4
√
2 ‖u(·, t)‖

3
2

L2 ‖ux(·, t)‖
3
2

L2 ≤ ν‖ux(·, t)‖2L2 + 108ν−3‖u(·, t)‖6L2 .

Inserting the above estimate in (4.3),

d

dt
‖u(·, t)‖2L2 + ν‖ux(·, t)‖2L2 ≤ 108ν−3‖u(·, t)‖6L2 . (4.4)
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If we let Y (t) = ‖u(·, t)‖L2 , then the above differential inequality implies

d

dt
Y (t) ≤ 54

ν3
Y 5(t).

It then follows that

‖u(·, t)‖L2 ≤M0(t) ≡
‖u0‖L2

(1− 216ν−3‖u0‖4L2 t)1/4
,

which is valid for

t < T ∗ =
ν3

216 ‖u0‖4L2

.

Integrating (4.4) over [0, t] with t < T ∗, we obtain
∫ t

0

‖ux(·, τ)‖2L2dτ ≤ N0(t) ≡ ν−1 ‖u0‖2L2 + 108ν−4 tM6
0 (t).

This completes the proof of Theorem 4.1.

4.2. Bounding ‖u(·, t)‖Hk by ‖u(·, t)‖L2 . Using an induction argument, we show
that any Hk-norm of u with k ≥ 1 can be bounded in terms of its L2-norm.

Theorem 4.2. Let ν > 0, k ≥ 1 and T > 0. Let u0 ∈ Hk and u be the correspond-
ing solution of the IVP (4.1). Assume the L2-norm of u is bounded over [0, T ], i.e.,
for some M0 depending only on T

‖u(·, t)‖L2 ≤M0, for t ≤ T . (4.5)

Then, there exists a Ck depending only on ν, T , M0 and ‖u0‖Hk such that

‖u(·, t)‖Hk ≤ Ck, for t ≤ T . (4.6)

Remark. It can be seen from the previous theorem that the assumption (4.5)
on the L2-norm implies

∫ t

0

‖ux(·, τ)‖2L2dτ ≤ N0, for t ≤ T ,

where N0 depends only on ν, T , M0 and ‖u0x‖L2 .

Proof. We start with an estimate for ‖ux(·, t)‖L2 . Taking ∂x of (4.1), we have

uxt + 2u2
x + 2uuxx − ν uxxx + uxxxx = 0.

From this equation, we obtain

d

dt

∫

|ux|2dx+ 2ν

∫

|uxx|2dx = −4
∫

R(ux)|ux|2dx− 4

∫

R(u ūx uxx)dx. (4.7)

Inserting the following estimates in (4.7)

4

∫

R(ux)|ux|2dx ≤ 4
√
2 ‖ux‖

5
2

L2 ‖uxx‖
1
2

L2 ≤
ν

2
‖uxx‖2L2 + 3

(

8

ν

)
1
3

‖ux‖
10
3

L2 ,

4

∫

R(u ūx uxx)dx ≤ 4
√
2 ‖u‖

1
2

L2 ‖ux‖
3
2

L2 ‖uxx‖L2 ≤ ν

2
‖uxx‖2L2 +

16

ν
‖u‖L2 ‖ux‖3L2 ,

we obtain

d

dt
‖ux‖2L2 + ν‖uxx(·, t)‖2L2 ≤ 3

(

8

ν

)
1
3

‖ux‖
10
3

L2 +
16

ν
‖u‖L2 ‖ux‖3L2 . (4.8)
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In particular, it implies that

d

dt
‖ux‖L2 ≤ 3

2

(

8

ν

)
1
3

‖ux‖
7
3

L2 +
8

ν
‖u‖L2 ‖ux‖2L2 .

Integrating with respect to t, we have

‖ux(·, t)‖L2 ≤ ‖u0x‖L2

+
3

2

(

8

ν

)
1
3
∫ t

0

‖ux(·, τ)‖
7
3

L2 dτ +
8

ν

∫ t

0

‖u(·, τ)‖L2 ‖ux(·, τ)‖2L2 dτ (4.9)

Using the assumption on the finiteness of L2−norm of u, i.e.

‖u(·, t)‖L2 ≤M0 and

∫ t

0

‖ux(·, τ)‖2L2dτ ≤ N0 for t ≤ T ,

we obtain, after taking the maximum of (4.9) for t ∈ [0, T ],

Z ≤ ‖u0x‖L2 +
3

2

(

8

ν

)
1
3

N0Z
1
3 +

ν

8
M0 N0,

where

Z = max
0≤t≤T

‖ux(·, t)‖L2 .

We then apply Lemma 2.1 to this inequality and obtain

Z = max
0≤t≤T

‖ux(·, t)‖L2 ≤M1

with

M1 = max

{

6

√

6

ν
N

3
2

0 , 2‖u0x‖L2 +
ν

4
M0 N0

}

.

Integrating (4.8) over [0, t], we obtain
∫ t

0

‖uxx(·, τ)‖2L2dτ ≤ N1

with

N1 = ν−1 ‖u0x‖2L2 + 6ν−4/3N0 M
4/3
1 (t) + 16 ν−2M0 N0 M1.

This completes the proof for the case k = 1.

We now turn to the case k = 2 and start with the basic identity

d

dt

∫

|uxx|2dx+ 2ν

∫

|uxxx|2dx = −12
∫

R(ux)|uxx|2dx− 4

∫

R(uūxx uxxx)dx.

Using the following estimates for the terms on the right hand side

−12
∫

R(ux)|uxx|2dx ≤ 12
√
2‖ux‖

1
2

L2 ‖uxx‖
5
2

L2

and

−4
∫

R(uūxx uxxx)dx ≤ 4
√
2‖u‖

1
2

L2 ‖ux‖
1
2

L2 ‖uxx‖L2 ‖uxxx‖L2

≤ ν‖uxxx‖2L2 +
8

ν
‖u‖L2 ‖ux‖L2‖uxx‖2L2 ,

we have

d

dt

∫

|uxx|2dx+ ν

∫

|uxxx|2dx ≤ 12
√
2‖ux‖

1
2

L2 ‖uxx‖
5
2

L2 +
8

ν
‖u‖L2 ‖ux‖L2‖uxx‖2L2 .
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This, in particular, implies

d

dt
‖uxx‖L2 ≤ 6

√
2‖ux‖

1
2

L2‖uxx‖
3
2

L2 +
4

ν
‖u‖L2‖ux‖L2 ‖uxx‖L2 . (4.10)

Applying Young’s inequality to the right hand side of (4.10), we obtain

d

dt
‖uxx‖L2 ≤ ‖uxx‖2L2 + 18 ‖ux‖2L2 +

(

4

ν

)2

‖u‖2L2 ‖ux‖2L2 .

Integrating with respect to t gives

‖uxx(·, t)‖L2 ≤M2 ≡ ‖u0xx‖L2 +N1 + 18N0 +

(

4

ν

)2

M0N0.

This completes the proof for the case k = 2.

The general case is proved by induction on k. Assume that (4.6) is valid for all
k ≤ m with m ≥ 2. That is, for k = 1, 2, · · · ,m, there exist two numbers Mk and
Nk satisfying

‖u(k)(·, t)‖L2 ≤Mk and

∫ t

0

‖u(k+1)(·, τ)‖2L2dτ ≤ Nk, t ≤ T.

We show that (4.6) also holds for k = m+1. Multiplying the KdV-Burgers equation
by (−1)m+1ū(2m+2), its conjugate by (−1)m+1u(2m+2), adding the results and then
integrating over T, we obtain

d

dt

∫

|u(m+1)|2dx+ 2ν

∫

|u(m+2)|2dx = −4(m+ 2)

∫

R(ux)|u(m+1)|2dx

−4
∫

R(uū(m+1) u(m+2)) dx− 2

m
∑

j=2

(

m+ 2
j

)∫

R(u(j)u(m+2−j)ūm+1)dx.

For notational convenience, we label the terms on the right hand side as I, II and
III. Using the induction hypothesis, we can bound them as follows.

|I| ≤ 4
√
2(m+ 1)‖ux‖

1
2

L2 ‖uxx‖
1
2

L2 ‖u(m+1)‖2L2

≤ 4
√
2(m+ 1)M

1
2

1 M
1
2

2 ‖u(m+1)‖2L2 ,

|II| ≤ 4
√
2‖u‖

1
2

L2 ‖ux‖
1
2

L2 ‖u(m+1)‖L2 ‖u(m+2)‖L2

≤ ν‖u(m+2)‖2L2 +
8

ν
‖u‖L2‖ux‖L2‖u(m+1)‖2L2

≤ ν‖u(m+2)‖2L2 +
8

ν
M0 M1 ‖u(m+1)‖2L2

and

|III| ≤



2

m
∑

j=2

(

m+ 2
j

)

‖u(j) u(m+2−j)‖L2



 ‖u(m+1)‖L2

≤ C(M2,M3, · · · ,Mk) ‖u(m+1)‖L2

≤ 1

4
C(M2,M3, · · · ,Mk) + ‖u(m+1)‖2L2 ,

where C is a constant depending on M2,M3, · · · ,Mm only. Collecting these esti-
mates, we obtain

d

dt

∫

|u(m+1)|2dx+ ν

∫

|u(m+2)|2dx

≤ C(ν,M0,M1,M2) ‖u(m+1)‖2L2 + C(M2,M3, · · · ,Mm),
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where C’s are constants depending on the specified quantities. Integrating with
respect to t completes the proof. This also concludes the proof of Theorem 4.2.

5. Numerical results. In this section, we present the results of systematic nu-
merical computations for solutions of the complex KdV equation and the complex
KdV-Burgers equation. The numerical scheme is a fully discrete Galerkin method,
but we have also used the spectral method for the purpose of comparison. The
results from both methods are extremely close, so we will focus on the Galerkin
method and omit details concerning the spectral method. This section is divided
into three subsections. Subsection 5.1 introduces the numerical method and explains
the convergence rates. Subsection 5.2 details the numerical tests on the complex
KdV equation. We computed its solutions corresponding to the initial data of the
form ae2πix for a ranging from 2 to 5. The results suggest that the solutions blow
up for a > 4.5 and are bounded for a ≤ 4. Subsection 5.3 presents the results of
numerical experiments on the complex KdV-Burgers equation with u(x, 0) = ae2πix

for a = 6 and a range of ν. These computations indicate that the solutions of the
complex KdV-Burgers equation are bounded for relatively large ν. Throughout this
section, the spatial period 2π will be normalized to 1. First, we briefly review the
numerical method.

5.1. Numerical method. The numerical scheme is one of the fully discrete Galer-
kin methods and has been developed by Bona, Dougalis, Karakashian and McKinney
[4], and Bona and Yuan [14]. It consists of two major parts. The first part involves
a standard semi-discretization in a space of the N -dimensional vector space of 1-
periodic smooth splines with uniform mesh length h = 1/N . The second part
approximates the systems of ordinary differential equations resulted from the first
part by the q-stage Gauss-Legendre family, a class of implicit Runge-Kutta methods
of collocation type. These methods possess good accuracy and stability properties.

The convergence theory for the scheme can be found in [4] and [6]. Throughout
this paper, we use 2-stage Gauss-Legendre method and cubic splines. It can be
shown (see [4] and [6]) that, provided u is smooth enough in a time interval [0, T ]
and the temporal step size and the mesh length satisfy some condition, there is a
unique numerical solution Un satisfying

max
0≤n≤T/k

‖Un − u(·, nk)‖L2 ≤ C(k4 + hr) for nk ≤ T

where r is the order of the splines used in the spatial discretization (i.e., r =the
degree of the spline +1). We checked the convergence rate on an explicit example.
More precisely, we compared the analytic traveling-wave solution

u(x, t) =
ae2πi(x+t)

(

1− a
6 e2πi(x+t)

)2

of the complex KdV equation

ut + 2uux +
1

4π2
uxxx = 0

with its solution computed using the scheme outlined above. In our tests, we set
a = 1.0 and used cubic splines (i.e., r=4). Spatial error and temporal error are
analyzed in Table 3 and Table 4, respectively. First, we fixed the temporal step
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k = 0.0001 and varied the mesh length h from 1/96 to 1/768. The results of the
corresponding errors

E(t) = ‖Un − u(·, t)‖L2 , n = t/k

for t = 0.1, 0.5, and 1.0 are presented in Table 3. It is clear that the convergence
rate is O(h4). In Table 4, we fixed h = 1/480 and varied k from 1/640 to 1/1440.
The corresponding errors E(t) at t = 0.1, 0.5, and 1.0 are recorded in Table 4, which
shows that the convergence rate is O(k4).

Table 3. k−1 = 10000 and E(t) at t = 0.1, 0.5, and 1.0
h−1 k−1 E(0.1) rate E(0.5) rate E(1.0) rate
96 10000 1.739(-7) 4.03 1.739(-7) 4.03 1.739(-7) 4.03
144 10000 3.398(-8) 4.01 3.398(-8) 4.01 3.398(-8) 4.01

192 10000 1.071(-8) 4.01 1.071(-8) 4.01 1.071(-8) 4.01

256 10000 3.381(-9) 4.00 3.381(-9) 4.00 3.381(-9) 4.00

320 10000 1.384(-9) 4.00 1.384(-9) 4.00 1.384 (-9) 3.99

512 10000 2.109(-10) 4.00 2.112(-10) 3.94 2.120(-10) 3.78

768 10000 4.168(-11) 4.268(-11) 4.572(-11)

Table 4. h = 1/480 and E(t) at t = 0.1, 0.5, and 1.0
k−1 E(0.1) rate E(0.5) rate E(1.0) rate
640 2.2460(-9) 4.17 2.2393(-9) 4.18 2.4531(-9) 4.41
720 1.3740(-9) 4.15 1.3694(-9) 3.97 1.4587(-9) 4.3

960 4.1665(-10) 4.01 4.3752(-10) 4.1 4.2230(-10) 3.97

1440 8.207(-11) 8.2986(-11) 8.45816(-11)

5.2. Solutions of the complex KdV equation with |a1(0)| < 6. As we have
mentioned above, the spatial period 2π will be normalized to 1 in this subsection.
The aim here is to determine whether solutions of the complex KdV equation re-
mains finite for all time if |a1(0)| < 6. We recall that ak(0) stands for the coefficient
of the kth-term in the series representation of the initial data u0. In subsection
3.2, we concluded that there is no regular, global in time solution of the complex
KdV equation in the form (3.2) if |a1(0)| ≥ 6, but it is not clear if the solution with
|a1(0)| < 6 is regular for all time.

In this subsection, we compute numerical solutions of the IVP






ut + 2uux + 1
4π2 uxxx = 0, x ∈ [0, 1],

u(x, 0) = a e2πix, x ∈ [0, 1]
(5.1)

with a < 6. Notice that solutions of (5.1) are not traveling waves. Even though
ak(0) = 0 for k ≥ 2, the corresponding coefficient ak(t) of the series solution is
not zero. Our numerical experiments involve a’s ranging from 2 to 5. For each a,
we plot both the real part (denoted f) and the imaginary part (denoted g) of the
corresponding solution at various times.

We start with an explanation for the formation of the initial peaks and sharpness
in the graphs of f and g. We consider the real part f and the analysis for the
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imaginary part is similar. According to (5.1), f satisfies the equation






ft + 2f fx − 2g gx + 1
4π2 fxxx = 0, x ∈ [0, 1],

f(x, 0) = a cos(2πx), x ∈ [0, 1].

When t is near 0, f(x, t) is close to a cos(2πx) and g(x, t) is close to a sin(2πx) and
the evolution of f is roughly governed by

ft = −2πa sin(2π x)
(

4 a cos(2πx)− 1
)

.

When a = 4, ft > 0 and f increases for x ∈ (0, 0.24) ∪ (0.5, 0.74), but ft < 0 and
decreases for x ∈ (0.24, 0.5)∪(0.74, 1). That is, the sharpness forms around x = 0.24
and a peak appears in the interval (0, 0.24). This explains the behavior of f plotted
in Figure 1. The initial behavior of g is plotted in the second box of Figure 1. A
similar analysis can be employed to explain plots corresponding to other a’s.

0 0.25 0.5 0.75 1
−4

−3

−2

−1

0

1

2

3

4

5

x

f(x
,t)

0 0.125 0.375 0.625 0.875 1
−4

−3

−2

−1

0

1

2

3

4

5

x

g(
x,

t)

Figure 1. Graphs of f and g at t = 0 (solid curves) and t = 0.001
(dashed curves) with a = 4, ν = 0, h = 0.01 and k = 0.0001

Numerical solutions of (5.1) with a ranging from 2 to 5 are computed. One of
our goals has been to find the critical amplitude a∗ such that solutions of (5.1)
with a > a∗ will blow up, and exist globally if a < a∗. We started with a = 2.
In Figure 2, the graphs of f (solid curves) and g (dashed curves) are plotted. We
clearly observe that they are regular for all time. Furthermore, f and g are seen
to be periodic in the temporal variable t with period 1. This is consistent with the
theoretical result of Proposition 3.1.

In Figure 3, we plot f and g associated with a = 5 at times t=0.008, 0.016, 0.024,
and 0.032. The plots clearly show that both f and g quickly lose their shape and
their peaks become unbounded. By t∗ = 0.032, the numerical stability sets in and
the numerical solution blows up. To reinforce the fact that the solution does become
infinite by t∗ = 0.032, we refined both spatial and temporal scales. In Figure 4, the
plots depict f and g after the refinement. They are almost the same plots as in
Figure 3 before the solution blows up.

We then computed numerical solutions of (5.1) with a = 4 and a = 4.5. The
plots in Figure 5 strongly indicate, for a = 4.5, that both f and g blows up. When
t is near 0.06, the instability again sets in and f and g become unbounded. For
a = 4, we plotted in Figure 6 the graphs of f and g for t from 0.08 to 1 (a whole
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Figure 2. a = 2, ν = 0, h = 0.002 and k = 0.0001.
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Figure 3. a = 5, ν = 0, h = 0.002 and k = 10−6.

temporal period). The difference is that there is no numerical instability and f and
g remains bounded for the whole temporal period.
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Figure 4. a = 5, ν = 0, h = 0.001 and k = 10−7.
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Figure 5. a = 4.5, ν = 0, h = 0.001 and k = 10−7.

5.3. Numerical results for the complex KdV-Burgers equation. In this
subsection, we compute solutions of the IVP for the KdV-Burgers equation







ut + 2uux + 1
4π2 uxxx − νuxx = 0, x ∈ [0, 1],

u(x, 0) = a e2πix, x ∈ [0, 1]
(5.2)
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Figure 6. a = 4, ν = 0, h = 0.002 and k = 10−6.
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Figure 6. Continued. a = 4, ν = 0, h = 0.002 and k = 10−6.

for a = 6 and a range of ν > 0. The goal here is to investigate numerically how
the regularity of solutions to (5.2) is modified by the the Burgers-type dissipation.
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Figure 6. Continued. a = 4, ν = 0, h = 0.002 and k = 10−6

The theoretical results in Section 4 assess that the L2-norm of any solution is finite,
at least for t ∈ [0, T ∗) with T ∗ depending on ν and the L2-norm of u0. Further-
more, any Hk-norm is bounded as long as the L2-norm is bounded. Therefore, our
attention in this subsection will be focused on any possible singularity in u itself.

First, we set a = 6 and ν = 0.5 and compute solutions of (5.2). The graphs of
f and g are plotted in Figure 7. As we have seen in Subsection 3.2, the solution of
the corresponding non-dissipative equation becomes infinite since |a1(0)| = a ≥ 6.
What we see here in Figure 7 is different. Both the peaks of f and g are bounded
and there is no indication of finite-time singularity. Thus, for large ν, solutions of
the IVP (5.2) are regular and global in time.

The next two sets of experiments are designed to find the critical ν∗ such that
solutions of (5.2) with a = 6 will form singularity in a finite time if ν < ν∗, and
will exist globally in time if ν > ν∗. We recorded two nearby values ν = 0.09 and
ν = 0.095. Solutions of (5.2) blow up if ν ≤ 0.09 and exist globally if ν ≥ 0.095.
The graphs of f and g corresponding to ν = 0.09 are plotted in Figure 8. As the
graphs show, both the peaks of f and g increase very rapidly and they reach 4300
and 3900, respectively when t = 0.04. They then become unbounded. In Figure
9, we plot the graphs of the solution of (5.2) with ν = 0.095. Although the peaks
of f and g still reach around 2500 and 1900, respectively, they start to decrease at
about t = 0.05. When t = 0.1, the peaks reduce to below 110 and 75, respectively.
This is a strong indication that solutions of (5.2) with ν ≥ 0.095 are global.
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Figure 7. a = 6, ν = 0.5, h = 0.002 and k = 10−7.
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Figure 8. a = 6, ν = 0.09, h = 0.001 and k = 10−7.

Acknowledgements. The authors thank Professor Jerry Bona for his constant
advice and Professor Jie Shen for teaching them the spectral method and providing
related codes. Yuan also thanks Professor Fred Weissler for his insightful ideas.



THE COMPLEX KDV EQUATION 511

0 0.2 0.4 0.6 0.8 1
−200

−100

0

100

200

300
t=0.02

x

u(
x,

t)

0 0.2 0.4 0.6 0.8 1
−1000

−500

0

500

1000

1500
t=0.03

x

u(
x,

t)

0 0.2 0.4 0.6 0.8 1
−2000

−1000

0

1000

2000

3000
t=0.04

x

u(
x,

t)

0 0.2 0.4 0.6 0.8 1
−1500

−1000

−500

0

500

1000

1500

2000
t=0.05

x

u(
x,

t)

Figure 9. a = 6, ν = 0.095, h = 0.001 and k = 10−7

0 0.2 0.4 0.6 0.8 1
−300

−200

−100

0

100

200

300

400

500
t=0.08

x

u(
x,

t)

0 0.2 0.4 0.6 0.8 1
−80

−60

−40

−20

0

20

40

60

80

100

120
t=0.1

x

u(
x,

t)

Figure 9. Continued. a = 6, ν = 0.095, h = 0.001 and k = 10−7.
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