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Abstract. We give a small data global well-posedness result for an incompressible Oldroyd-B model with
wave-number dissipation in the equation of stress tensor. The result is uniform in solvent Reynolds numbers
and requires only fractional wave number-dependent dissipation (−�)β , β ≥ 1

2 in the added stress.

1. Introduction

A class of models of complex fluids is based on an equation for a solvent coupled
with a kinetic description of particles suspended in it. In the case of dilute suspensions
weakly confined by a Hookean spring potential, a rigorously established exact closure
for the moments in the kinetic equation of this Navier–Stokes–Fokker–Planck system
yields theOldroyd-B system [21].After non-dimensionalization, the coupledOldroyd-
B system is

⎧
⎪⎪⎨

⎪⎪⎩

∂t u + u · ∇u + ∇ p − 1
Re�u = K∇ · σ,

∂tσ + u · ∇σ = (∇u)σ + σ(∇u)∗ − 1
We (σ − I),

∇ · u = 0,

(1.1)

where σ is the conformation tensor, σ = E(m ⊗ m) with m the end-to-end vector in
R
d and E the average with respect to the local distribution, u is the solvent velocity,

p is the pressure, Re is the Reynolds number of the solvent, We is the Weissenberg
number, K = 1

γ ReWe and γ is the ratio of solvent viscosity to polymeric viscosity. In
the limit of zero Reynolds number, the system (1.1) reduces further and it becomes a
nonlinear evolution for σ

∂tσ + u · ∇σ = (∇u)σ + σ(∇u)∗ − 1

We
(σ − I) (1.2)
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where u is obtained from σ by solving the Stokes system

− �u + ∇ p = 1

γWe
∇ · σ, ∇ · u = 0. (1.3)

The system (1.2) with (1.3) is an example of an equation which might develop finite-
time singularities for large data, even in R

2. The forcing in the right-hand side of (1.3)
or in the right-hand side of the momentum equation of (1.1) depends only on the added
stress

τ = σ − I, (1.4)

because any multiple of the identity matrix added to σ is balanced by a pressure,
even if the factor is a function of space and time. For small added stress, it is known
[7] that the system (1.2), (1.3) has global solutions. The problem of global existence
of smooth solutions for large data is open and challenging. The large Weissenberg
number problem is challenging both numerically and analytically. If we replace the
damping term by a wave number-dependent dissipative term, we obtain an equation
for the conformation stress

∂tσ + u · ∇σ = (∇u)σ + σ(∇u)∗ − ηP(D)(σ − I) (1.5)

with P(D) being a dissipative differential operator and η a positive number. If a small
diffusive term (P(D) = −� in (1.5)) is added to the equation for σ coupled with (1.3),
then global existence of smooth solutions with arbitrary data has been established [8]
in d = 2. For the small data problem, one can discuss a less stringent wave-number
dependence and allow the solvent Reynolds number to be arbitrarily large.
In this paper, we consider an Oldroyd-B model

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t u + u · ∇u + ∇ p = ∇ · τ, x ∈ R
d , t > 0,

∂tτ + u · ∇τ + η(−�)βτ + Q(τ,∇u) = D(u),

∇ · u = 0,

u(0, x) = u0(x), τ (0, x) = τ0(x),

(1.6)

where 0 � β � 1 and η > 0 are real parameters, u = u(x, t) represents the velocity
field of the fluid, p = p(x, t) the pressure and τ = τ(x, t) the non-Newtonian added
stress tensor (see (1.4)) (a d-by-d symmetric matrix). Here, D(u) is the symmetric
part of the velocity gradient

D(u) = 1

2

(∇u + (∇u)�
)

and the bilinear term Q is taken to be

Q(τ,∇u) = τW (u) − W (u)τ − b
(
D(u)τ + τD(u)

)
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with b ∈ [−1, 1] a constant and W (u) the skew-symmetric part of the ∇u:

W (u) = 1

2

(∇u − (∇u)�
)
.

The fractional Laplacian operator (−�)γ is defined through the Fourier transform:

̂(−�)γ f (ξ) = |ξ |2γ f̂ (ξ).

For notational convenience, we also write 
 = (−�)
1
2 denoting the Zygmund opera-

tor. Background information on the Oldroyd-Bmodel can be found inmany references
(see, e.g., [2,26]).
Ourmain result is the small data globalwell-posedness of (1.6)with any 1

2 � β � 1.
There is no damping mechanism in the equation of τ in (1.6): Strictly speaking, the
Weissenberg number is infinite, but wave number-dependent dissipation is added.
Whether or not (1.6) with 0 ≤ β < 1

2 possesses small data global well-posedness
remains an open problem.

Theorem 1.1. Consider (1.6) with 1
2 � β � 1. Let d = 2, 3 and s > 1 + d

2 . Assume
(u0, τ0) ∈ Hs(Rd),∇·u0 = 0, and τ0 is symmetric. Then, there exists a small constant
ε > 0 such that if

‖u0‖Hs + ‖τ0‖Hs � ε,

then (1.6) has a unique global solution (u, b) satisfying, for some constant C > 0 and
all t > 0,

‖u‖Hs + ‖τ‖Hs � Cε.

The requirement that β ≥ 1
2 appears to be sharp. When β < 1

2 , even the local
well-posedness problem is open and the main difficulty is how to provide a suitable
upper bound for the nonlinear term Q, due to the lack of sufficient dissipation.

The small data global well-posedness for an Oldroyd-B model without dissipation
in the velocity equation has previously been examined by T. Elgindi and F. Rousset in
the 2D case [11] and by T. Elgindi and J. Liu for the 3D case [12]. They focus on the
following Oldroyd-B model without velocity dissipation:

⎧
⎪⎪⎨

⎪⎪⎩

ut + u · ∇u + ∇ p = ∇ · τ, x ∈ R
d , t > 0,

τt + u · ∇τ + Q(τ,∇u) − η�τ + aτ = D(u),

∇ · u = 0,

(1.7)

where a > 0 is a parameter. The small data global well-posedness result in [11] is for
(1.7) with d = 2 and a > 0. The damping term plays a crucial role in the proof of
their result and cannot be removed. It was used to form a damping term in the equation
of a combined quantity. [12] examined (1.7) with d = 3 and a > 0 and obtained the
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small data global well-posedness for any sufficiently small data (u0, τ0) ∈ H3. The
damping term aτ in (1.7) is also necessary for their result.

The velocity equation in (1.6) is a forced Euler equation. As it is known, the Hs-
norm of a solution of the Euler equation may grow in time, even perhaps at a double
exponential rate (see, e.g., [10,20,35]). The Oldroyd-B system discussed has a dissi-
pative structure, and a main reason why Theorem 1.1 holds is a key observation on
the linearized system of (1.6). Clearly, any solution (u, τ ) of (1.6) also solves

⎧
⎪⎪⎨

⎪⎪⎩

∂t u + P(u · ∇u) = P∇ · τ, x ∈ R
d , t > 0,

∂tP∇ · τ + P∇ · (u · ∇τ) + η(−�)βP∇ · τ + P∇ · Q(τ,∇u) = 1
2�u,

∇ · u = 0,

(1.8)

where P denotes the Leray projection onto divergence-free vector fields. The corre-
sponding linearized system is given by

⎧
⎪⎪⎨

⎪⎪⎩

∂t u = P∇ · τ,

∂tP∇ · τ + η(−�)βP∇ · τ = 1
2�u,

∇ · u = 0,

which can be easily reduced to a system of decoupled wave-type equations
⎧
⎪⎪⎨

⎪⎪⎩

∂t t u + η(−�)β∂t u − 1
2�u = 0,

∂t t (P∇ · τ) + η(−�)β∂t (P∇ · τ) − 1
2�(P∇ · τ) = 0,

∇ · u = 0.

(1.9)

The structure in (1.9) reveals that there are both dissipative and dispersive effects
on u in (1.6). We remark that the Oldroyd-B model with only velocity dissipation
shares a similar structure and has been shown by Yi Zhu to possess a unique global
small solution [33]. In order to prove the existence part of Theorem 1.1, we construct
a suitable Lyapunov functional that incorporates these effects. We set the Lyapunov
functional to be

L(t) = ‖u(t)‖2Hs (Rd )
+ ‖τ(t)‖2Hs (Rd )

+ 2k(u(t),∇ · τ(t))Hs−β(Rd ),

where ( f, g)Hσ (Rd ) denotes the inner product in Hσ (Rd). When the parameter k > 0
is sufficiently small and when 1

2 ≤ β ≤ 1, we are able to show that, for any t ≥ 0,

E(t) := ‖u(t)‖2Hs (Rd )
+ ‖τ(t)‖2Hs (Rd )

+2
∫ t

0

(

η‖
βτ(t ′)‖2Hs + k

2
‖∇u(t ′)‖2Hs−β

)

dt ′ (1.10)

obeys

E(t) ≤ E(0) + C E
3
2 (t). (1.11)
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A bootstrap argument applied to (1.11) implies that if E(0) is sufficiently small,
namely

E(0) ≤ ε

for some suitable ε > 0, then E(t) is bounded uniformly for all time t > 0, or

E(t) ≤ C ε,

which allows us to establish the global existence of solutions to (1.6). In order to
prove the uniqueness, we distinguish between two cases: β = 1 and 1

2 ≤ β < 1.
When β = 1, the term Q(τ,∇u) can be bounded directly. When 1

2 ≤ β < 1, one
needs to make use of the wave structure to generate a dissipative term in the velocity
field in order to deduct a suitable bound for Q(τ,∇u).

The second part of this paper rigorously assesses that the Oldroyd-B system in (1.6)
is the vanishing viscosity limit of the Oldroyd-B system with kinematic dissipation

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t u + u · ∇u + ∇ p + ν(−�)αu = ∇ · τ, x ∈ R
d , t > 0,

∂tτ + u · ∇τ + η(−�)βτ + Q(τ,∇u) = D(u),

∇ · u = 0,

u(0, x) = u0(x), τ (0, x) = τ0(x),

(1.12)

where ν > 0, η > 0, 0 ≤ α ≤ 1 and 1
2 ≤ β ≤ 1. First of all, (1.12) always possesses

a unique global solution when the initial data are sufficiently small.

Theorem 1.2. Consider (1.12) with

ν > 0, η > 0,
1

2
≤ β ≤ 1 and 0 ≤ α ≤ min{1, 3β − 1}.

Assume (u0, τ0) ∈ Hs(Rd) with s > 1 + d
2 . There exists small number ε > 0

(independent of ν) such that if

‖(u0, τ0)‖Hs ≤ ε,

then (1.12) has a unique global solution (u(ν), τ (ν)) satisfying

u(ν) ∈ C([0,∞); Hs) ∩ L2(0,∞; Hs+α) ∩ L2(0,∞; Hs+1−β);
τ (ν) ∈ C([0,∞); Hs) ∩ L2(0,∞; Hs+β).

In addition, (u(ν), τ (ν)) admits the following bound that is uniform in time and in ν:

‖(u(ν)(t), τ (ν)(t))‖Hs ≤ C ε, (1.13)

where C is independent of t and ν.
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In particular, Theorem 1.2 holds for the case when α = 1 and β = 1, namely the
standard Laplacian case. We emphasize that ε in Theorem 1.2 is independent of ν. In
addition, the fact that the bound for the solution (u(ν), τ (ν)) in Hs is uniform in terms
of ν plays a crucial role in the proof of the following vanishing viscosity limit. As
ν → 0, (1.12) converges to (1.6) in the sense as stated in the following theorem.

Theorem 1.3. Assume

ν > 0, η > 0,
1

2
≤ β ≤ 1 and 0 ≤ α ≤ min{1, 3β − 1}.

Let (u0, τ0) ∈ Hs(Rd) with s > 1 + d
2 and s ≥ 2α + 2β − 1. Assume that the norm

of (u0, τ0) ∈ Hs is sufficiently small, namely

‖(u0, τ0)‖Hs ≤ ε

such that (1.6) and (1.12) each have a unique global solution. Let (u, τ ) and (u(ν), τ (ν))

be the solutions of (1.6) and (1.12), respectively. Then,

‖(u(ν)(t), τ (ν)(t)) − (u(t), τ (t))‖L2 ≤ C ν, (1.14)

where C may depend on t and the initial data but is independent of ν.

The parameterC in the inviscid limit estimate (1.14) may depend on time. It appears
difficult to make C uniformly independent of time. As we can see from the proof of
this theorem, one reason is the lack of the uniform time integrability on ‖
2αu(t)‖2

L2

for α in the range specified here.
We remark that small data global solutions of (1.6) in critical homogeneous Besov

spaces have also been obtained [28]. Due to its special features, the Oldroyd-B model
has recently attracted considerable interests from the community of mathematical
fluids. A rich array of results have been established on the well-posedness and closely
related problems. Interested readers can consult some of the references listed here,
see, e.g., [1,3–6,8,9,11–19,22–25,27–34]. This list is by no means exhaustive.
We finally mention that there are many other interesting problems on (1.6) to be

examined. One problem is the precise large-time behavior of the solutions obtained in
this paper. Due to the lack of dissipation in the velocity equation, this is not a trivial
problem. It is difficult to show that the solution itself decays to zero just using the
energy estimates presented in this paper. Even in the case of the linear heat equation,
considerations of energy alone are not sufficient and one has to use the solution repre-
sentation u(t) = eνt�u0 to show that ‖u(t)‖L2(Rd ) decays to zero when u0 ∈ L2(Rd).
If we impose more stringent condition on the initial data, a different method might
lead to the convergence to zero in the Oldroyd-B model studied here.

2. Proof of Theorem 1.1

This section proves Theorem 1.1.



Vol. 21 (2021) High Reynolds number and high Weissenberg number Oldroyd-B model 2793

Proof. The proof is naturally divided into two parts. The first part is for the existence,
while the second part is for the uniqueness.
To prove the global existence of solutions, it suffices to establish the energy in-

equality in (1.11) with E(t) being defined in (1.10). The proof of (1.11) is via energy
estimates. We need to separate the homogeneous part of the Hs-norm from the inho-
mogeneous part. Due to the equivalence of the norm ‖ f ‖Hs with ‖ f ‖L2 + ‖
s f ‖L2 ,
we combine the L2-part with the homogeneous Ḣ s-part. Dotting (1.6) by (u, τ ) in
L2, integrating by parts and making use of ∇ · u = 0, we find

1

2

d

dt
(‖u‖2L2 + ‖τ‖2L2) + η‖
βτ‖2L2 = −(Q(τ,∇u), τ ), (2.1)

where ( f, g) denotes the inner product in L2(R2), and we used
∫

R2
(u · (∇ · τ) + D(u) · τ) dx = 0.

Applying 
s to (1.6) and dotting by (
su,
sτ), we obtain

1

2

d

dt
(‖
su‖2L2 + ‖
sτ‖2L2) + η‖
s+βτ‖2L2

= −(
s(u · ∇u),
su) − (
s(u · ∇τ),
sτ) − (
s Q(τ,∇u),
sτ), (2.2)

where we used
∫

R2
(
su · (
s∇ · τ) + 
s D(u) · 
sτ)dx = 0.

We now make use of (1.8) to generate a dissipative term on the velocity field u. It is
not difficult to check that

d

dt
(u,∇ · τ) + 1

2
‖∇u‖2L2 − ‖P∇ · τ‖2L2

= −((u · ∇u), P∇ · τ) − (P∇ · (u · ∇τ), u) − (P∇ · Q(τ,∇u), u)

−η((−�)βP∇ · τ, u). (2.3)

A similar equality also holds for the Ḣ s−β inner product:

d

dt
(
s−βu,
s−β∇ · τ) + 1

2
‖
s−β∇u‖2L2 − ‖
s−β

P∇ · τ‖2L2

= −(
s−β(u · ∇u),
s−β
P∇ · τ) − (
s−β

P∇ · (u · ∇τ),
s−βu)

−(
s−β
P∇ · Q(τ,∇u),
s−βu) − η(
s−β(−�)βP∇ · τ,
s−βu). (2.4)

For a constant k > 0, (2.1)+(2.2)+ k(2.3)+ k(2.4) leads to

1

2

d

dt
(‖u‖2Hs + ‖τ‖2Hs + 2k(u,∇ · τ)Hs−β ) + η‖
βτ‖2Hs

+k

2
‖∇u‖2Hs−β − k‖P∇ · τ‖2Hs−β =

7∑

i=1

Ii , (2.5)
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where

I1 = −k((u · ∇u), P∇ · τ)Hs−β ,

I2 = −k(P∇ · (u · ∇τ), u)Hs−β ,

I3 = −k(P∇ · Q(τ,∇u), u)Hs−β ,

I4 = −kη(
2β
P∇ · τ, u)Hs−β ,

I5 = −(
s(u · ∇u),
su),

I6 = −(
s(u · ∇τ),
sτ),

I7 = −(Q(τ,∇u), τ )Hs .

Now, we estimate I1 through I7. We use the simple facts that Pu = u if u is divergence
free, P is bounded by 1 on Hs(Rd) and (P f, g) = ( f, Pg). Thanks to s > 1 + d

2 ,
1
2 � β � 1 and ∇ · u = 0, we have

|I1| � ‖u‖L∞‖∇u‖L2‖∇τ‖L2 + ‖
s−β+1τ‖L2‖u‖L∞‖
s−β+1u‖L2

� ‖u‖Hs‖∇u‖Hs−β ‖
βτ‖Hs .

Due to 1
2 � β � 1 and ∇ · u = 0, we have, by integration by parts,

|I2| � ‖u‖L∞‖∇u‖L2‖∇τ‖L2

+‖
s−β+1u‖L2(‖
s−β+1u‖L2‖τ‖L∞ + ‖u‖L∞‖
s−β+1τ‖L2)

� ‖u‖Hs‖∇u‖Hs−β ‖
βτ‖Hs + ‖∇u‖2Hs−β ‖τ‖Hs .

Due to s > 1 + d
2 and 1

2 � β � 1, we have, by integration by parts,

|I3| � ‖∇u‖2L2‖τ‖L∞ + ‖
s−β+1u‖L2(‖
s−β+1u‖L2‖τ‖L∞ + ‖∇u‖L∞‖
s−βτ‖L2)

� ‖τ‖Hs‖∇u‖2Hs−β + ‖u‖Hs‖∇u‖Hs−β ‖
βτ‖Hs .

I4 is bounded by

|I4| � kη‖
βτ‖Hs‖∇u‖Hs−β � η

4
‖
βτ‖2Hs + k2η‖∇u‖2Hs−β .

By ∇ · u = 0, 1
2 � β � 1 and s > 1 + d

2 , we obtain

|I5| =
∣
∣
∣
∣

∫

(
s(u · ∇u) − u · ∇
su)
sudx

∣
∣
∣
∣

� ‖
su‖2L2‖∇u‖L∞ � ‖u‖Hs‖∇u‖2Hs−β .

Similarly,

|I6| =
∣
∣
∣
∣

∫

(
s(u · ∇τ) − u · ∇
sτ)
sτdx

∣
∣
∣
∣

� ‖
sτ‖L2(‖∇u‖L∞‖
sτ‖L2 + ‖
su‖L2‖∇τ‖L∞)
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� ‖u‖Hs‖
βτ‖2Hs .

Thanks to 1
2 � β � 1, s > 1 + d

2 and d = 2, 3, we have

|I7| = |(Q(τ,∇u), τ ) + (
s−βQ(τ,∇u),
s+βτ)|
� ‖∇u‖L2‖τ‖2L4 + ‖
s+βτ‖L2(‖
s−β∇u‖L2‖τ‖L∞ + ‖∇u‖L∞‖
s−βτ‖L2)

� ‖∇u‖L2‖τ‖2(1−
d
4 )

L2 ‖∇τ‖
d
2
L2 + ‖τ‖Hs‖
βτ‖Hs‖∇u‖Hs−β + ‖
βτ‖2Hs‖u‖Hs

� ‖τ‖Hs‖
βτ‖Hs‖∇u‖Hs−β + ‖
βτ‖2Hs‖u‖Hs .

In addition, due to 1
2 � β � 1,

k‖P∇ · τ‖2Hs−β � k‖
βτ‖2Hs .

Inserting the estimates for I1 through I7 into (2.5), we obtain

1

2

d

dt

(
‖u‖2Hs + ‖τ‖2Hs + 2k(u,∇ · τ)Hs−β

)

+
(
3

4
η − k

)

‖
βτ‖2Hs +
(
k

2
− k2η

)

‖∇u‖2Hs−β

� ‖u‖Hs‖∇u‖Hs−β ‖
βτ‖Hs + ‖∇u‖2Hs−β ‖τ‖Hs + ‖u‖Hs‖∇u‖2Hs−β

+‖u‖Hs‖
βτ‖2Hs + ‖τ‖Hs‖
βτ‖Hs‖∇u‖Hs−β

� (‖u‖Hs + ‖τ‖Hs )(‖
βτ‖2Hs + ‖∇u‖2Hs−β ). (2.6)

By moving 
s on u, and in view of 1
2 � β � 1, importantly, we have

|2k(u,∇ · τ)Hs−β | � 2k‖u‖Hs‖τ‖Hs+1−2β

� 2c3k‖u‖Hs‖τ‖Hs

� 1

2
‖u‖2Hs + 2c23k

2‖τ‖2Hs . (2.7)

Choosing k small enough and integrating (2.6) in time and using (2.7), we have

sup
t

‖u‖2Hs + sup
t

‖τ‖2Hs + 2
∫ t

0
(η‖
βτ‖2Hs + k

2
‖∇u‖2Hs−β )dt ′

� ‖u0‖2Hs + ‖τ0‖2Hs + (sup
t

‖u‖Hs + sup
t

‖τ‖Hs )

∫ t

0
(‖
βτ‖2Hs + ‖∇u‖2Hs−β )dt ′.

Thus, we have established (1.11). This concludes the proof for the existence part.
We now prove the uniqueness. The term Q(τ,∇u) requires special attention. We

split the consideration into two cases: β = 1 and 1
2 ≤ β < 1. The uniqueness for the

case when β = 1 is direct, but the case when 1
2 ≤ β < 1 is difficult and has to be

dealt with by constructing suitable energy functional.
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Case 1: β = 1. Assume (u1, τ1) and (u2, τ2) are two solutions of (1.6) with the
same initial data. Denote δu = u1 − u2, δτ = τ1 − τ2. Then, (δu, δτ ) satisfies
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tδu = ∇ · δτ − u1 · ∇δu − δu · ∇u2 − ∇δP,

∂tδτ + u1 · ∇δτ − η�δτ = D(δu) − δu · ∇τ2 − Q(τ1,∇δu) − Q(δτ,∇u2),

∇ · δu = 0,

δu(x, 0) = 0; δτ(x, 0) = 0,

(2.8)

where δP is the corresponding pressure difference. Taking the L2 inner product of
(2.8) with (δu, δτ ), we have

1

2

d

dt
(‖δu‖2L2 + ‖δτ‖2L2) + η‖∇δτ‖2L2

= −
∫

δu · ∇u2 · δudx −
∫

δu · ∇τ2 · δτdx −
∫

Q(τ1,∇δu) · δτdx

−
∫

Q(δτ,∇u2) · δτdx +
∫

(δu · (∇ · δτ) + D(δu) · δτ)dx

� ‖∇u2‖L∞‖δu‖2L2 + ‖∇τ2‖L∞‖δu‖L2‖δτ‖L2

+ c (‖τ1‖L∞‖∇δτ‖L2 + ‖∇τ1‖L∞‖δτ‖L2)‖δu‖L2 + ‖∇u2‖L∞‖δτ‖2L2

� c (‖∇u2‖L∞ + ‖∇τ2‖L∞ + ‖∇τ1‖L∞ + ‖τ1‖2L∞)(‖δu‖2L2 + ‖δτ‖2L2) + η

2
‖∇δτ‖2L2 ,

where we have used the fact that
∫

(δu · (∇ · δτ) + D(δu) · δτ)dx = 0.

It then follows from Gronwall’s inequality that δu = δτ = 0.
Case 2: 1

2 � β < 1. Assume (u1, τ1) and (u2, τ2) are two solutions of (1.6) with
the same initial data. Denote δu = u1 − u2, δτ = τ1 − τ2. Then, (δu, δτ ) satisfies
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tδu = ∇ · δτ − u1 · ∇δu − δu · ∇u2 + ∇δP,

∂tδτ + u1 · ∇δτ + η
2βδτ = D(δu) − δu · ∇τ2 − Q(τ1,∇δu) − Q(δτ,∇u2),

∇ · δu = 0,

δu(x, 0) = 0; δτ(x, 0) = 0.

(2.9)

Dotting (2.9) by (δu, δτ ) yields

1

2

d

dt
(‖δu‖2L2 + ‖δτ‖2L2) + η‖
βδτ‖2L2

= −(δu · ∇u2, δu) − (δu · ∇τ2, δτ ) − (Q(τ1,∇δu), δτ ) − (Q(δτ,∇u2), δτ ).

(2.10)
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Applying 
β to (2.9) and then dotting by (
βδu,
βδτ) lead to

1

2

d

dt
(‖
βδu‖2L2 + ‖
βδτ‖2L2) + η‖
2βδτ‖2L2

= −(
β(u1 · ∇δu),
βδu) − (
β(δu · ∇u2),

βδu) − (
β(u1 · ∇δτ),
βδτ)

−(
β(δu · ∇τ2),

βδτ) − (
βQ(τ1,∇δu),
βδτ) − (
βQ(δτ,∇u2),


βδτ).

(2.11)

Applying P∇· to the second equation of (2.9), we have

∂tP∇ · δτ + P∇ · (u1 · ∇δτ) + η
2β
P∇ · δτ

= 1

2
�δu − P∇ · (δu · ∇τ2) − P∇ · Q(τ1,∇δu) − P∇ · Q(δτ,∇u2).

(2.12)

Taking the L2 inner product of the first equation of (2.9) with P∇ ·δτ and the L2 inner
product of (2.12) with δu separately, we have

d

dt
(δu,∇ · δτ) + 1

2
‖∇δu‖2L2 − ‖P∇ · δτ‖2L2

= −((u1 · ∇δu), P∇ · δτ) − ((δu · ∇u2), P∇ · δτ) − (P∇ · (u1 · ∇δτ), δu)

−(P∇ · (δu · ∇τ2), δu) − (P∇ · Q(τ1,∇δu), δu) − (P∇ · Q(δτ,∇u2), δu)

−η(
2β
P∇ · δτ, δu). (2.13)

For a positive constant k1 to be determined later, (2.10)+(2.11)+k1(2.13) gives

1

2

d

dt
(‖δu‖2Hβ + ‖δτ‖2Hβ + 2k1(δu,∇ · δτ)) + η‖
βδτ‖2Hβ

+k1
2

‖∇δu‖2L2 − k1‖P∇ · δτ‖2L2 =
7∑

i=1

I ′
i , (2.14)

where

I ′
1 = −k1((u1 · ∇δu), P∇ · δτ) − k1((δu · ∇u2), P∇ · δτ),

I ′
2 = −k1(P∇ · (u1 · ∇δτ), δu) − k1(P∇ · (δu · ∇τ2), δu),

I ′
3 = −k1(P∇ · Q(τ1,∇δu), δu) − k1(P∇ · Q(δτ,∇u2), δu),

I ′
4 = −k1η(
2β

P∇ · δτ, δu),

I ′
5 = −(
β(u1 · ∇δu),
βδu) − ((δu · ∇u2), δu)Hβ ,

I ′
6 = −(
β(u1 · ∇δτ),
βδτ) − ((δu · ∇τ2), δτ )Hβ ,

I ′
7 = −(Q(τ1,∇δu), δτ )Hβ − (Q(δτ,∇u2), δτ )Hβ .
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By Hölder’s and Sobolev’s inequalities,

|I ′
1| � ‖u1‖L∞‖∇δu‖L2‖∇δτ‖L2 + ‖∇u2‖L∞‖δu‖L2‖∇δτ‖L2 ,

|I ′
2| � ‖u1‖L∞‖∇δu‖L2‖∇δτ‖L2 + ‖∇τ2‖L∞‖∇δu‖L2‖δu‖L2 ,

|I ′
3| � ‖τ1‖L∞‖∇δu‖2L2 + ‖∇u2‖L∞‖∇δu‖L2‖δτ‖L2 ,

|I ′
4| � η

4
‖
2βδτ‖2L2 + k21η‖∇δu‖2L2 .

Since ∇ · u1 = 0, I ′
5 can be written as

I ′
5 = −(
β(u1 · ∇δu) − u1 · ∇
βδu,
βδu) − ((δu · ∇u2), δu)Hβ .

By a standard commutator estimate,

|I ′5| � ‖∇u1‖
L

d
2−2β

‖
βδu‖2
L

2d
d−2+2β

+ ‖
βu1‖
L

d
1−β

‖∇δu‖L2‖
βδu‖
L

2d
d−2+2β

+‖∇u2‖L∞‖δu‖2L2 + ‖∇u2‖L∞‖
βδu‖2L2 + ‖δu‖
L

2d
d−2β

‖
β∇u2‖
L

d
β

‖
βδu‖L2

� (‖∇u1‖
L

d
2−2β

+ ‖
βu1‖
L

d
1−β

)‖∇δu‖2L2 + ‖∇u2‖L∞‖δu‖2L2

+(‖∇u2‖L∞ + ‖
β∇u2‖
L

d
β

)‖
βδu‖2L2 .

By Hölder’s inequality,

|I ′
6| � ‖u1‖L∞‖∇δτ‖L2‖
2βδτ‖L2

+‖∇τ2‖L∞‖δu‖L2(‖δτ‖L2 + ‖
2βδτ‖L2),

|I ′
7| � ‖τ1‖L∞‖∇δu‖L2(‖δτ‖L2 + ‖
2βδτ‖L2)

+‖∇u2‖L∞‖δτ‖L2(‖δτ‖L2 + ‖
2βδτ‖L2).

We insert the estimates above for I ′
1 through I ′

7 in (2.14). If the initial data are small
enough, namely

‖u0‖Hs + ‖τ0‖Hs � ε

for sufficiently small ε > 0, we can choose k1 and t small enough to obtain the desired
uniqueness. This completes the proof of Theorem 1.1. �

3. Proof of Theorems 1.2 and 1.3

This section proves Theorems 1.2 and 1.3 .

Proof of Theorem 1.2. The proof of Theorem 1.2 is very close to that for Theorem
1.1. We shall omit most of the details but to point out the differences. The differences
are due to the extra term ν(−�)αu(ν). (2.5) would now contain two extra terms and
is given by
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1

2

d

dt
(‖u(ν)‖2Hs + ‖τ (ν)‖2Hs + 2k(u(ν), ∇ · τ (ν))Hs−β ) + η‖
βτ(ν)‖2Hs + ν‖
αu(ν)‖2Hs

+ k

2
‖∇u(ν)‖2Hs−β − k‖P∇ · τ (ν)‖2Hs−β =

8∑

i=1

Ii ,

where I1 through I7 is the same as before, and I8 is given by

I8 = ν k ((−�)αu(ν),∇ · τ (ν))Hs−β .

The estimates for I1 through I7 are the same as before, and I8 can be bounded by

|I8| ≤ νk‖
2α−3β+1u(ν)‖Hs ‖
βτ(ν)‖Hs .

When α ≤ min{1, 3β − 1}, we have 2α − 3β + 1 ≤ α and

|I8| ≤ ν

2
‖
αu(ν)‖2Hs + νk2

2
‖
βτ(ν)‖2Hs .

The rest of the proof is almost identical to that for Theorem 1.1. The crucial fact is
that the bound for (u(ν), τ (ν)) in Hs obtained from this process is uniform in ν. We
omit further details. �

We now turn to the proof of Theorem 1.3.

Proof of Theorem 1.3. We distinguish between two cases: Case I: β = 1 and Case II:
1
2 ≤ β < 1. The first case is relatively easy, while the second case is more delicate.
The fact that the bound for the solution (u(ν), τ (ν)) in Hs is uniform in terms of ν

plays a crucial role in the proof.
Case I: β = 1. The difference (δu, δτ ) with

δu = u(ν) − u, δτ = τ (ν) − τ

satisfies
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tδu + u(ν) · ∇δu + ν (−�)αδu = −ν (−�)αu + ∇ · δτ − δu · ∇u − ∇δP,

∂tδτ + u(ν) · ∇δτ − η�δτ = D(δu) − δu · ∇τ − Q(τ,∇δu) − Q(δτ,∇u(ν)),

∇ · δu = 0,

δu(x, 0) = 0; δτ(x, 0) = 0,

(3.1)

where δP is the corresponding pressure difference. Taking the L2 inner product of
(3.1) with (δu, δτ ), we have

1

2

d

dt
(‖δu‖2L2 + ‖δτ‖2L2) + ν‖
αδu‖2L2 + η‖∇δτ‖2L2

= −ν

∫

(−�)αu · δu dx −
∫

δu · ∇u · δu dx −
∫

δu · ∇τ · δτ dx



2800 P. Constantin et al. J. Evol. Equ.

−
∫

Q(τ,∇δu) · δτ dx −
∫

Q(δτ,∇u(ν)) · δτ dx

� ν‖u‖H2α ‖δu‖L2 + ‖∇u‖L∞‖δu‖2L2 + ‖∇τ‖L∞‖δu‖L2‖δτ‖L2

+ c (‖τ‖L∞‖∇δτ‖L2 + ‖∇τ‖L∞‖δτ‖L2)‖δu‖L2 + ‖∇u(ν)‖L∞‖δτ‖2L2

� ν2‖u‖2H2α + η

2
‖∇δτ‖2L2

+C (1 + ‖u‖Hs + ‖τ‖Hs + ‖u(ν)‖Hs + ‖τ‖2Hs−1)(‖δu‖2L2 + ‖δτ‖2L2).

Here, we have used the fact that
∫

(δu · (∇ · δτ) + D(δu) · δτ)dx = 0.

(1.14) then follows from Gronwall’s inequality and the uniform bound (in ν) for
‖τ (ν)‖Hs .
Case 2: 1

2 � β < 1. The difference (δu, δτ ) satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t δu + u(ν) · ∇δu + ν (−�)αδu = −ν (−�)αu + ∇ · δτ − δu · ∇u − ∇δP,

∂t δτ + u(ν) · ∇δτ + η(−�)βδτ = D(δu) − δu · ∇τ − Q(τ,∇δu) − Q(δτ,∇u(ν)),

∇ · δu = 0,

δu(x, 0) = 0; δτ(x, 0) = 0.

(3.2)

Dotting (3.2) by (δu, δτ ) yields

1

2

d

dt
(‖δu‖2L2 + ‖δτ‖2L2) + η‖
βδτ‖2L2 + ν‖
αδu‖2L2

= −ν(
2αu, δu) − (δu · ∇u, δu) − (δu · ∇τ, δτ )

−(Q(τ,∇δu), δτ ) − (Q(δτ,∇u(ν)), δτ ).

Applying 
β to (3.2) and then dotting by (
βδu,
βδτ) lead to

1

2

d

dt
(‖
βδu‖2L2 + ‖
βδτ‖2L2) + η‖
2βδτ‖2L2 + ν‖
α+βδu‖2L2

= −ν(
2α+βu,
βδu) − (
β(u(ν) · ∇δu),
βδu) − (
β(δu · ∇u),
βδu)

−(
β(u(ν) · ∇δτ),
βδτ) − (
β(δu · ∇τ),
βδτ) − (
βQ(τ,∇δu),
βδτ)

−(
βQ(δτ,∇u(ν)),
βδτ). (3.3)

Applying P∇· to the second equation of (3.2), we have

∂tP∇ · δτ + P∇ · (u(ν) · ∇δτ) + η
2β
P∇ · δτ

= 1

2
�δu − P∇ · (δu · ∇τ) − P∇ · Q(τ,∇δu) − P∇ · Q(δτ,∇u(ν)). (3.4)
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Taking the L2 inner product of the first equation of (3.2) with P∇ ·δτ and the L2 inner
product of (3.4) with δu, we have

d

dt
(δu,∇ · δτ) + 1

2
‖∇δu‖2L2 − ‖P∇ · δτ‖2L2

= −ν((−�)αu(ν),∇ · δτ) − ((u(ν) · ∇δu), P∇ · δτ) − ((δu · ∇u), P∇ · δτ)

−(P∇ · (u(ν) · ∇δτ), δu) − (P∇ · (δu · ∇τ), δu) − (P∇ · Q(τ,∇δu), δu)

−(P∇ · Q(δτ,∇u(ν)), δu) − η(
2β
P∇ · δτ, δu). (3.5)

We choose a positive constant k3 satisfying, for a suitable constant C > 0,

0 < k3 ≤ C min{1, η}.
Then, (3.3)+k3(3.5) gives

1

2

d

dt
(‖δu‖2Hβ + ‖δτ‖2Hβ + 2k3(δu,∇ · δτ)) + η‖
βδτ‖2Hβ

+ν‖
αδu‖2Hβ + k3
2

‖∇δu‖2L2 − k3‖P∇ · δτ‖2L2 =
20∑

i=1

Ki , (3.6)

where

K1 = −ν(
2α+βu,
βδu), K2 = −(
β(u(ν) · ∇δu),
βδu),

K3 = −(
β(δu · ∇u),
βδu), K4 = −(
β(u(ν) · ∇δτ),
βδτ),

K5 = −(
β(δu · ∇τ),
βδτ), K6 = −(
βQ(τ,∇δu),
βδτ),

K7 = −(
βQ(δτ,∇u(ν)),
βδτ), K8 = −k3 ν((−�)αu(ν),∇ · δτ),

K9 = −k3((u
(ν) · ∇δu), P∇ · δτ), K10 = −k3((δu · ∇u), P∇ · δτ),

K11 = −k3(P∇ · (u(ν) · ∇δτ), δu), K12 = −k3(P∇ · (δu · ∇τ), δu),

K13 = −k3(P∇ · Q(τ,∇δu), δu), K14 = −k3(P∇ · Q(δτ,∇u(ν)), δu),

K15 = −k3η(
2β
P∇ · δτ, δu), K16 = −ν(
2αu, δu),

K17 = −(δu · ∇u, δu), K18 = −(δu · ∇τ, δτ ),

K19 = −(Q(τ,∇δu), δτ ), K20 − (Q(δτ,∇u(ν)), δτ ).

The terms above can be bounded as follows. All the constants in the estimates are
independent of ν. By Hölder’s inequality,

|K1| ≤ ν2‖
2α+βu‖2L2 + C ‖δu‖2Hβ .

Due to ∇ · u(ν) = 0 and by a standard commutator estimate,

|K2| ≤ C ‖u(ν)‖Hs ‖δu‖2Hβ + C ‖u(ν)‖Hs ‖∇δu‖L2‖
βδu‖L2

≤ k3
16

‖∇δu‖2L2 + C (1 + k−1
3 ‖u(ν)‖Hs ) ‖u(ν)‖Hs ‖δu‖2Hβ .
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Clearly, for q1 and q2 satisfying 1
q1

= 1
2 − β

d and 1
q2

= 1
2 − 1

q1
,

|K3| ≤ C ‖u‖Hs ‖δu‖2Hβ + ‖δu‖Lq1 ‖
β∇u‖Lq2 ‖
βδu‖L2

≤ C ‖u‖Hs ‖δu‖2Hβ .

By a commutator estimate,

|K4| ≤ C ‖
βu(ν)‖L∞ ‖∇δτ‖L2 ‖
βδτ‖L2 + C ‖∇u(ν)‖L∞‖
βδτ‖2L2

≤ η

16
‖
βδτ‖2Hβ + C (η−1‖u(ν)‖2Hs + ‖u(ν)‖Hs )‖δτ‖2Hβ .

K5 can be similarly bounded as K3:

|K5| ≤ C ‖τ‖Hs (‖δu‖2Hβ + ‖δτ‖2Hβ ).

By Hölder’s inequality,

|K6| ≤ ‖
2βδτ‖L2 ‖τ‖L∞ ‖∇δu‖L2

≤ η

16
‖
βδτ‖2Hβ + C η−1‖τ‖2Hs−1 ‖∇δu‖2L2

≤ η

16
‖
βδτ‖2Hβ + k3

16
‖∇δu‖2L2 ,

where we have used the smallness of the solution

C η−1‖τ‖2Hs−1 ≤ C η−1 ε2 ≤ k3
16

.

By Hölder’s inequality,

|K7| ≤ ‖
2βδτ‖L2 ‖∇u(ν)‖L∞ ‖δτ‖L2

≤ η

16
‖
βδτ‖2Hβ + C η−1‖u(ν)‖2Hs ‖δτ‖2L2 .

Clearly,

|K8| ≤ k3ν‖
2α+1−βu(ν)‖L2 ‖
βδτ‖L2

≤ ν2‖
2α+1−βu(ν)‖2L2 + C k23 ‖δτ‖2Hβ .

K9 can be similarly handled as K6:

|K9| ≤ k3 ‖u(ν)‖L∞ ‖∇δu‖L2 ‖∇δτ‖L2

≤ η

16
‖
βδτ‖2Hβ + C η−1k23 ‖u(ν)‖2Hs−1 ‖∇δu‖2L2

≤ η

16
‖
βδτ‖2Hβ + k3

16
‖∇δu‖2L2 ,

where we have used the smallness of the solution

C k3η
−1‖u(ν)‖2Hs−1 ≤ C k3η

−1 ε2 ≤ 1

16
.
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We emphasize that ‖u(ν)‖Hs ≤ C ε with ε independent of ν, as stated in Theorem 1.2.
For β ≥ 1

2 ,

|K10| ≤ k3 ‖δu‖L2 ‖∇u‖L∞ ‖∇δτ‖L2

≤ η

16
‖
βδτ‖2Hβ + C k23 ‖u‖2Hs ‖δu‖2L2 .

K11 admits the same bound as K9:

|K11| ≤ k3 ‖u(ν)‖L∞ ‖∇δu‖L2 ‖∇δτ‖L2

≤ η

16
‖
βδτ‖2Hβ + k3

16
‖∇δu‖2L2 .

K12 can be bounded directly:

|K12| ≤ k3 ‖δu‖L2 ‖∇τ‖L∞ ‖∇δu‖L2

≤ k3
16

‖∇δu‖2L2 + C k3‖τ‖2Hs ‖δu‖2L2 .

We use the smallness of the solution to bound K13:

|K13| ≤ C k3 ‖τ‖L∞ ‖∇δu‖2L2 ≤ k3
16

‖∇δu‖2L2 ,

where we have used

C ‖τ‖L∞ ≤ C ‖τ‖Hs−1 ≤ C ε ≤ 1

16
.

K14 is bounded similarly as K12:

|K14| ≤ k3 ‖∇δu‖L2 ‖δτ‖L2 ‖∇u(ν)‖L∞

≤ k3
16

‖∇δu‖2L2 + C k3‖u(ν)‖2Hs ‖δτ‖2L2 .

|K15| ≤ k3η ‖
2βδτ‖L2 ‖∇δu‖L2

≤ η

16
‖
βδτ‖2Hβ + C k23η

−1‖∇δu‖2L2

≤ η

16
‖
βδτ‖2Hβ + k3

16
‖∇δu‖2L2 .

In addition, it is easy to obtain the following estimates:

|K16| ≤ ν2‖
2αu‖2L2 + C ‖δu‖2L2 ,

|K17| ≤ C ‖u‖Hs ‖δu‖2L2 ,

|K18| ≤ C ‖τ‖Hs (‖δu‖2L2 + ‖δτ‖2L2),

|K19| ≤ C‖τ‖2Hs‖δτ‖2L2 + k3
16

‖∇δu‖2L2 ,

|K20| ≤ C‖u(ν)‖Hs‖δτ‖2L2 .
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Inserting the bounds for K1 through K20 above in (3.6), we find

d

dt
(‖δu‖2Hβ + ‖δτ‖2Hβ + 2k3(δu,∇ · δτ))

+2ν‖
αδu‖2Hβ + η

4
‖
βδτ‖2Hβ + k3

4
‖∇δu‖2L2

≤ C(1 + ‖u‖2Hs + ‖u(ν)‖2Hs + ‖τ‖2Hs )(‖δu‖2Hβ + ‖δτ‖2Hβ )

+C ν2(‖u‖2Hs + ‖u(ν)‖2Hs ).

Choosing k3 ≤ 1
2 , applying Gronwall’s inequality and using the fact that ‖u(ν)‖Hs is

bounded uniformly in ν (see (1.13)), we obtain (1.14). This completes the proof of
Theorem 1.3. �
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