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Inviscid limit for vortex patches 
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Abstract. We investigate the inviscid limit for two dimensional incompressible fluids in the 
plane. We prove that, if the initial data are vortex patches with smooth boundaries, then the 
inviscid Eulerian dynamics is approached at a rate that is slower than the rate for Smooth initial 
data. The circular patches provide lower bounds. 
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1. Introduction 

We study the difference between solutions dNS) of the incompressible 2D Navier-Stokes 
equation and solutions dE) of the incompressible 2D'Euler equations. If the solutions start 
from identical, smooth initial data, then the difference is of the same 'order of magnitude 
as the kinematic viscosity. This fact [l,  2, 3, 41 holds in the whole plane or on the two 
dimensional torus, and is true for fixed intervals of time. In bounded domains such a global 
estimate is expected to fail, in general, because of boundary layers. Two dimensional 
turbulence theories 15, 61 that are based on the Euler equations are statistical theories for 
the vorticity field, which is assumed to be bounded and integrable, o E L' n Lm. There 
exists a classical theory of existence and uniqueness in this setting [7]. It is therefore natural 
to study the inviscid limit in this phase space. The specific question we address here, that 
of the inviscid limit for vortex patches, was asked by R Krasny. 

It is instructive to examine first an example, the circular patches. If the initial vorticity 
is radially symmetric, 

then, under $e Euler evolution the vorticity does not change, w ( x ,  t )  = a @ ) .  For radially 
symmetric initial data the Navier-Stokes evolution coincides with the linear heat equation 
evolution. Thus 

w ( x ,  0) = a ( x )  

dNS) = G[(,) * U  

where 
l ( t )  = .J;I 

with w the kinematic viscosity, 

(3 Gr(x) = l-'G 
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and G is a Gaussian. The difference o = dNS) - dE) is thus given by 
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4 x 3  I) = J (&(&)(x)G(y)dy 

(&a) ( x )  = a(x - 2) - a(x). 

where 

For smooth (radially symmetric) a the expected result is recovered by expanding in Taylor 
series: the first order term in the expansion vanishes because of the reflection symmetry of 
the Gaussian and the result is an 0(12) estimate. For non-smooth initial radial vorticities, 
such as circular vortex patches, the result is different. For the latter, one can check that 

I l 4 . 7  OllF = o w "  
is sharp (r is the radius of the vortex patch). Note that this is a v i  estimate. The 
corresponding L2 velocity difference is O(&. 

In this paper we prove that the difference dNS) - U ( € )  for vortex patch initial data is in 
Lz and satisfies an O ( f i  estimate. We have to restrict ourselves to initial vortex patches 
with smooth boundaries. Thus, the initial gradient of vorticity is a measure concentrated on 
a smooth curve. The inviscid limit is proved under the assumption 

lT IIVU(~)(., r)llL-dt < CO. 

This estimate is true for vortex patches with smooth boundaries [SI, but is not true in 
general, in particular if the vortex patch has comers. 

For general vortex patch initial data we prove that the Navier-Stokes solutions are 
exponentially small outside a time dependent region that contains the Eulerian patch. 

2. The inviscid limit 

We consider solutions of the two dimensional Navier-Stokes and Euler equations 

- + U .  a 11 Vu + V p =  WAU 
at 

v.u=o. 
The kinematic viscosity U is a positive number in the case of the Navier-Stokes 

equations; it equals zero for the Euler equations. 'The vorticity 
au2 a U I  

w ( x , t ) = - - -  
ax, ax2 

obeys the nonlinear advection-diffusion equation 

(a, + U .  v - W A ) W  =o. 
The vorticity equation can be viewed as the basic evolution equation. In this formulation 
the velocity is computed from the vorticity via the Biot-Savart law: 

u = K * o  

where 
1 
2n 

K ( x )  = -VO'log(lxl) 
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Proposition 1. Consider an initial vorticity 

a(x)  = o ( x ,  0) 

which belongs to the space L' n Loo in the plane. Then the initial value problems for the 
Nuvierstokes and Euler equations have global solutions. The Lq n o r m  of the vorticity are 
bounded by their initial data: 

I lw ( . , t ) l l ~~  < IlallLr I < q < m .  

IM., ~)IlP < U 
The associated velocities are bounded uniformly 

where 

= ( ~ ~ a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ) + .  

We will need the following notation. If a # 0 is a function in L' n Lm then we associate 
to it the length scale p given by 

The velocity scale U encountered above, 

U = ( ~ ~ a ~ ~ ~ ~ ~ ~ a ~ ~ ~ ~ ) ~  

will be used also in the following. If R > 0 we consider the annulus 

A R  = ( x ;  R < 1x1 < ZR]. 
We will need the following result: 

Proposition 2. The velocities of the solutions of the NavierStokes and Euler equations with 
initial vorticity a E L' n Lm satisfi 

The constant C is an absolute constant. The pressures CorresDonding to these solutions 
satisfy 

IIPIILZ < cll4;$. 
The pressures are normalized to have mean zero 

We consider now the case in which the initial vorticity, a(x)  = w(n,  0) is a constant 
multiple of the characteristlc function of a bounded, simply connected domain D in the 
plane: 

4 x 1  = ~ o x D ( ~ ) .  

We will assume that the boundary aD of the initial patch is smooth (C'+ for some /* > 0). 
We recall [8] 

Proposition 3. rfthe initial vorticity 

4 x 1  = WOX&) 
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is a multiple ojrhe characteristic function o j a  simply connected bounded domain D with 
C' .W boundary, p > 0 then the global solution 
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satisfies 

where the constant y depends only on the initial datum a and on T. 

The velocity is obtained from the vorticity by convolution with the BiotSavart kernel. 
Such velocities are not square-integrable in the plane, they decay at infinity only as fast as 
1xl-I. Our main result is: 

Theorem 1. Consider the velocity difference 

w ( x ,  t )  = U ( N S ) ( X ,  t )  - u(E)(x, t )  

between a solution ojthe NavierSrokes equation and a solution ojthe Euler equation 
(dE)). Assume that these have the same initial datum, corresponding to a vortex patch with 
smooth boundary 

a =  OXD D. 

Then, the difference w = dNS) - dE) is square-integrable and obeys the estimate: 

Ilw(., t)llZ2 < 2urllall~,exp ~ I I V U ( ~ ) ( . .  r ) I b d r  . (6 ) 
In particular, there exists a constant y depending only on the initial vorticity and T ,  such 
that 

I I W ( . , ~ ) I I ~  < ( 2 4  I I ~ I I L ~ ~ Y  

holds for 0 < t < T.  

Remarks 

requirement 
1. The result holds actually under the assumptions a E L' n Lm together with the 

Jd' IIVU(~)(.,  t ) ] l ~ - d t  c W. 

It is however only for smooth vorticities or for vortex patches with smooth boundaries (or 
similar, non-constant vorticities) that we can prove a priori that the above quantity stays 
finite. 

2. The result holds if the initial datum of the Navier-Stokes solution is slightly different 
than that of the Euler equation; however, one has to make sure that the difference has finite 
kinetic energy. 

The next result is for general initial vortex patches. We write 

[[;]I = JI + %. 
If the initial vorticity has compact support, one obtains 

Theorem 2. Assume that the initial vorticity a E L' 
in the disk 

Lm has compact support, included 

{ x ;  1x1 < LI. 
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Then 
N ,. -_ 

where 

Q ,  = (x; 1x1 2 C ( L + i + U t ) ]  

and C is an absolute constant. 

The vorticity of the solution of the Euler equation vanishes in Q,. Thus, this result is 
tends to infinity. The one of exponential convergence in Qt, as the Reynolds number 

assumption of compact support can be relaxed: 

Proposition 4. Let the initial vorticity for the NavierStokes or Euler equation a E L' n L-. 
Then, for any S =- 0 

holds for any q, 1 < q < 00. 

3. Proofs 

We start with the proof of theorem 1. Consider the difference 

w(x; t )  = U ( N S ) ( X ,  I )  - U(E)(X, t )  

between the solutions of the Navier-Stokes and, respectively, the Euler equation. The 
common initial vorticity is a vortex patch. The difference solves 

aw 
at 
- + u ( ~ ~ )  . Vw + w . = "A,(Ns) - V ( p ( N S )  - ~("1) .  

We take a non-negative, smooth cutoff function x, identically equal to 1 for 1x1 < 1 
and to 0 for 1x1 2 2. We multiply the equation for w by w(x, t)Xi where XR(X) = ~ ( 5 )  
and R > 0. Integrating in space we obtain: 

LdJxilw12dr = I +  I I +  I I I  + I V  
2 dt 

where 

I = -  s (U C N S ) .  Vxi) IWlZdr, 
2 

Z I  = - xi (W. wdx, s 
111 = ( p ( N S )  - P ( ~ ) )  w . Ox; dx s 

and 

We estimate the first term by 
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Using the results of propositions 1 and 2, more precisely the facts 
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IlwllL- < llu(N%- + llu(%- < 2u 
and 

l l ~ ( N s ) l l ~ z ( ~ R )  < W )  
with 

we obtain 

111 < CUR-'r(R)IIXRwllL'. 
The smoothness of the vortex patch boundary is needed only in the estimate for the second 
term: 

1zz1 < IIVu(E)llLmllXRwl?. 

The third term is estimated by 
1 
R izrzi G C- I IP (~~)  - P ( ~ ) I I ~ Z I I X ~ ~ I I ~ ~  

which, in view of propositions 1 and 2, is bounded by 
G 

11111 < X l l X R W l l L z  

with 

G = Cllall~g. 
Before estimating the last term we rewrite it: 

zv = -v  :: V(x;jw)dr s 
where M :: N = TrMN'. Using the fact that dNS) = w + ucE) we obtain 

v 
f C x  ~ ~ v ~ ( E ) ~ ~ L 2 ( A d  IIxRwIILz. 

It follows that 
v v < v l l a l l ~ ~  + C s ( r ( R ) ) ' +  C - l l a l l ~ ~ l l ~ ~ ~ l l ~ ~ .  R 

The proof of the theorem is completed by using the Gronwall lemma, then passing to 

We prove now proposition 4. We consider the function 
the limit R + 00 and using the Fatou lemma. 

4(x) = ,W. 
It satisfies: 

v4 1 
1-1 < j' 4 
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and 
2 

0 < v . (Y) Q 5. 

If w solves the NavierStokes or Euler equations, then.the function Qw solves 

where 
V@ 

v = u + 2 u -  a 
and U is the Navier-Stokes or Euler velocity. In order to simplify the exposition we take 
even powers q = p + 1. We multiply by q (@o)P and integrate. Strictly speaking, one has 
not proved yet that the integrals converge, so one has to pass through an additional process 
of approximating 0 by bounded functions which agree with 0 on larger and larger regions. 
We obtain 

and hence 

IlQw(., t ) l l ~ 4  Q IlWLqexp - + - t .  [: ::I 
Theorem 2 follows from proposition~4 by choosing judiciously 6 = c$.  The proof of 

proposition 1 is classical; we mention only that the bound l lul l~o~ < U follows directly from 
the Biot-Savart law. The result regarding the pressures in proposition 2 follows from the 
fact that the mean-free pressures are given by 

p = RiRj ( ~ i ~ j )  

where Ri = (-A)-;& are the Riesz transforms, and from classical inequalities for the 
Riesz transforms. The bounds on the velocity in L2(AR)  are easy consequences of the 
Biot-Savart law. One has 

and hence 

lu(x)l < Zl(Z) + Z2(4 + bar) 

where I1 is the integral corresponding to 0 < Ix-yl < p, Zz corresponds to p 4 I x -y l  < R 
and I, to Ix - yI > R.  Clearly 

2 
11z311'2(aR) < cllwll: 

I I I l l lZ2  < c l l ~ l l L ~ l l ~ l l L ~ P  . 
and because j j l l l l ~ -  < Clloll~-p, III1llLl Q Cllol l~cp, it follows that 

2 

In order to estimate Z2 one considers an L2 test function @ and obtains 

The result follows then from proposition 1. 
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4. Conclusions 

We proved that the velocity difference w = dNS) - between solutions of the Navier- 
Stokes and Euler equations converges to zero in L2 if the initid datum is a vortex patch with 
smooth boundaries. The convergence rate is O ( 4 ,  and is slower than the rate O(u) of 
convergence for smooth initial data. The circular patches provide lower bounds. We do not 
know whether a rate of convergence exists for vortex patches with non-smooth boundaries. 
We do not know whether a rate of convergence for vorticity in L2 exists, even for smooth 
vortex patch boundaries. What we do know and prove for arbitrary vortex patch initial data 
is that the convergence is exponential outside a time depending domain which contains the 
Euler patch. 

P Constantin and J Wu 

References 

[ I ]  McCrath F 1968 Nonstationary plane Row of viscous and ideal fluids, Arch. Rat. Mech And .  27 329-348 
[Z] Kat0 T 1972 Nonstationay flows of viscous and ideal fluids in R3. J. Funer. mal 9 296-305 
[3] Beale J T and Majda A 1981 Rata of convergence for viscous splitting of the NavierStokes equations, 

[4] Constantin P 1986 Note on loss of regularity for solutions of the 3D incompressible Euler and related 

151 Robert R I991 A maximumentropy principle for two dimensional perfect fluid dynamics 3. Stat. Phys. 65 

[6] Miller I 1990 Stalidical mechanics of Euler equations in two dimensions Phys. Rev. Lett. 65 2137-2140 
171 Yudovitch V I 1963 Nonstationary Row of an ideal incomrrressible liquid, zh &ch Mot. 3 1032-1066 (in 

Math. Comp. 37 243-259 

equations Commun. Math Phys. 104 31 1-326 

531-551 

.. 
Russian) 

[E] Bertoui A and Consrantin P 1993 Global regularity for vortex patches Cam”.  Math. Phys. 152 19 - 28. 


