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Abstract. The Hall-magnetohydrodynamics (Hall-MHD) equations, rigorously derived from kinetic models, are useful in
describing many physical phenomena in geophysics and astrophysics. This paper studies the local well-posedness of classical
solutions to the Hall-MHD equations with the magnetic diffusion given by a fractional Laplacian operator, (−Δ)α. Due
to the presence of the Hall term in the Hall-MHD equations, standard energy estimates appear to indicate that we need
α ≥ 1 in order to obtain the local well-posedness. This paper breaks the barrier and shows that the fractional Hall-MHD
equations are locally well-posed for any α > 1

2
. The approach here fully exploits the smoothing effects of the dissipation

and establishes the local bounds for the Sobolev norms through the Besov space techniques. The method presented here
may be applicable to similar situations involving other partial differential equations.
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1. Introduction

This paper focuses on the Hall-magnetohydrodynamics (Hall-MHD) equations with fractional magnetic
diffusion,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu + u · ∇u + ∇p = B · ∇B,

∂tB + u · ∇B + ∇ × ((∇ × B) × B) + (−Δ)αB = B · ∇u,

∇ · u = 0, ∇ · B = 0,

u(x, 0) = u0(x), B(x, 0) = B0(x),

(1.1)

where x ∈ R
d with d ≥ 2, u = u(x, t) and B = B(x, t) are vector fields representing the velocity and

the magnetic field, respectively, p = p(x, t) denotes the pressure, α > 0 is a parameter and the fractional
Laplacian (−Δ)α is defined through the Fourier transform,

̂(−Δ)αf(ξ) = |ξ|2α f̂(ξ).

For notational convenience, we also use Λ for (−Δ)
1
2 . The Hall-MHD equations with the usual Lapalcian

dissipation were derived in [1] from kinetic models. The Hall-MHD equations differ from the standard
incompressible MHD equations in the Hall term ∇ × ((∇ × B) × B), which is important in the study of
magnetic reconnection (see, e.g., [8,13]). The Hall-MHD equations have been mathematically investigated
in several works ([1,4–7]). Global weak solutions of (1.1) with both Δu and ΔB and local classical solutions
of (1.1) with ΔB (with or without Δu) were obtained in [4]. In addition, a blowup criterion and the global
existence of small classical solutions were also established in [4]. These results were later sharpened by
[5].

We examine the issue of whether or not (1.1) is locally well-posedness when the fractional power α < 1.
Previously local solutions of (1.1) were obtained for α = 1 ([4,5]). Standard energy estimates appear to
indicate that α ≥ 1 is necessary in order to obtain local bounds for the solutions in Sobolev spaces. This
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requirement comes from the estimates of the regularity-demanding Hall term ∇ × ((∇ × B) × B). To
understand more precisely the issue at hand, we perform a short energy estimate on the essential part of
the equation for B,

∂tB + ∇ × ((∇ × B) × B) + (−Δ)αB = 0.

The global L2-bound

‖B(t)‖2L2 + 2
∫ t

0

‖ΛαB(τ)‖2L2dτ = ‖B0‖2L2 (1.2)

follows from the simple fact
∫

∇ × ((∇ × B) × B) · B =
∫

((∇ × B) × B) · (∇ × B) = 0.

To obtain the H1-bound, we invoke the equation for ‖∇B‖2L2 ,

1
2

d

dt
‖∇B‖2L2 + ‖Λα∇B‖2L2 = −

d∑

i=1

∫

∂i∇ × ((∇ × B) × B) · ∂iB.

We can indeed shift one-derivative, namely
∫

∂i∇ × ((∇ × B) × B) · ∂iB =
∫

((∇ × B) × ∂iB) · ∂i∇ × B.

Hölder’s inequality allows us to conclude that

1
2

d

dt
‖∇B‖2L2 + ‖Λα∇B‖2L2 ≤ ‖∇B‖L2 ‖∇B‖L∞ ‖∇∇ × B‖L2 .

Therefore, it appears that we need α ≥ 1 in order to bound the term ‖∇∇ × B‖L2 on the right-hand
side. More generally, the energy inequality involving the Hσ-norm

1
2

d

dt
‖B‖2Hσ + ‖ΛαB‖2Hσ ≤ C ‖B‖Hσ ‖∇B‖L∞ ‖∇B‖Hσ .

also appears to demand that α ≥ 1 in order to bound ‖∇B‖Hσ .
This paper obtains the local existence and uniqueness of solutions to (1.1) with any α > 1

2 . More
precisely, we prove the following theorem.

Theorem 1.1. Consider (1.1) with α > 1
2 . Assume (u0, B0) ∈ Hσ(Rd) with σ > 1 + d

2 , and ∇ · u0 =
∇ · B0 = 0. Then there exist T0 = T0(‖(u0, B0)‖Hσ ) > 0 and a unique solution (u,B) of (1.1) on [0, T0]
such that

(u,B) ∈ L∞([0, T0];Hσ(Rd)).

In addition, for any σ′ < σ,

(u,B) ∈ C([0, T0];Hσ′
(Rd))

and ‖(u(t), B(t))‖Hσ is continuous from the right on [0, T0).

The essential idea of proving Theorem 1.1 is to fully exploit the dissipation in the equation for B and
estimate the Sobolev norm ‖(u,B)‖Hσ via Besov space techniques. We identify Hσ with the Besov space
Bσ

2,2 and suitably shift the derivatives in the nonlinear term. The definition of Besov spaces and related
facts used in this paper are provided in the appendix. The rest of this paper is divided into two sections
followed by an appendix. Section 2 states and proves the result for the local a priori bound. Section 3
presents the complete proof of Theorem 1.1. The appendix supplies the definitions of the Littlewood–Paley
decomposition and Besov spaces.
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2. Local A Priori Bound

This section establishes a local a priori bound for smooth solutions of (1.1), which is the key component
in the proof of Theorem 1.1. The result for the local a priori bound can be stated as follows.

Proposition 2.1. Consider (1.1) with α > 1
2 . Assume the initial data (u0, B0) ∈ Hσ(Rd) with σ > 1 + d

2 .
Let (u,B) be the corresponding solution. Then, there exists T0 = T0(‖(u0, B0)‖Hσ ) > 0 such that, for
t ∈ [0, T0],

‖(u(t), B(t))‖Hσ ≤ C(α, T0, ‖(u0, B0)‖Hσ )

and
∫ T0

0

‖ΛαB(s)‖2Hσ ds ≤ C(α, T0, ‖(u0, B0)‖Hσ ).

Proof of Proposition 2.1. The proof identifies the Sobolev space Hσ with the Besov space Bσ
2,2 and resorts

to Besov space techniques.
Let l ∈ Z be an integer and let Δl denote the homogeneous frequency localized operator. Applying

Δl to (1.1) yields

∂tΔlu + Δl(u · ∇u) + ∇Δlp = Δl(B · ∇B),

∂tΔlB + Δl(u · ∇B) + Δl∇ × ((∇ × B) × B) + (−Δ)αΔlB = Δl(B · ∇u).

Taking the inner product with (Δlu,ΔlB) and integrating by parts, we have

1
2

d

dt

(‖Δlu‖2L2 + ‖ΔlB‖2L2

)
+ C022αl‖ΔlB‖2L2 ≤ K1 + K2 + K3 + K4 + K5, (2.1)

where

K1 = −
∫

[Δl, u · ∇]u · Δlu, K2 = −
∫

[Δl, u · ∇]B · ΔlB,

K3 =
∫

[Δl, B · ∇]B · Δlu, K4 =
∫

[Δl, B · ∇]u · ΔlB,

K5 = −
∫

Δl∇ × ((∇ × B) × B) · ΔlB.

Note that we have used the standard commutator notation,

[Δl, u · ∇]u = Δl(u · ∇u) − u · ∇(Δlu)

and applied the lower bound, for a constant C0 > 0,
∫

ΔlB · (−Δ)αΔlB ≥ C022αl‖ΔlB‖2L2 .

Using the notion of paraproducts, we write

K1 = K11 + K12 + K13,

where

K11 =
∑

|k−l|≤2

∫

(Δl(Sk−1u · ∇Δku) − Sk−1u · ∇ΔlΔku) · Δlu,

K12 =
∑

|k−l|≤2

∫

(Δl(Δku · ∇Sk−1u) − Δku · ∇ΔlSk−1u) · Δlu,

K13 =
∑

k≥l−1

∫ (
Δl(Δku · ∇Δ̃ku) − Δku · ∇ΔlΔ̃ku

)
· Δlu
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with Δ̃k = Δk−1 + Δk + Δk+1. By Hölder’s inequality and a standard commutator estimate,

|K11| ≤ C ‖∇Sl−1u‖L∞ ‖Δlu‖L2

∑

|k−l|≤2

‖Δku‖L2

≤ C ‖∇u‖L∞ ‖Δlu‖L2

∑

|k−l|≤2

‖Δku‖L2 .

Since the summation over k for fixed l above consists of only a finite number of terms and, as we shall later
in the proof, the norm generated by each term is a multiple of that generated by the typical term, it suffices
to keep the typical term with k = l and ignore the summation. This would help keep our presentation
concise. We will invoke this practice throughout the rest of the paper. By Hölder’s inequality, K12 is
bounded by

|K12| ≤ C ‖∇u‖L∞ ‖Δlu‖2L2 .

By Hölder’s inequality and Bernstein’s inequality,

|K13| ≤ C ‖Δlu‖L2 ‖∇u‖L∞
∑

k≥l−1

2l−k ‖Δku‖L2 .

Therefore,

|K1| ≤ C ‖Δlu‖L2 ‖∇u‖L∞

⎛

⎝‖Δlu‖L2 +
∑

k≥l−1

2l−k ‖Δku‖L2

⎞

⎠ .

Similarly, K2, K3 and K4 are bounded by

|K2| ≤ C ‖∇u‖L∞ ‖ΔlB‖2L2 + C ‖∇B‖L∞ ‖Δlu‖L2‖ΔlB‖L2

+ C ‖∇u‖L∞ ‖ΔlB‖L2

∑

k≥l−1

2l−k ‖ΔkB‖L2 ,

|K3| ≤ C ‖∇B‖L∞ ‖Δlu‖L2

(

‖ΔlB‖L2 +
∑

k≥l−1

2l−k ‖ΔkB‖L2

)

,

|K4| ≤ C ‖∇B‖L∞ ‖Δlu‖L2 ‖ΔlB‖L2 + C ‖∇u‖L∞ ‖ΔlB‖2L2

+ C ‖∇u‖L∞ ‖ΔlB‖L2

∑

k≥l−1

2l−k ‖ΔkB‖L2 .

Using the cancelation property,

∫

B × Δl(∇ × B) · Δl(∇ × B) = 0,

we can rewrite K5 as

K5 =
∫

(Δl(B × (∇ × B)) − B × (Δl∇ × B)) · Δl∇ × B

=
∫

[Δl, B×](∇ × B) · Δl(∇ × B) = K51 + K52 + K53,
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where

K51 =
∑

|k−l|≤2

∫

(Δl(Sk−1B × (∇ × ΔkB)) − Sk−1B × (∇ × ΔlΔkB)) · Δl∇ × B,

K52 =
∑

|k−l|≤2

∫

(Δl(ΔkB × (∇ × Sk−1B)) − ΔkB × (∇ × ΔlSk−1B)) · Δl∇ × B,

K53 =
∑

k≥l−1

∫ (
Δl(ΔkB × (∇ × Δ̃kB)) − ΔkB × (∇ × ΔlΔ̃kB)

)
· Δl∇ × B.

By Hölder’s inequality and a standard commutator estimate,

|K51| ≤ C
∑

|k−l|≤2

‖∇Sk−1B‖L∞‖ΔkB‖L2‖Δl∇ × B‖L2

≤ C 2l ‖∇B‖L∞ ‖ΔlB‖2L2 .

By Hölder’s inequality,

|K52| ≤ C 2l ‖∇B‖L∞ ‖ΔlB‖2L2 .

By Hölder’s inequality and Bernstein’s inequality,

|K53| ≤ C 2l ‖∇B‖L∞ ‖ΔlB‖L2

∑

k≥l−1

‖ΔkB‖L2 .

Therefore,

|K5| ≤ C 2l ‖∇B‖L∞ ‖ΔlB‖L2

⎛

⎝‖ΔlB‖L2 +
∑

k≥l−1

‖ΔkB‖L2

⎞

⎠ .

Inserting the estimates above in (2.1), we obtain

d

dt

(‖Δlu‖2L2 + ‖ΔlB‖2L2

)
+ C022αl‖ΔlB‖2L2

≤ C ‖(∇u,∇B)‖L∞ (‖Δlu‖2L2 + ‖ΔlB‖2L2)

+ C ‖(∇u,∇B)‖L∞

⎡

⎢
⎣

⎛

⎝
∑

k≥l−1

2l−k ‖Δku‖L2

⎞

⎠

2

+

⎛

⎝
∑

k≥l−1

2l−k ‖ΔkB‖L2

⎞

⎠

2
⎤

⎥
⎦

+ C 2l‖∇B‖L∞ ‖ΔlB‖2L2 + C 2l‖∇B‖L∞ ‖ΔlB‖L2

∑

k≥l−1

‖ΔkB‖L2 .

Multiplying the inequality above by 22σl and summing over l ∈ Z, invoking the global bound for the
L2-norm of (u,B) and the equivalence of the norms

‖f‖2Hσ ∼ ‖f‖2L2 + ‖f‖2
Ḣσ ,
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we have

‖u(t)‖2Hσ + ‖B(t)‖2Hσ + C0

∫ t

0

‖ΛαB(τ)‖2Hσ dτ

≤ ‖u0‖2Hσ + ‖B0‖2Hσ + C

∫ t

0

‖(∇u,∇B)‖L∞ (‖u(τ)‖2
Ḣσ + ‖B(τ)‖2

Ḣσ ) dτ

+C
∑

l∈Z

2(2σ+1)l

∫ t

0

‖∇B‖L∞ ‖ΔlB‖2L2 dτ

+C
∑

l∈Z

2(2σ+1)l

∫ t

0

‖∇B‖L∞

⎛

⎝
∑

k≥l−1

‖ΔkB‖L2

⎞

⎠

2

dτ. (2.2)

To derive the inequality above, we have used Young’s inequality for series convolution

∑

l∈Z

22σl

⎛

⎝
∑

k≥l−1

2l−k ‖Δku‖L2

⎞

⎠

2

=
∑

l∈Z

⎛

⎝
∑

k≥l−1

2(σ+1)(l−k) 2σk‖Δku‖L2

⎞

⎠

2

≤ C
∑

l∈Z

22σl‖Δlu‖2L2 ≤ C ‖u‖2
Ḣσ .

We further bound the last two terms in (2.2),

L1 ≡ C
∑

l∈Z

2(2σ+1)l

∫ t

0

‖∇B‖L∞ ‖ΔlB‖2L2 dτ,

L2 ≡ C
∑

l∈Z

2(2σ+1)l

∫ t

0

‖∇B‖L∞

⎛

⎝
∑

k≥l−1

‖ΔkB‖L2

⎞

⎠

2

dτ.

Set θ = 1 − 1
2α . For α > 1

2 , θ ∈ (0, 1). By Hölder’s inequality,

L1 = C

∫ t

0

‖∇B‖L∞
∑

l∈Z

(
22σl‖ΔlB‖2L2

)θ
(
22(σ+α)l ‖ΔlB‖2L2

)(1−θ)

dτ

≤ C

∫ t

0

‖∇B‖L∞

(
∑

l∈Z

22σl‖ΔlB‖2L2

)θ (
∑

l∈Z

22(σ+α)l ‖ΔlB‖2L2

)(1−θ)

dτ

≤ C

∫ t

0

‖∇B‖ 1
θ

L∞‖B‖2
Ḣσ dτ +

C0

4

∫ t

0

‖B(τ)‖2
Ḣσ+α dτ.

By Young’s inequality for series convolution and an interpolation inequality,

L2 = C

∫ t

0

‖∇B‖L∞
∑

l∈Z

⎛

⎝
∑

k≥l−1

2(l−k)(σ+ 1
2 ) 2(σ+

1
2 )k‖ΔkB‖L2

⎞

⎠

2

dτ

≤ C

∫ t

0

‖∇B‖L∞ ‖B‖2
Ḣσ+1

2
dτ ≤ C

∫ t

0

‖∇B‖L∞ ‖B‖2θ
Ḣσ ‖B‖2(1−θ)

Ḣσ+α
dτ

≤ C

∫ t

0

‖∇B‖ 1
θ

L∞‖B‖2
Ḣσ dτ +

C0

4

∫ t

0

‖B(τ)‖2
Ḣσ+α dτ.

Inserting the estimates above in (2.2) and invoking the embedding inequalities

‖∇B‖L∞ ≤ C ‖B‖Hσ for σ > 1 + d
2 ,
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we have

‖u(t)‖2Hσ + ‖B(t)‖2Hσ + C0

∫ t

0

‖B(τ)‖2
Ḣσ+α dτ

≤ ‖u0‖2Hσ + ‖B0‖2Hσ + C

∫ t

0

(‖u(t)‖2Hσ + ‖B(t)‖2Hσ

)γ
dτ, (2.3)

for a constant γ > 1. This inequality implies a local bound for ‖u(t)‖2Hσ + ‖B(t)‖2Hσ , namely for some
T0 = T0(‖(u0, B0)‖Hσ ) > 0 such that, for t ∈ [0, T0],

‖u(t)‖Hσ + ‖B(t)‖Hσ ≤ C(u0, B0, α, T0)

and
∫ T0

0

‖B(τ)‖2Hσ+α dτ < ∞. (2.4)

This completes the proof of Proposition 2.1. �

3. Local Existence and Uniqueness

This section proves Theorem 1.1.

Proof of Theorem 1.1. The local existence and uniqueness can be obtained through an approximation
procedure. Here we use the Friedrichs method, a smoothing approach through filtering the high frequen-
cies. For each positive integer n, we define

Ĵnf(ξ) = χBn
(ξ) f̂(ξ),

where Bn denotes the closed ball of radius n centered at 0 and χBn
denotes the characteristic functions

on Bn. Denote

Hσ
n ≡

{
f ∈ Hσ(Rd), suppf̂ ⊂ Bn

}
.

We seek a solution (u,B) ∈ Hσ
n satisfying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu + JnP(JnPu · ∇JnPu) = JnP(JnPB · ∇JnPB),
∂tB + JnP(JnPu · ∇JnPB) + JnP(∇ × ((∇ × JnPB) × JnPB))

+(−Δ)αJnPB = JnP(JnPB · ∇JnPu),
u(x, 0) = (Jnu0)(x), B(x, 0) = (JnB0)(x),

(3.1)

where P denotes the projection onto divergence-free vector fields.
For each fixed n ≥ 1, it is not very hard, although tedious, to verify that the right-hand side of (3.1)

satisfies the Lipschitz condition in Hσ
n and, by Picard’s theorem, (3.1) has a unique global (in time)

solution. The uniqueness implies that

JnPu = u, JnPB = B

and ensures the divergence-free conditions ∇ · u = 0 and ∇ · B = 0. Then, (3.1) is simplified to
{

∂tu + JnP(u · ∇u) = JnP(B · ∇B),
∂tB + JnP(u · ∇B) + JnP(∇ × ((∇ × B) × B)) + (−Δ)αB = JnP(B · ∇u).

We denote this solution by (un, Bn). As in the proof of Proposition 2.1, we can show that (un, Bn)
satisfies

‖(un, Bn)‖2Hσ ≤ ‖(un
0 , Bn

0 )‖2Hσ + C

∫ t

0

‖(un(s), Bn(s))‖2γ
Hσ ds (3.2)
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for some γ > 1. Due to ‖(un
0 , Bn

0 )‖Hσ ≤ ‖(u0, B0)‖Hσ , this inequality is uniform in n. This allows us to
obtain a uniform local bound

sup
t∈[0,T0]

‖(un(t), Bn(t))‖Hσ ≤ M(α, T0, ‖(u0, B0)‖Hσ ). (3.3)

As in (2.4), we also have the uniform local bound for the time integral
∫ T0

0

‖(ΛαBn)(s)‖2Hσ ds ≤ M(α, T0, ‖(u0, B0)‖Hσ ).

Furthermore, these uniform bounds allow us to show that

‖(un, Bn) − (um, Bm)‖L2 → 0 as n,m → ∞. (3.4)

This is shown through standard energy estimates for ‖(un, Bn)−(um, Bm)‖L2 . The process involves many
terms, but most of them can be handled in a standard fashion (see, e.g., [9, p. 107]). We provide the
detailed energy estimate for the term that is special here, namely the Hall term ∇ × ((∇ × B) × B). In
the process of the energy estimates, we need to bound the term

∫

(∇ × ((∇ × Bn) × Bn) − ∇ × ((∇ × Bm) × Bm)) · (Bn − Bm) dx

=
∫

(∇ × ((∇ × (Bn − Bm)) × Bn)) · (Bn − Bm) dx

+
∫

(∇ × ((∇ × Bm) × (Bn − Bm)) · (Bn − Bm) dx. (3.5)

The first term on the right-hand side of (3.5) is zero,
∫

(∇ × ((∇ × (Bn − Bm)) × Bn)) · (Bn − Bm) dx

=
∫

((∇ × (Bn − Bm)) × Bn) · (∇ × (Bn − Bm)) dx = 0.

For the second term on the right of (3.5), by the simple vector identity

∇ × ((∇ × Bm) × (Bn − Bm))

= (Bn − Bm) · ∇(∇ × Bm) − (∇ × Bm) · ∇(Bn − Bm),

we have
∣
∣
∣
∣

∫

(∇ × ((∇ × Bm) × (Bn − Bm)) · (Bn − Bm) dx

∣
∣
∣
∣

≤ ‖∇(∇ × Bm)‖
L

d
α

‖Bn − Bm‖
L

2d
d−2α

‖Bn − Bm‖L2

≤ C‖ΛαBm‖2Hσ‖Bn − Bm‖2L2 +
1
8
‖Λα(Bn − Bm)‖2L2 ,

where we have used

‖∇2f‖
L

d
α

≤ C‖Λαf‖Hσ , ‖f‖
L

2d
d−2α

≤ C‖Λαf‖L2 .

Putting together the estimates for all the terms, we obtain

d

dt
‖Bn − Bm‖2L2 ≤ C‖ΛαBm‖2Hσ‖Bn − Bm‖2L2 + C

(
1
n

+
1
m

)

.

Noticing that ‖ΛαBm‖2Hσ is time integrable, Gronwall’s inequality yields the desired convergence (3.4).
Let (u,B) be the limit. Due to the uniform bound (3.3), (u,B) ∈ Hσ for t ∈ [0, T0]. By the interpolation
inequality, for any 0 < σ′ < σ,

‖f‖Hσ′ ≤ Cσ ‖f‖1− σ′
σ

L2 ‖f‖σ′
σ

Hσ ,
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we further obtain the strong convergence

‖(un, Bn) − (u,B)‖Hσ′ → 0 as n → ∞
and consequently, (u,B) ∈ C([0, T0];Hσ′

). This strong convergence makes it easy to check that (u,B)
satisfies the Hall-MHD equation in (1.1). In addition, the time continuity in (u,B) ∈ C([0, T0];Hσ′

)
allows to show the weak time continuity

(u,B) ∈ CW ([0, T0];Hσ) or t �→
∫

(u(x, t), B(x, t)) · φ(x) dx is continuous

for any φ ∈ H−σ. To show the right (in time) continuity of ‖(u(t), B(t))‖Hσ , we make use of the energy
inequality, for any t > t̃,

‖(u(t), B(t))‖2Hσ ≤‖(u(t̃), B(t̃))‖2Hσ + C

∫ t

t̃

‖(u(s), B(s))‖γ
H2σ ds,

This inequality can be obtained in a similar fashion as (3.2). Then,

lim
t→t̃+

‖(u(t), B(t))‖Hσ ≤ ‖(u(t̃), B(t̃))‖Hσ .

By the weak continuity in time,

‖(u(t̃), B(t̃))‖Hσ ≤ lim
t→t̃+

‖(u(t), B(t))‖Hσ .

The desired right (in time) continuity of ‖(u(t), B(t))‖Hσ then follows. This completes the proof of
Theorem 1.1. �

Appendix A. Besov Spaces

This appendix provides the definitions of some of the functional spaces and related facts used in the
previous sections. Materials presented in this appendix can be found in several books and many papers
(see, e.g., [2,3,10–12]).

We start with several notations. S denotes the usual Schwartz class and S ′ its dual, the space of
tempered distributions. S0 denotes a subspace of S defined by

S0 =
{

φ ∈ S :
∫

Rd

φ(x)xγ dx = 0, |γ| = 0, 1, 2, . . .

}

and S ′
0 denotes its dual. S ′

0 can be identified as

S ′
0 = S ′/S⊥

0 = S ′/P
where P denotes the space of multinomials.

To introduce the Littlewood–Paley decomposition, we write for each j ∈ Z

Aj =
{
ξ ∈ R

d : 2j−1 ≤ |ξ| < 2j+1
}

.

The Littlewood–Paley decomposition asserts the existence of a sequence of functions {Φj}j∈Z ⊂ S such
that

suppΦ̂j ⊂ Aj , Φ̂j(ξ) = Φ̂0(2−jξ) or Φj(x) = 2jdΦ0(2jx),

and
∞∑

j=−∞
Φ̂j(ξ) =

{
1 , if ξ ∈ R

d\{0},
0 , if ξ = 0.

Therefore, for a general function ψ ∈ S, we have
∞∑

j=−∞
Φ̂j(ξ)ψ̂(ξ) = ψ̂(ξ) for ξ ∈ R

d\{0}.
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In addition, if ψ ∈ S0, then
∞∑

j=−∞
Φ̂j(ξ)ψ̂(ξ) = ψ̂(ξ) for any ξ ∈ R

d.

That is, for ψ ∈ S0,
∞∑

j=−∞
Φj ∗ ψ = ψ

and hence
∞∑

j=−∞
Φj ∗ f = f, f ∈ S ′

0

in the sense of weak-∗ topology of S ′
0. For notational convenience, we define

Δ̊jf = Φj ∗ f, j ∈ Z. (A.1)

Definition A.1. For s ∈ R and 1 ≤ p, q ≤ ∞, the homogeneous Besov space Ḃs
p,q consists of f ∈ S ′

0

satisfying

‖f‖Ḃs
p,q

≡ ‖2js‖Δ̊jf‖Lp‖lq < ∞.

We now choose Ψ ∈ S such that

Ψ̂(ξ) = 1 −
∞∑

j=0

Φ̂j(ξ), ξ ∈ R
d.

Then, for any ψ ∈ S,

Ψ ∗ ψ +
∞∑

j=0

Φj ∗ ψ = ψ

and hence

Ψ ∗ f +
∞∑

j=0

Φj ∗ f = f

in S ′ for any f ∈ S ′. To define the inhomogeneous Besov space, we set

Δjf =

⎧
⎨

⎩

0, if j ≤ −2,
Ψ ∗ f, if j = −1,
Φj ∗ f, if j = 0, 1, 2, . . . .

(A.2)

Definition A.2. The inhomogeneous Besov space Bs
p,q with 1 ≤ p, q ≤ ∞ and s ∈ R consists of functions

f ∈ S ′ satisfying

‖f‖Bs
p,q

≡ ‖2js‖Δjf‖Lp‖lq < ∞.

The Besov spaces Ḃs
p,q and Bs

p,q with s ∈ (0, 1) and 1 ≤ p, q ≤ ∞ can be equivalently defined by the
norms

‖f‖Ḃs
p,q

=
(∫

Rd

(‖f(x + t) − f(x)‖Lp)q

|t|d+sq
dt

)1/q

,

‖f‖Bs
p,q

= ‖f‖Lp +
(∫

Rd

(‖f(x + t) − f(x)‖Lp)q

|t|d+sq
dt

)1/q

.

When q = ∞, the expressions are interpreted in the normal way.
Many frequently used function spaces are special cases of Besov spaces. The following proposition lists

some useful equivalence and embedding relations.
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Proposition A.3. For any s ∈ R,

Ḣs ∼ Ḃs
2,2, Hs ∼ Bs

2,2.

For any s ∈ R and 1 < q < ∞,

Ḃs
q,min{q,2} ↪→ Ẇ s

q ↪→ Ḃs
q,max{q,2}.

In particular, Ḃ0
q,min{q,2} ↪→ Lq ↪→ Ḃ0

q,max{q,2}.

For notational convenience, we write Δj for Δ̊j . There will be no confusion if we keep in mind that
Δj ’s associated with the homogeneous Besov spaces is defined in (A.1) while those associated with the
inhomogeneous Besov spaces are defined in (A.2). Besides the Fourier localization operators Δj , the
partial sum Sj is also a useful notation. For an integer j,

Sj ≡
j−1∑

k=−1

Δk,

where Δk is given by (A.2). For any f ∈ S ′, the Fourier transform of Sjf is supported on the ball of
radius 2j .

Bernstein’s inequalities are useful tools in dealing with Fourier localized functions and these inequalities
trade integrability for derivatives. The following proposition provides Bernstein type inequalities for
fractional derivatives.

Proposition A.4. Let α ≥ 0. Let 1 ≤ p ≤ q ≤ ∞.
(1) If f satisfies

supp f̂ ⊂ {ξ ∈ R
d : |ξ| ≤ K2j},

for some integer j and a constant K > 0, then

‖(−Δ)αf‖Lq(Rd) ≤ C1 22αj+jd( 1
p − 1

q )‖f‖Lp(Rd).

(2) If f satisfies
supp f̂ ⊂ {ξ ∈ R

d : K12j ≤ |ξ| ≤ K22j}
for some integer j and constants 0 < K1 ≤ K2, then

C1 22αj‖f‖Lq(Rd) ≤ ‖(−Δ)αf‖Lq(Rd) ≤ C2 22αj+jd( 1
p − 1

q )‖f‖Lp(Rd),

where C1 and C2 are constants depending on α, p and q only.
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