
COMMUN. MATH. SCI. c© 2016 International Press

Vol. 14, No. 7, pp. 1999–2022

REGULARITY CRITERIA FOR THE 2D BOUSSINESQ EQUATIONS
WITH SUPERCRITICAL DISSIPATION∗

JINGNA LI† , HAIFENG SHANG‡ , JIAHONG WU§ , XIAOJING XU¶, AND ZHUAN YE‖

Abstract. This paper focuses on the 2D incompressible Boussinesq equations with fractional
dissipation, given by Λαu in the velocity equation and by Λβθ in the temperature equation, where
Λ=

√−Δ denotes the Zygmund operator. Due to the vortex stretching and the lack of sufficient
dissipation, the global regularity problem for the supercritical regime α+β<1 remains an outstanding
problem. This paper presents several regularity criteria for the supercritical Boussinesq equations.
These criteria are sharp and reflect the level of difficulty of the supercritical Boussinesq problem. In
addition, these criteria are important tools in understanding some crucial properties of Boussinesq
solutions such as the eventual regularity.
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1. Introduction
The Boussinesq equations model large scale atmospheric and oceanic flows and play

an important role in the study of Rayleigh–Bénard convection, one of the most com-
monly studied convection phenomena (see, e.g., [12,18,19,30,35,40]). The 2D Boussinesq
equations have recently attracted considerable attention in the community of mathe-
matical fluid mechanics due to their mathematical significance. Mathematically the
2D Boussinesq equations serve as a lower-dimensional model of the 3D hydrodynamics
equations. In fact, the 2D Boussinesq equations retain some key features of the 3D Eu-
ler and Navier–Stokes equations such as the vortex stretching mechanism. The inviscid
2D Boussinesq equations are identical to the Euler equations for the 3D axisymmetric
swirling flows (away from the symmetry axis) (see, e.g., [31]).

One of the fundamental problems concerning the Boussinesq system is whether or
not its solutions remain smooth for all time or they blow up in a finite time. We briefly
explain why this problem could be extremely difficult and how much the dissipation
and the thermal diffusion can help. When there is no dissipation or thermal diffusion,
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the 2D Boussinesq equation is given by⎧⎪⎪⎨⎪⎪⎩
∂tu+(u ·∇)u=−∇p+θe2, x∈R2, t>0,

∂tθ+(u ·∇)θ=0,

∇·u=0,

(1.1)

where u represents the 2D velocity field, p the pressure, e2 the unit vector in the vertical
direction and θ the temperature. A standard approach to the global regularity problem
is to first obtain the local existence and regularity and then extend the local solution to a
global one by establishing global a priori bounds for the solution. Due to the divergence-
free condition ∇·u=0, any solution (u,θ) of Equation (1.1) with sufficiently smooth
data admits global L2-bound for u and global Lq-bound for θ (q∈ [1,∞]). However,
it appears impossible to obtain global bounds for any derivative of u or θ. The main
obstacle is the “vortex stretching” term in the equation of the vorticity ω=∇×u and
∇⊥θ, where ∇⊥=(−∂x2 ,∂x1). More precisely, (ω,∇⊥θ) satisfies{

∂tω+(u ·∇)ω=∂x1
θ,

∂t∇⊥θ+(u ·∇)∇⊥θ=(∇⊥θ ·∇)u,
(1.2)

which resembles the 3D Euler vorticity equation

∂tω
E+(uE ·∇)ωE =(ωE ·∇)uE ,

where uE and ωE denote the 3D Euler velocity and the corresponding vorticity, respec-
tively. The global regularity problem for the 3D Euler equations appear to be out of
reach due to the term (ωE ·∇)uE . Potential finite time singularities have been explored
from different perspectives including boundary effects and 1D models (see [10,11,29,37]).

Dissipation helps control the derivatives and thus regularizes solutions. When Δu
and Δθ are added to the velocity equation and the equation of θ in Equation (1.1),
respectively, the global regularity can then be established following a similar proof
as that for the 2D Navier–Stokes equations. The issue that arises naturally is how
much dissipation is really needed for the global regularity. This problem has attracted
considerable interests recently and important progress has been made (see, e.g., [1–3,6,
9, 13, 17, 20–22, 25–28, 33, 34, 38, 42–48]). We briefly describe some of the relevant work
to provide a background for the results we will present.

There have been exciting developments on the 2D Boussinesq equations with frac-
tional dissipation,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tu+(u ·∇)u+νΛαu=−∇p+θe2, x∈R2, t>0,

∂tθ+(u ·∇)θ+κΛβθ=0,

∇·u=0,

u(x,0)=u0(x), θ(x,0)=θ0(x),

(1.3)

where ν≥0, κ≥0 and α,β∈ (0,2) are parameters, and Λ=(−Δ)
1
2 denotes the Zygmund

operator defined via the Fourier transform,

Λ̂αf(ξ)= |ξ|αf̂(ξ).
This generalization allows us to study a family of equations simultaneously and may be
physically relevant. In fact, there are geophysical circumstances in which the Boussinesq
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equations with fractional Laplacian may arise. Flows in the middle atmosphere traveling
upward undergo changes due to the changes in atmospheric properties, although the
incompressibility and Boussinesq approximations are applicable. The effect of kinematic
and thermal diffusion is attenuated by the thinning of atmosphere. This anomalous
attenuation can be modeled by using the space fractional Laplacian (see [7, 19]).

Recent efforts are devoted to the global regularity of Equation (1.3) with the smallest
possible α∈ (0,2) and β∈ (0,2). As pointed out in [23], it is useful to classify α and β into
three categories: the subcritical case when α+β>1, the critical case when α+β=1,
and the supercritical case when α+β<1. This classification gives us a sense of the level
of difficulty for different parameter ranges. The subcritical case is relatively easy and
the global regularity for several parameter ranges have been established. We note that
not all subcritical cases have been resolved. For instance, we do not know the global
regularity for the case when α and β are close to 1

2 and α+β>1. The critical case is
more difficult. Two special critical cases, α=1, κ=0 and β=1,ν=0, were studied and
resolved by [20, 21]. General critical cases with α+β=1 and α∈ (0,1) were dealt with
by Jiu, Miao, Wu and Zhang [23], which established the global regularity for Equation

(1.3) with α+β=1 and 1>α>α0≡ 23−√
145

12 ≈0.9132. Very recently Stefanov and Wu
improved the result of Jiu, Miao, Wu, and Zhang by further enlarging the range of α

with α+β=1 and 1>α>
√
1777−23

24 ≈0.7981 [38].
The global regularity problem for the supercritical regime α+β<1 appears to be

out of reach at this moment. Very few results are currently available. To help understand
this difficult problem, we examine the regularization effects of the fractional dissipation.
It appears reasonable to conjecture that solutions of Equation (1.3) with any α>0 and
β>0 will become regular eventually, namely for t>T for some T >0. Previous work
in this direction includes an eventual regularity result of Jiu, Wu, and Yang for α+β<

1 and α> 23−√
145

12 ≈0.9132 [24]. The approach there converts the supercritical 2D
Boussinesq equations into a generalized supercritical surface quasi-geostrophic equation.
We intend to employ a more direct approach in order to establish the eventual regularity
for larger ranges of α and β in the supercritical regime.

This paper presents several regularity criteria for Equation (1.3). These criteria
are important first steps toward the eventual resolution of the global regularity issue
on the supercritical Boussinesq equations. They specify the regularity window in which
any possible finite singularity scenario can occur. The first regularity criterion is for
the case when the velocity dissipation dominates, namely α>β. Roughly speaking,
it states that the solution can be extended globally if (1−α)-derivative of θ remains
bounded. In other words, any finite-time singular solution (u,θ) must have θ blow up

in the regularity window between H
β
2 and B1−α

∞,1 .

Theorem 1.1. Consider Equation (1.3) with ν >0, κ>0, 0<α<1, and 0≤β<α.
Assume (u0,θ0)∈Hs(R2) with s>2 and ∇·u0=0. Let (u,θ) be the corresponding local
solution of Equation (1.3) on [0,T0). If, for some T ≥T0, θ satisfies

θ∈L1([0,T ];B1−α
∞,1 (R

2)), (1.4)

then the local solution can be extended to [0,T ]. Especially, θ∈L1([0,T ];Cγ(R2)) with
γ∈ (1−α,1) implies the extension to [0,T ].

We remark that Theorem 1.1 holds for κ=0, when there is no thermal diffusion.
The proof of Theorem 1.1 is not trivial. Direct energy estimates would not work. To
overcome the difficulty, we work with a combined quantity of ω and θ and apply the
Besov space techniques. In addition, this paper also involves an effective approach to
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handle the difficulty caused by terms generated by working with a combined quantity.
The details can be found in Section 2.

The second regularity criterion is for the case when the fractional thermal diffusion
dominates, namely α≤β.

Theorem 1.2. Consider Equation (1.3) with ν >0, κ>0, 0≤α<1 and α≤β<1.
Assume (u0,θ0)∈Hs(R2) with s>2 and ∇·u0=0. Let (u,θ) be the corresponding local
solution of Equation (1.3) on [0,T0). If, for some T ≥T0, θ satisfies

θ∈L1([0,T ];B1−β
∞,1 (R

2)), (1.5)

then the local solution can be extended to [0,T ]. Especially, θ∈L1([0,T ];Cγ(R2)) with
γ∈ (1−β,1) implies the regularity of the solution on [0,T ].

Especially, Theorem 1.2 holds for ν=0, when there is no velocity dissipation. The
proof of Theorem 1.2 relies on an alternative regularity criterion in terms of u. This
criterion in terms of u is valid for any 0≤α<1 and 0<β<1.

Theorem 1.3. Consider Equation (1.3) with ν >0, κ>0, 0≤α<1, and 0<β<1.
Assume (u0,θ0)∈Hs(R2) with s>2 and ∇·u0=0. Let (u,θ) be the corresponding local
solution on [0,T0). If, for some γ >1−β and T ≥T0,

u∈L∞([0,T ];Cγ(R2)), (1.6)

then the local classical solution can be extended to the time interval [0,T ].

The proofs of these results rely on Besov space techniques and are given in the next
two sections. Section 2 proves Theorem 1.1. In order to prove this theorem, we state
and prove three lemmas in this section. Section 3 proves Theorem 1.2 and Theorem
1.3. An appendix containing the Littlewood–Paley decomposition and the definition of
Besov spaces is also given for the convenience of the readers.

2. The case when the velocity dissipation dominates
This section is devoted to the proof of Theorem 1.1, which provides a regularity

criterion for the case when the velocity dissipation dominates, namely α>β in Equation
(1.3). Without loss of generality, we set ν=κ=1 in this section.

The proof of Theorem 1.1 involves working with a combined quantity and applying
the Besov space techniques. In addition, as we shall see in the proof of Theorem 1.1,
the dissipative term Λβθ generates a term that hinders our approach. To facilitate the
proof of Theorem 1.1, we state and prove three lemmas. The first lemma (Lemma 2.1)
provides an easy-to-use upper bound for the Lp type estimates of the localized nonlinear
term. The second lemma (Lemma 2.2) gives an upper bound for a commutator. The
third lemma (Lemma 2.3) presents an estimate to deal with the aforementioned difficulty
due to the dissipative term Λβθ.

The rest of this section starts with the proof of Theorem 1.1, followed by the state-
ments and proofs of the lemmas.

Proof. (Proof of Theorem 1.1). The aim is to show that the local solution (u,θ)
can be extended to [0,T ] under the condition (1.4). More precisely, we show (u,θ)∈Hs

with s>2 for any t∈ [0,T ]. As is well-known, if u satisfies

‖∇u‖L1(0,T ;L∞(R2))<∞,
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then (u,θ) can be extended to [0,T ]. Due to the simple inequality

‖∇u‖L∞ ≤C(‖u‖L2 +‖ω‖B0
∞,1

),

it suffices to show that

‖ω‖L1(0,T ;B0
∞,1(R

2))<∞. (2.1)

Direct energy estimates on the vorticity equation

∂tω+u ·∇ω+Λαω=∂x1θ (2.2)

do not appear to allow us to verify condition (2.1). The idea is to eliminate the “vortex
stretching” term ∂x1

θ by considering a combined quantity (see, e.g., [20, 23, 33]). To
this end, we apply Rα≡Λ−α∂x1 to the equation of θ to obtain

∂tRαθ+u ·∇Rαθ+ΛβRαθ=−[Rα,u ·∇]θ. (2.3)

Taking the difference of Equations (2.2) and (2.3) yields that

G=ω−Rαθ

satisfies

∂tG+u ·∇G+ΛαG=ΛβRαθ+[Rα,u ·∇]θ. (2.4)

Our first step is to show that, for any q∈ [2,∞) and for any T >0 and 0<t≤T ,

‖Λ1−αθ(t)‖Lq ≤C(T,u0,θ0), ‖G(t)‖Lq ≤C(T,u0,θ0). (2.5)

Multiplying Equation (2.4) by G|G|q−2 and integrating in space, we obtain, after inte-
gration by parts,

1

q

d

dt
‖G‖qLq +

∫
G|G|q−2ΛαG=

∫
ΛβRαθG|G|q−2+

∫
[Rα,u ·∇]θG|G|q−2.

The dissipative term is nonnegative (see, e.g., [15])∫
G|G|q−2ΛαG≥0.

Applying Hölder’s inequality to the terms on the right-hand side yields

d

dt
‖G‖Lq ≤ ‖ΛβRαθ‖Lq + ‖[Rα,u ·∇]θ‖Lq ,

or, after integration in time,

‖G(t)‖Lq ≤ ‖G(0)‖Lq +‖ΛβRαθ‖L1
tL

q + ‖[Rα,u ·∇]θ‖L1
tL

q .

‖ΛβRαθ‖L1
tL

q can not be directly controlled in terms of (1.4). It is necessary to return
to the equation of θ to obtain a suitable bound. This is done in Lemma 2.3 below. By
Lemma 2.3,

‖ΛβRαθ‖L1
tL

q ≤
∞∑

j=−1

‖ΔjΛ
βRαθ‖L1

tL
q
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≤Ct‖θ0‖Lq +

∞∑
j=0

2βj‖ΔjΛ
1−αθ‖L1

tL
q

≤C(T,θ0)+C

∫ t

0

‖∇u(τ)‖Lq ‖θ(τ)‖B1−α
∞,1

dτ. (2.6)

By Lemma 2.2 with q1= q and q2=∞,

‖[Rα,u ·∇]θ‖Lq ≤ C ‖∇u‖Lq‖θ‖B1−α
∞,1

. (2.7)

Therefore,

‖G(t)‖Lq ≤ C(T,u0,θ0)+C

∫ t

0

‖∇u(τ)‖Lq ‖θ(τ)‖B1−α
∞,1

dτ. (2.8)

Applying Λ1−α to the equation of θ and then dotting it by Λ1−αθ|Λ1−αθ|q−2, we have

1

q

d

dt
‖Λ1−αθ‖qLq =−

∫
Λ1−αθ|Λ1−αθ|q−2 [Λ1−α,u ·∇]θ.

By Hölder’s inequality,

d

dt
‖Λ1−αθ‖Lq ≤C ‖[Λ1−α,u ·∇]θ‖Lq .

Applying Lemma 2.2 and proceeding as in Equation(2.7), we have

d

dt
‖Λ1−αθ‖Lq ≤C ‖∇u‖Lq ‖θ‖B1−α

∞,1
,

or

‖Λ1−αθ‖Lq ≤‖Λ1−αθ0‖Lq +C

∫ t

0

‖∇u(τ)‖Lq ‖θ(τ)‖B1−α
∞,1

dτ. (2.9)

Adding Equations (2.8) and (2.9) and noticing that

‖∇u‖Lq ≤C ‖ω‖Lq ≤C (‖G‖Lq +‖Λ1−αθ‖Lq ),

we conclude Equation (2.5) by Gronwall’s inequality and Equation (1.4). Consequently,

‖ω(t)‖Lq ≤C(T,u0,θ0).

Next we show that

sup
j≥0

2αj‖ΔjG‖L1
tL

q ≤C(T,u0,θ0).

Applying Δj with j≥0 to Equation (2.4) and then dotting with ΔjG|ΔjG|q−2, we
obtain

1

q

d

dt
‖ΔjG‖qLq +

∫
ΔjG|ΔjG|q−2ΛαΔjG=K1+K2+K3, (2.10)

where K1, K2, and K3 are given by

K1=−
∫

ΔjG|ΔjG|q−2Δj(u ·∇G),
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K2=

∫
ΔjG|ΔjG|q−2ΔjΛ

βRαθ,

K3=

∫
ΔjG|ΔjG|q−2Δj [Rα,u ·∇]θ.

The dissipative terms admits the lower bound (see [8])∫
ΔjG|ΔjG|q−2ΛαΔjG≥C 2αj ‖ΔjG‖qLq .

For q∈ [2,∞), we choose q1,q2∈ [2,∞) satisfying 1
q =

1
q1
+ 1

q2
. By Lemma 2.1,

|K1|≤C ‖ΔjG‖q−1
Lq ‖∇u‖Lq1 ‖ΔjG‖Lq2

+C ‖ΔjG‖q−1
Lq ‖∇u‖Lq1

∑
k≤j−1

2k−j‖ΔkG‖Lq2

+C ‖ΔjG‖q−1
Lq ‖∇u‖Lq1

∑
k≥j−1

2j−k‖ΔkG‖Lq2 .

The bounds in Equation (2.5) allow us to conclude that

|K1|≤ C ‖ΔjG‖q−1
Lq .

By Hölder’s inequality,

|K2|≤ C ‖ΔjG‖q−1
Lq ‖ΔjΛ

βRαθ‖Lq

By Hölder’s inequality, Lemma 2.2, and Equation (2.5),

|K3|≤‖ΔjG‖q−1
Lq ‖Δj [Rα,u ·∇]θ‖Lq

≤C ‖ΔjG‖q−1
Lq ‖∇u‖Lq ‖θ‖B1−α

∞,1

≤C ‖ΔjG‖q−1
Lq ‖θ‖B1−α

∞,1
.

Inserting the bounds above in Equation (2.10), integrating in time and using Lemma
2.3 or Equation (2.6), we obtain

‖ΔjG(t)‖Lq ≤ e−C2αjt‖ΔjG(0)‖Lq +C

∫ t

0

e−C2αj(t−τ) (1+‖θ‖B1−α
∞,1

)dτ.

Taking L1-norm in time yields

2αj‖ΔjG‖L1
tL

q ≤C ‖ΔjG(0)‖Lq +C ‖θ‖L1
tB

1−α
∞,1

.

or

sup
j≥0

2αj‖ΔjG‖L1
tL

q ≤C(T,u0,θ0)+C ‖θ‖L1
tB

1−α
∞,1

.

A special consequence of this global bound is that, for 2
q −α<0,

‖G(t)‖L1
tB

0
∞,1

=
∑
j≥−1

‖ΔjG‖L1
tL

∞ ≤
∑
j≥−1

2
2
q j‖ΔjG‖L1

tL
q
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=
∑
j≥−1

2(
2
q−α)j2αj‖ΔjG‖L1

tL
q ≤C(T,u0,θ0).

Therefore,

‖ω‖L1
tB

0
∞,1
≤‖G(t)‖L1

tB
0
∞,1

+‖θ‖L1
tB

1−α
∞,1

≤C(T,u0,θ0).

This global bound allows us to conclude the desired regularity. This completes the proof
of Theorem 1.1.

In the proof of Theorem 1.1, we invoked three lemmas. We now provide the precise
statements and proofs of these lemmas. The first lemma provides an a priori bound
for the term generated by the nonlinearity when we perform the Lq-estimate. In this
lemma Δj denotes the Fourier localization operator. Its precise definition and other
notation can be found in the appendix.

Lemma 2.1. Let j≥0 be an integer. Assume q∈ [2,∞) and q1,q2∈ [2,∞] satisfy
1
q =

1
q1
+ 1

q2
(Note that q1 and q2 are allowed to be ∞). Assume ∇·u=0. Then,∣∣∣∣∫ ΔjG|ΔjG|q−2Δj(u ·∇G)

∣∣∣∣≤C ‖∇u‖Lq1 ‖ΔjG‖q−1
Lq ‖ΔjG‖Lq2

+C ‖∇u‖Lq1 ‖ΔjG‖q−1
Lq

∑
k≤j−1

2k−j‖ΔkG‖Lq2

+C ‖∇u‖Lq1 ‖ΔjG‖q−1
Lq

∑
k≥j−1

2j−k‖ΔkG‖Lq2 .

where C’s are constants.

Proof. Following the notion of paraproducts, we write

I≡
∫

ΔjG|ΔjG|q−2Δj(u ·∇G)= I1+I2+I3+I4+I5, (2.11)

where

I1=
∑

|j−k|≤2

∫
ΔjG|ΔjG|q−2 [Δj ,Sk−1u ·∇]ΔkG,

I2=
∑

|j−k|≤2

∫
ΔjG|ΔjG|q−2 (Sk−1u−Sju) ·∇ΔjΔkG,

I3=

∫
ΔjG|ΔjG|q−2Sju ·∇ΔjG,

I4=
∑

|j−k|≤2

∫
ΔjG|ΔjG|q−2Δj(Δku ·∇Sk−1G),

I5=
∑

k≥j−1

∫
ΔjG|ΔjG|q−2Δj(Δ̃ku ·∇ΔkG)

with Δ̃k=Δk−1+Δk+Δk+1. We remark that the decomposition (2.11) follows from
the paraproduct decomposition of Δj(u ·∇G),

Δj(u ·∇G)=
∑

|j−k|≤2

Δj(Sk−1u ·∇ΔkG)+
∑

|j−k|≤2

Δj(Δku ·∇Sk−1G)
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+
∑

k≥j−1

Δj(Δ̃ku ·∇ΔkG)

and a further splitting of the first term,∑
|j−k|≤2

Δj(Sk−1u ·∇ΔkG)=
∑

|j−k|≤2

[Δj ,Sk−1u ·∇]ΔkG

+
∑

|j−k|≤2

(Sk−1u−Sju) ·∇ΔjΔkG+Sju ·∇ΔjG.

∇·u=0 implies I3=0. For fixed j, the summation over |j−k|≤2 involves only a
finite number of k’s. For the sake of brevity, we shall replace the summations by their
representative term with k= j in I1, I2, and I4. This practice does not change the
estimates. To estimate I1, we make use of the commutator structure to write

[Δj ,Sj−1u ·∇]ΔjG

=

∫
Φj(x−y)(Sj−1u(y)−Sj−1u(x)) ·∇ΔjG(y)dy

=

∫
Φj(x−y)

∫ 1

0

(y−x) ·(∇Sj−1u)(ρy+(1−ρ)x)dρ ·∇ΔjG(y)dy

=

∫ 1

0

∫
Φj

(
z

ρ

)
z

ρ3
·(∇Sj−1u)(x−z) ·∇ΔjG

(
x− z

ρ

)
dzdρ,

where Φj is the kernel function corresponding to the operator Δj (see the appendix).
By Minkowski’s inequality and Hölder’s inequality,

‖[Δj ,Sj−1u ·∇]ΔjG‖Lq ≤
∫ 1

0

∫ ∣∣∣∣Φj

(
z

ρ

)
z

ρ3

∣∣∣∣ ‖∇Sj−1u‖Lq1
x
‖∇ΔjG‖Lq2

x
dzdρ

≤‖∇Sj−1u‖Lq1 ‖∇ΔjG‖Lq2

∫ 1

0

∫ ∣∣∣∣Φj

(
z

ρ

)
z

ρ3

∣∣∣∣ dzdρ
=‖∇Sj−1u‖Lq1 ‖∇ΔjG‖Lq2 ‖xΦj(x)‖L1

x
. (2.12)

By Bernstein’s inequality (see the appendix),

‖∇ΔjG‖Lq2 ≤C 2j‖ΔjG‖Lq2

for a constant C independent of j. Furthermore, according to the definition of Φj ,

‖xΦj(x)‖L1 =2−j‖xΦ0(x)‖L1 =C 2−j .

Therefore,

‖[Δj ,Sj−1u ·∇]ΔjG‖Lq ≤ C ‖∇Sj−1u‖Lq1 ‖ΔjG‖Lq2 .

Consequently, by Hölder’s inequality,

|I1|≤C ‖∇Sj−1u‖Lq1 ‖ΔjG‖Lq2 ‖ΔjG‖q−1
Lq

≤C ‖∇u‖Lq1 ‖ΔjG‖Lq2 ‖ΔjG‖q−1
Lq .

By Hölder’s inequality and Bernstein’s inequality,

|I2|≤C 2j‖Δju‖Lq1 ‖ΔjG‖Lq2 ‖ΔjG‖q−1
Lq
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≤C ‖∇Δju‖Lq1 ‖ΔjG‖Lq2 ‖ΔjG‖q−1
Lq

≤C ‖∇u‖Lq1 ‖ΔjG‖Lq2 ‖ΔjG‖q−1
Lq .

Invoking the remark we made previously and applying Hölder’s and Bernstein’s inequal-
ities, we have

|I4|≤C ‖Δj(Δju ·∇Sj−1G)‖Lq ‖ΔjG‖q−1
Lq

≤C ‖Δju‖Lq1 ‖∇Sj−1G‖Lq2 ‖ΔjG‖q−1
Lq

≤C 2−j‖∇Δju‖Lq1

∑
k≤j−1

2k‖ΔkG‖Lq2 ‖ΔjG‖q−1
Lq

≤C ‖∇u‖Lq1 ‖ΔjG‖q−1
Lq

∑
k≤j−1

2k−j‖ΔkG‖Lq2 .

To estimate I5, we apply ∇·u=0 and Hölder’s inequality to obtain

|I5|≤‖ΔjG‖q−1
Lq 2j

∑
k≥j−1

‖Δ̃ku‖Lq1 ‖ΔkG‖Lq2 .

An application of Bernstein’s inequality yields

|I5|≤C ‖ΔjG‖q−1
Lq

∑
k≥j−1

2j−k‖∇Δ̃ku‖Lq1 ‖ΔkG‖Lq2

≤C ‖∇u‖Lq1 ‖ΔjG‖q−1
Lq

∑
k≥j−1

2j−k‖ΔkG‖Lq2 .

The desired bound of this lemma then follows from combining the bounds for I1 through
I5. This completes the proof of Lemma 2.1.

Recall that Rα=Λ−α∂x1
. The second lemma provides an a priori bound for the

Lq-norm of the commutator Δj [Rα,u ·∇]θ≡ΔjRα(u ·∇θ)−Δj(u ·Rα∇θ).

Lemma 2.2. Let j≥0 be an integer. Let α∈ (0,2). Assume q∈ [2,∞) and q1,q2∈ [2,∞]
satisfy 1

q =
1
q1
+ 1

q2
. Assume ∇·u=0. Then

‖Δj [Rα,u ·∇]θ‖Lq ≤C 2(1−α)j ‖∇u‖Lq1 ‖Δjθ‖Lq2

+C ‖∇u‖Lq1

∑
k≤j−1

2k−j2(1−α)k ‖Δkθ‖Lq2

+C ‖∇u‖Lq1

∑
k≥j−1

2(2−α)(j−k)2(1−α)k‖Δkθ‖Lq2

+C ‖∇u‖Lq1

∑
k≥j−1

2j−k 2(1−α)k‖Δkθ‖Lq2 , (2.13)

where C’s are constants. In addition, Equation (2.13) still holds if Rα is replaced by
Λ1−α. A special consequence of Equation (2.13) is the following bound,

‖[Rα,u ·∇]θ‖Lq ≤ C ‖∇u‖Lq1 ‖θ‖B1−α
q2,1

. (2.14)

Similarly,

‖[Λ1−α,u ·∇]θ‖Lq ≤ C ‖∇u‖Lq1 ‖θ‖B1−α
q2,1

.
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Proof. We write

Δj [Rα,u ·∇]θ=L1+L2+L3,

where

L1=
∑

|j−k|≤2

[ΔjRα(Sk−1u ·∇Δkθ)−Δj(Sk−1u ·∇RαΔkθ)] ,

L2=
∑

|j−k|≤2

[ΔjRα(Δku ·∇Sk−1θ)−Δj(Δku ·∇RαSk−1θ)] ,

L3=
∑

k≥j−1

[
ΔjRα(Δ̃ku ·∇Δkθ)−Δj(Δ̃ku ·∇RαΔkθ)

]
.

To estimate L1, we make use of the commutator structure. For the sake of clarity, we
further divide L1 into two parts

L1=L11+L12,

where

L11=
∑

|j−k|≤2

[ΔjRα(Sk−1u ·∇Δkθ)−Sk−1u ·∇ΔjRαΔkθ] ,

L12=
∑

|j−k|≤2

[Sk−1u ·∇ΔjRαΔkθ−Δj(Sk−1u ·∇RαΔkθ)] .

We denote by hj(x) the kernel function for the operator ΔjRα, namely

ΔjRαf =hj ∗f or ĥj(ξ)=Φj(ξ)iξ1 |ξ|−α,

where Φj is the kernel function corresponding to Δj . It is not difficult to check that

hj(x)=2(1−α)j 22jh0(2
jx), ĥ0(ξ)=Φ̂0(ξ)iξ1|ξ|−α.

As in the estimate of Equation(2.12), we have

‖L11‖Lq ≤C ‖xhj(x)‖L1 ‖∇Sj−1u‖Lq1 ‖∇Δjθ‖Lq2

≤C 2−αj‖∇u‖Lq1 2j ‖Δjθ‖Lq2

≤C 2(1−α)j‖∇u‖Lq1 ‖Δjθ‖Lq2 .

Making use of the commutator structure again yields

‖L12‖Lq ≤C ‖xΦj(x)‖L1 ‖∇u‖Lq1 ‖Rα∇Δjθ‖Lq2

≤C 2−j ‖∇u‖Lq1 2(1−α)j2j‖Δjθ‖Lq2

=C 2(1−α)j‖∇u‖Lq1 ‖Δjθ‖Lq2 .

The estimates for L2 are similar and we have

‖L2‖Lq ≤C 2−j‖∇u‖Lq1 ‖∇RαSj−1θ‖Lq2
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≤C ‖∇u‖Lq1

∑
k≤j−1

2k−j2(1−α)k ‖Δkθ‖Lq2 .

We remark that the divergence-free condition ∇·u=0 in not used in the estimates of
L1 and L2. The commutator structure is not needed to bound L3. Due to ∇·u=0,

‖L3‖Lq ≤C
∑

k≥j−1

[
‖ΔjRα(∇·(Δ̃kuΔkθ))‖Lq +‖Δj∇·(Δ̃kuRαΔkθ)‖Lq

]
≤C

∑
k≥j−1

[
2(2−α)j‖Δ̃ku‖Lq1 ‖Δkθ‖Lq2 +2j‖Δ̃ku‖Lq1 2(1−α)k‖Δkθ‖Lq2

]
≤C

∑
k≥j−1

2(2−α)j2−k‖∇Δ̃ku‖Lq1 ‖Δkθ‖Lq2

+C
∑

k≥j−1

2j−k‖∇Δ̃ku‖Lq1 2(1−α)k‖Δkθ‖Lq2

≤C ‖∇u‖Lq1

∑
k≥j−1

[
2(2−α)(j−k)2(1−α)k‖Δkθ‖Lq2 +2j−k 2(1−α)k‖Δkθ‖Lq2

]
.

Combining the estimates above yields the desired bound in Equation (2.13). We finally
remark that the estimates above still holds when Rα is replaced by Λ1−α. The main
reason is that Λ1−α differs from Rα by a Riesz transform and Riesz transforms are
bounded on functions of the form Δjf for any j≥0. Therefore Equation (2.13) holds
when Rα is replaced by Λ1−α. The inequality (2.14) is an easy consequence of Equation
(2.13). In fact,

‖[Rα,u ·∇]θ‖Lq ≤
∑
j≥−1

‖Δj [Rα,u ·∇]θ‖Lq

≤C ‖∇u‖Lq1

∑
j≥−1

2(1−α)j ‖Δjθ‖Lq2

+C‖∇u‖Lq1

∑
j≥−1

∑
k≤j−1

2k−j2(1−α)k ‖Δkθ‖Lq2

+C ‖∇u‖Lq1

∑
j≥−1

∑
k≥j−1

2(2−α)(j−k)2(1−α)k‖Δkθ‖Lq2

+C ‖∇u‖Lq1

∑
j≥−1

∑
k≥j−1

2j−k 2(1−α)k‖Δkθ‖Lq2

≤C ‖∇u‖Lq1 ‖θ‖B1−α
q2,1

,

where we have used the Young’s inequality for series convolution. This completes the
proof of Lemma 2.2.

The last lemma of this section presents an estimate for the term ΛβRαθ. This
estimate has been used in the proof of Theorem 1.1.

Lemma 2.3. Assume that θ solves

∂tθ+u ·∇θ+Λβθ=0. (2.15)

Then, for any t>0 and any 1<q<∞,

∞∑
j=0

2βj‖ΔjΛ
1−αθ‖L1

tL
q ≤C ‖θ0‖B1−α

q,1
+C

∫ t

0

‖∇u(τ)‖Lq ‖θ(τ)‖B1−α
∞,1

dτ,
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where C’s are constants.

Proof. Applying Λ1−α to Equation (2.15) leads to the equation of ϕ≡Λ1−αθ,

∂tϕ+u ·∇ϕ+Λβϕ=−[Λ1−α,u ·∇]θ. (2.16)

Applying Δj to Equation (2.16), multiplying by Δjϕ|Δjϕ|q−2 and integrating over R2,
we obtain

1

q

d

dt
‖Δjϕ‖qLq +

∫
(ΛβΔjϕ)Δjϕ|Δjϕ|q−2=L1+L2,

where

L1=−
∫

Δj(u ·∇ϕ)Δjϕ|Δjϕ|q−2,

L2=−
∫

Δj [Λ
1−α,u ·∇]θΔjϕ|Δjϕ|q−2.

The second term above admits the following lower bound (see [8]),∫
(ΛβΔjϕ)Δjϕ|Δjϕ|q−2≥C02

βj ‖Δjϕ‖qLq

for some constant C0>0. By Lemma 2.1,

|L1|≤ C ‖Δjϕ‖q−1
Lq ‖∇u‖Lq A1,

where

A1=‖Δjϕ‖L∞ +
∑

k≤j−1

2k−j‖Δkϕ‖L∞ +
∑

k≥j−1

2j−k‖Δkϕ‖L∞ .

By Lemma 2.2,

|L2|≤ C ‖Δjϕ‖q−1
Lq ‖∇u‖Lq A2,

where

A2=2(1−α)j ‖Δjθ‖L∞ +
∑

k≤j−1

2k−j2(1−α)k ‖Δkθ‖L∞

+
∑

k≥j−1

2(2−α)(j−k)2(1−α)k‖Δkθ‖L∞ +
∑

k≥j−1

2j−k 2(1−α)k‖Δkθ‖L∞ .

These bounds allow us to obtain

d

dt
‖Δjϕ‖Lq +C02

βj‖Δjϕ‖Lq ≤C ‖∇u‖Lq (A1+A2).

Integrating w.r.t. time yields

‖Δjϕ(t)‖Lq ≤ e−C02
βjt‖Δjϕ(0)‖Lq +C

∫ t

0

e−C02
βj(t−τ)‖∇u(τ)‖Lq (A1+A2)(τ)dτ.

Taking L1-norm in time and applying Young’s inequality to the last term, we have

‖Δjϕ‖L1
tL

q ≤C 2−βj ‖Δjϕ(0)‖Lq +C 2−βj

∫ t

0

‖∇u(τ)‖Lq (A1+A2)(τ)dτ.
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Multiplying by 2βj and summing over j≥0, we find

∞∑
j=0

2βj‖Δjϕ‖L1
tL

q ≤C

∞∑
j=0

‖Δjϕ(0)‖Lq +C

∫ t

0

‖∇u(τ)‖Lq

∞∑
j=0

(A1+A2)(τ)dτ.

Recalling ϕ=Λ1−αθ and applying Young’s inequality for series convolution, we have

∞∑
j=0

(A1+A2)≤C ‖θ‖B1−α
∞,1

.

Therefore,

∞∑
j=0

2βj‖ΔjΛ
1−αθ‖L1

tL
q ≤C ‖θ0‖B1−α

q,1
+C

∫ t

0

‖∇u(τ)‖Lq ‖θ(τ)‖B1−α
∞,1

dτ.

This completes the proof of Lemma 2.3.

3. The case when the thermal diffusion dominates
This section proves Theorem 1.2 and Theorem 1.3. Theorem 1.2 deals with the case

when α≤β. Since we need Theorem 1.3 to prove Theorem 1.2, we shall prove Theorem
1.3 first. Without loss of generality, we set ν=κ=1.

As a preparation for the proof of Theorem 1.3. We state and prove a lemma first.
This lemma helps with the estimates of the nonlinear term when we bound the Lq-norm
of the localized equation. This lemma involves Besov spaces Bs

p,q. Its precise definition
is given in the appendix. In particular, Bγ

∞,∞ is equivalent to the standard Hölder space
Cγ when γ∈ (0,1).
Lemma 3.1. Let j≥0 be an integer. Let q∈ [2,∞) and γ∈ (0,1). Assume ∇·u=0.
Then, ∣∣∣∣∫ Δjθ|Δjθ|q−2Δj(u ·∇θ)

∣∣∣∣≤C 2(1−γ)j‖u‖Bγ
∞,∞‖Δjθ‖qLq

+C 2−γj‖u‖Bγ
∞,∞‖Δjθ‖q−1

Lq

∑
k≤j−1

2k‖Δkθ‖Lq

+C 2j‖u‖Bγ
∞,∞

∑
k≥j−1

2−γk‖Δkθ‖Lq ,

where C’s are constants.

Proof. The proof of this lemma bears some similarity to that of Lemma 2.1. For
reader’s convenience, we provide the details. Following the notion of paraproducts, we
write

Ĩ≡
∫

Δjθ|Δjθ|q−2Δj(u ·∇θ)= Ĩ1+ Ĩ2+ Ĩ3+ Ĩ4+ Ĩ5,

where

Ĩ1=
∑

|j−k|≤2

∫
Δjθ|Δjθ|q−2 [Δj ,Sk−1u ·∇]Δkθ,

Ĩ2=
∑

|j−k|≤2

∫
Δjθ|Δjθ|q−2 (Sk−1u−Sju) ·∇ΔjΔkθ,
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Ĩ3=

∫
Δjθ|Δjθ|q−2Sju ·∇Δjθ,

Ĩ4=
∑

|j−k|≤2

∫
Δjθ|Δjθ|q−2Δj(Δku ·∇Sk−1θ),

Ĩ5=
∑

k≥j−1

∫
Δjθ|Δjθ|q−2Δj(Δ̃ku ·∇Δkθ)

Again, ∇·u=0 implies Ĩ3=0. For fixed j, the summation over |j−k|≤2 involves only
a finite number of k’s. For the sake of brevity, we shall replace the summations by
their representative term with k= j in Ĩ1, Ĩ2, and Ĩ4. This practice does not change the
estimates. To estimate Ĩ1, we make use of the commutator structure to write

[Δj ,Sj−1u ·∇]Δjθ

=

∫
Φj(x−y)(Sj−1u(y)−Sj−1u(x)) ·∇Δjθ(y)dy

≤C ‖Sj−1u‖Cγ
∞,∞

∫
|Φj(x−y)| |x−y|γ |∇Δjθ(y)|dy.

By Young’s inequality,

‖[Δj ,Sj−1u ·∇]Δjθ‖Lq ≤C ‖Sj−1u‖Cγ
∞,∞ ‖∇Δjθ‖Lq ‖|x|γΦj(x)‖L1

x
. (3.1)

By Bernstein’s inequality,

‖∇Δjθ‖Lq2 ≤C 2j‖Δjθ‖Lq2

for a constant C independent of j. Furthermore, according to the definition of Φj ,

‖|x|γΦj(x)‖L1 =2−γj‖|x|γΦ0(x)‖L1 =C 2−γj .

Therefore,

‖[Δj ,Sj−1u ·∇]Δjθ‖Lq ≤ C 2(1−γ)j ‖Sj−1u‖Cγ
∞,∞ ‖Δjθ‖Lq .

Consequently, by Hölder’s inequality,

|Ĩ1|≤C 2(1−γ)j ‖u‖Cγ
∞,∞ ‖Δjθ‖qLq .

By Hölder’s inequality and Bernstein’s inequality,

|Ĩ2|≤C 2j‖Δju‖L∞ ‖Δjθ‖qLq

≤C 2(1−γ)j 2γj‖Δju‖L∞ ‖Δjθ‖qLq

≤C 2(1−γ)j ‖u‖Cγ
∞,∞ ‖Δjθ‖qLq .

Applying Hölder’s and Bernstein’s inequalities, we have

|Ĩ4|≤C ‖Δj(Δju ·∇Sj−1θ)‖Lq ‖‖Δjθ‖q−1
Lq

≤C ‖Δju‖L∞ ‖∇Sj−1θ‖Lq ‖Δjθ‖q−1
Lq

≤C 2−γj ‖u‖Cγ
∞,∞

∑
k≤j−1

2k‖Δkθ‖Lq ‖Δjθ‖q−1
Lq .



2014 2D BOUSSINESQ EQUATIONS

To estimate Ĩ5, we apply ∇·u=0 and Hölder’s inequality to obtain

|Ĩ5|≤‖Δjθ‖q−1
Lq 2j

∑
k≥j−1

‖Δ̃ku‖L∞ ‖Δkθ‖Lq .

An application of Bernstein’s inequality yields

|Ĩ5|≤C ‖Δjθ‖q−1
Lq ‖u‖Cγ

∞,∞

∑
k≥j−1

2−γk‖Δkθ‖Lq .

The estimates above then yield the desired bound. This completes the proof of Lemma
3.1.

We are now ready to prove Theorem 1.3. The proof follows the idea in [14].

Proof. (Proof of Theorem 1.3.) We show that Equation (1.6) implies the fol-
lowing bound for θ,

sup
t∈[0,T ]

‖θ(t)‖Bδ
q,∞ <∞ for any δ∈ (1,γ+β) and for any q∈ [2,∞).

As explained later, this bound then implies ‖∇θ‖L∞ <∞, which, in turn, implies the
regularity of the solution.

We start by applying Δj with j≥0 to the θ equation

∂t(Δjθ)+ΔjΛ
βθ=−Δj(u ·∇θ). (3.2)

Dotting it with Δjθ|Δjθ|q−2 and applying Lemma 3.1 yields

d

dt
‖Δjθ‖qLq +C02

βj‖Δjθ‖Lq ≤C 2(1−γ)j‖u‖Bγ
∞,∞‖Δjθ‖Lq

+C 2−γj‖u‖Bγ
∞,∞

∑
k≤j−2

2k‖Δkθ‖Lq

+C 2j‖u‖Bγ
∞,∞

∑
k≥j−1

2−γk‖Δkθ‖Lq .

Multiplying above inequality by 2δj , integrating in time and taking the supremum with
respect to j≥0 , we get

‖θ‖Bδ
q,∞ ≤‖θ0‖Lq +‖θ0‖Bδ

q,∞ +J1+J2+J3,

where we have used the fact that

‖θ‖Bδ
q,∞ ≤‖θ‖Lq +sup

j≥0
2δj‖Δjθ‖Lq

and J1, J2, and J3 are given by

J1=C1 sup
j≥0

2j(1−γ)

∫ t

0

e−C0(t−τ)2βj

2jδ ‖u‖Bγ
∞,∞ ‖Δjθ(τ)‖Lqdτ,

J2=C2 sup
j≥0

2−jγ

∫ t

0

e−C0(t−τ)2βj

2jδ ‖u‖Bγ
∞,∞

∑
k≤j−2

2k‖Δkθ(τ)‖Lqdτ,
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J3=C3 sup
j≥0

2j
∫ t

0

e−C0(t−τ)2βj

2jδ ‖u‖Bγ
∞,∞

∑
k≤j−2

2−γk‖Δkθ(τ)‖Lqdτ.

We now estimate the terms above. For notational convenience, we write

M ≡ sup
t∈[0,T ]

‖u‖Bγ
∞,∞ <∞.

To bound J1, we choose a sufficiently large integer j1 such that

C1M

C0
2(1−γ−β)j1 ≤ 1

16
.

We note that this can be done due to γ >1−β. Then,

J1≤C1M sup
j≥j1

2j(1−γ)

∫ t

0

e−C0(t−τ)2βj

2jδ‖Δjθ(τ)‖Lqdτ

+C1M sup
−1≤j<j1

2j(1−γ)

∫ t

0

e−C0κ(t−τ)2βj

2jδ‖Δjθ(τ)‖Lqdτ

≤ sup
τ∈[0,t]

‖θ‖Bδ
q,∞ sup

j≥j1

C1M

C0
2(1−γ−β)j

(
1−e−C02

βjt
)

+
C1M

C0
‖θ0‖Lq sup

j≤j1

2(1−γ−β+δ)j
(
1−e−C02

βjt
)

≤ 1

16
sup

τ∈[0,t]

‖θ‖Bδ
q,∞ +C(M,j1,‖θ0‖Lq ),

where C(M,j1,‖θ0‖Lq ) is a constant depending on the quantities inside the parenthesis.
We also note that j1 depends only on C0, C1, and M . To bound J2, we note that, due
to 1<δ<γ+β, there exists a positive integer j2 such that

C2M

C0
2(δ−γ−β)j2 ≤ 1

16
.

Then J2 can be bounded by

J2=C2M sup
j≥−1

2(δ−γ)j

∫ t

0

e−C0(t−τ)2βj ∑
k≤j−2

2(1−δ)k2δk‖Δkθ(τ)‖Lqdτ

≤C2M

C0
sup
j≥j2

2(δ−γ−β)j sup
τ∈[0,t]

‖θ‖Bδ
q,∞

+C2M sup
−1≤j≤j2

2(δ−γ)j

∫ t

0

e−C0(t−τ)2βj ∑
k≤j−2

2(1−δ)k2δk‖Δkθ(τ)‖Lqdτ

≤C2M

C0
sup
j≥j2

2(δ−γ−β)j sup
τ∈[0,t]

‖θ‖Bδ
q,∞ +C(C0,C2,M,j2,‖θ0‖Lq )

≤ 1

16
sup

τ∈[0,t]

‖θ‖Bδ
q,∞ +C(C0,C2,M,j2,‖θ0‖Lq ),

where we have used the fact that the summation of 2(1−δ)k for δ>1 and −1≤k≤ j−2
is finite. To bound J3, we first write

J3=C3M sup
j≥−1

2j
∫ t

0

e−C0(t−τ)2βj

2jδ
∑

k≤j−2

2−γk‖Δkθ(τ)‖Lqdτ
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=C3M sup
j≥−1

2(1−γ)j

∫ t

0

e−C0(t−τ)2βj ∑
k≤j−2

2−(γ+δ)(k−j)2δk‖Δkθ(τ)‖Lqdτ.

Similarly, we choose a positive integer j3 such that

C3M

C0
2(1−β−γ)j3 ≤ 1

16
.

Then, as in J2,

J3≤ 1

16
sup

τ∈[0,t]

‖θ‖Bδ
q,∞ +C(C0,C2,M,j3,‖θ0‖Lq ).

Putting together the estimates above yields

‖θ(t)‖Bδ
q,∞ ≤‖θ0‖Bδ

q,∞ +
3

16
sup

τ∈[0,t]

‖θ(τ)‖Bδ
q,∞ +C(M,‖θ0‖Lq ).

Therefore, for δ∈ (1,β+γ),

sup
τ∈[0,t]

‖θ(τ)‖Bδ
q,∞ ≤‖θ0‖Bδ

q,∞ +C(M,‖θ0‖Lq )<∞.

As a special consequence, we have, for t∈ [0,T ],

‖∇θ(t)‖L∞ <∞.

In fact, if we choose q∈ [2,∞) large enough such that 1+ 2
q −δ<0, then

‖∇θ‖L∞ ≤
∑
j≥−1

‖∇Δjθ‖L∞ ≤
∑
j≥−1

2(1+
2
q )j‖Δjθ‖Lq

=
∑
j≥−1

2(1+
2
q−δ)j2δj‖Δjθ‖Lq ≤C‖θ‖Bδ

q,∞ <∞. (3.3)

The regularity of our solution on [0,T ] then follows from the regularity criteria that∫ T

0

‖∇θ(τ)‖L∞dτ <∞

implies the regularity on [0,T ]. This completes the proof of Theorem 1.3.

We now turn to the proof of Theorem 1.2.

Proof. (Proof of Theorem 1.2.) The main effort is devoted to showing that (1.5)
implies, for any t∈ [0,T ] and any q∈ [2,∞),

‖ω(t)‖Lq ≤C, ‖Λ1−βθ‖Lq ≤C, (3.4)

where C’s are constants depending on T and the initial data. In particular, (3.4) implies
that the velocity u obeys, for any 0<γ<1 and q∈ [2,∞) satisfying γ+ 2

q −1<0,

‖u‖Cγ = sup
j≥−1

2γj‖Δju‖L∞ ≤C ‖u‖L2 +sup
j≥0

2γj‖Δju‖L∞
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≤C‖u‖L2 +sup
j≥0

2(γ+
2
q )j‖Δju‖Lq

≤C‖u‖L2 +C sup
j≥0

2(γ+
2
q−1)j‖∇Δju‖Lq

≤C‖u‖L2 +C ‖ω‖Lq sup
j≥0

2(γ+
2
q−1)j

≤C(‖u‖L2 +‖ω‖Lq )<∞.

Thus, there holds the assumption in Theorem 1.3, namely

u∈L∞([0,T ];Cγ) for some γ >1−β.

Theorem 1.3 then yields Theorem 1.2. It then suffices to show Equation (3.4). To do
so, we form the equation for

Q=ω+Rβθ, Rβ =Λ−β∂x1
.

Combining the equation for ω and Rβθ, we have

∂tQ+u ·∇Q+ΛαQ=ΛαRβθ− [Rβ ,u ·∇]θ.

For q∈ [2,∞), performing the Lq-estimate on Q and using ∇·u=0, we have

d

dt
‖Q‖Lq ≤‖ΛαRβθ‖Lq +‖[Rβ ,u ·∇]θ‖Lq ,

or

‖Q(t)‖Lq ≤‖Q(0)‖Lq +‖ΛαRβθ‖L1
tL

q +‖[Rβ ,u ·∇]θ‖L1
tL

q .

As in the proof of Theorem 1.1, we apply Lemma 2.3 to bound ‖ΛαRβθ‖Lq . In fact, by
Lemma 2.3

∞∑
j=0

2βj‖ΔjΛ
1−βθ‖L1

tL
q ≤C(θ0)+C

∫ t

0

‖∇u(τ)‖Lq ‖θ(τ)‖B1−β
∞,1

dτ.

Consequently, for β≥α,

‖ΛαRβθ‖L1
tL

q ≤‖Rβθ‖L1
tL

q +‖ΛβRβθ‖L1
tL

q

≤‖Λ1−βθ‖L1
tL

q +

∞∑
j=−1

‖ΔjΛ
βRβθ‖L1

tL
q

≤‖Λ1−βθ‖L1
tL

q +Ct‖θ0‖Lq +

∞∑
j=0

2βj‖ΔjΛ
1−βθ‖L1

tL
q

≤‖Λ1−βθ‖L1
tL

q +C(T,θ0)+C

∫ t

0

‖∇u(τ)‖Lq ‖θ(τ)‖B1−β
∞,1

dτ.

By Equation (2.14) in Lemma 2.2,

‖[Rβ ,u ·∇]θ‖Lq ≤ C ‖∇u‖Lq ‖θ‖B1−β
∞,1

.

Therefore,

‖Q(t)‖Lq ≤C(T,u0,θ0)+‖Λ1−βθ‖L1
tL

q +C

∫ t

0

‖∇u(τ)‖Lq ‖θ(τ)‖B1−β
∞,1

dτ. (3.5)
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Now we consider the equation for Λ1−βθ,

∂tΛ
1−βθ+u ·∇Λ1−βθ+ΛβΛ1−βθ=−[Λ1−β ,u ·∇]θ.

Performing the Lq-estimate on Λ1−βθ and using ∇·u=0, we have

d

dt
‖Λ1−βθ‖Lq ≤ C ‖[Λ1−β ,u ·∇]θ‖Lq .

Applying Lemma 2.2 again yields

d

dt
‖Λ1−βθ‖Lq ≤ C ‖∇u‖Lq ‖θ‖B1−β

∞,1
.

Noticing that, for q∈ (1,∞),

‖∇u‖Lq ≤C ‖ω‖Lq ≤C (‖Q‖Lq +‖Λ1−βθ‖Lq ),

we have

‖Λ1−βθ(t)‖Lq ≤‖Λ1−βθ0‖Lq +C

∫ t

0

(‖Q‖Lq +‖Λ1−βθ‖Lq )‖θ(τ)‖B1−β
∞,1

dτ. (3.6)

Adding Equations (3.5) and (3.6) and applying Gronwall’s inequality yield, for any
t≤T ,

‖Q(t)‖Lq ≤C, ‖Λ1−βθ(t)‖Lq ≤C,

where C’s depend on T , u0, and θ0. Therefore,

‖ω(t)‖Lq ≤C.

This completes the proof of Theorem 1.2.

Appendix A. Functional spaces. This appendix provides the definition of the
Littlewood–Paley decomposition and the definition of Besov spaces. Some related facts
used in the previous sections are also included. The material presented in this appendix
can be found in several books and many papers (see, e.g., [4, 5, 32, 36,39]).

We start with several notational conventions. S denotes the usual Schwarz class
and S ′ its dual, the space of tempered distributions. To introduce the Littlewood–Paley
decomposition, we write for each j∈Z

Aj =
{
ξ∈Rd : 2j−1≤|ξ|<2j+1

}
.

The Littlewood–Paley decomposition asserts the existence of a sequence of functions
{Φj}j∈Z∈S such that

suppΦ̂j⊂Aj , Φ̂j(ξ)=Φ̂0(2
−jξ) or Φj(x)=2jdΦ0(2

jx),

and

∞∑
j=−∞

Φ̂j(ξ)=

{
1 , if ξ∈Rd \{0},
0 , if ξ=0.
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Therefore, for a general function ψ∈S, we have

∞∑
j=−∞

Φ̂j(ξ)ψ̂(ξ)= ψ̂(ξ) for ξ∈Rd \{0}.

We now choose Ψ∈S such that

Ψ̂(ξ)=1−
∞∑
j=0

Φ̂j(ξ), ξ∈Rd.

Then, for any ψ∈S,

Ψ∗ψ+
∞∑
j=0

Φj ∗ψ=ψ

and hence

Ψ∗f+
∞∑
j=0

Φj ∗f =f (A.1)

in S ′ for any f ∈S ′. To define the inhomogeneous Besov space, we set

Δjf =

⎧⎨⎩ 0, if j≤−2,
Ψ∗f, if j=−1,
Φj ∗f, if j=0,1,2, · · · .

(A.2)

Besides the Fourier localization operators Δj , the partial sum Sj is also a useful
notation. For an integer j,

Sj≡
j−1∑
k=−1

Δk,

For any f ∈S ′, the Fourier transform of Sjf is supported on the ball of radius 2j . It is
clear from Equation (A.1) that Sj→ Id as j→∞ in the distributional sense. In addition,

the notation Δ̃k, defined by

Δ̃k=Δk−1+Δk+Δk+1,

is also useful and has been used in the previous sections.

Definition A.1. The inhomogeneous Besov space Bs
p,q with s∈R and p,q∈ [1,∞]

consists of f ∈S ′ satisfying

‖f‖Bs
p,q
≡‖2js‖Δjf‖Lp‖lq <∞,

where Δjf is as defined in Equation (A.2).

Many frequently used function spaces are special cases of Besov spaces. The follow-
ing proposition lists some useful equivalence and embedding relations.

Proposition A.1. For any s∈R,
Hs∼Bs

2,2.
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For any s∈R and 1<q<∞,

Bs
q,min{q,2} ↪→W s

q ↪→Bs
q,max{q,2}.

For any non-integer s>0, the Hölder space Cs is equivalent to Bs
∞,∞.

Bernstein’s inequalities are useful tools in dealing with Fourier localized functions.
These inequalities trade integrability for derivatives. The following proposition provides
Bernstein type inequalities for fractional derivatives. The upper bounds also hold when
the fractional operators are replaced by partial derivatives.

Proposition A.2. Let α≥0. Let 1≤p≤ q≤∞.

1) If f satisfies

supp f̂ ⊂{ξ∈Rd : |ξ|≤K2j},
for some integer j and a constant K>0, then

‖(−Δ)αf‖Lq(Rd)≤C12
2αj+jd( 1

p− 1
q )‖f‖Lp(Rd).

2) If f satisfies

supp f̂ ⊂{ξ∈Rd : K12
j≤|ξ|≤K22

j}
for some integer j and constants 0<K1≤K2, then

C12
2αj‖f‖Lq(Rd)≤‖(−Δ)αf‖Lq(Rd)≤C22

2αj+jd( 1
p− 1

q )‖f‖Lp(Rd),

where C1 and C2 are constants depending on α, p, and q only.
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