Notes on the Subposet Lattice

All our posets are on the ground set [n], and are naturally labeled (meaning $1 < 2 < \cdots < n$ is always an order completion). For a poset P, let $R(P) = \{(i, j) \in [n]^2 : i <_P j\}$. Note that, since P is naturally labeled, $(i, j) \in R(P) \Rightarrow i < j$. The subposet lattice of P, which we denote N(P), has ground set $\{Q : R(Q) \subseteq R(P)\}$ with order relation $Q <_{N(P)} Q'$ whenever $R(Q) \subseteq R(Q')$.

Definition 0.1. Let *P* be a graded poset of rank *r*. An EL-labeling of the Hasse diagram of *P* is an S_r -EL-labeling if every maximal chain of *P* is labeled with a permutation of the set [r].

Theorem 0.2. (MacNamara) If P has an S_r -EL-labeling, it is a supersolvable lattice.

Let *C* be the *n*-element chain (note that $R(C) = \{(i, j) : i < j\}$). We construct an S_n -EL-labeling of N(C), which is simply the lattice of naturally labeled posets on [n]. Order the relations in R(C) by (i, j) < (k, l) if either i < k or i = k and j > l. For example, the ordering in the case n = 4 is:

$$(1,4) < (1,3) < (1,2) < (2,4) < (2,3) < (3,4)$$

Lemma 0.3. Let P < Q in N(C), and let (i, j) be the largest relation in $R(Q) \setminus R(P)$. Then there is a poset Q' such that $R(Q') = R(Q) \setminus (i, j)$.

Proof. Let Q' be the smallest poset containing the relations $R(Q) \setminus (i, j)$. Failure of the lemma would imply that Q' = Q, meaning that the relation (i, j) is implied by two relations $(i, k), (k, j) \in R(Q)$. If both these relations are in R(P), then $(i, j) \in R(P)$, contradicting our assumption that $(i, j) \in R(Q) \setminus R(P)$. Otherwise, one of (i, k) or (k, j) belongs to $R(Q) \setminus R(P)$. Since i < k < j, each of these relations is later in our ordering than (i, j), which is a contradiction.

Corollary 0.4. (to a lemma?!) If P and Q are posets with $R(P) \subseteq R(Q)$, then Q covers P if and only if |R(P)| = |R(Q)| - 1. Thus N(C) (and hence N(P) for any P) is ranked, where the rank of P is |R(P)|.

Theorem 0.5. Labeling each cover $P \prec Q$ with the unique relation in $R(Q) \setminus R(P)$ gives an $S_{\binom{n}{2}}$ -EL-labeling on N(C).

Proof. Let P < Q be an interval in N(C). Let $P \prec P_1 \prec P_2 \prec \cdots \prec P_t = Q$ by the saturated chain defined as follows. If (i, j) is the largest relation in $R(P_k) \setminus R(P)$, let P_{k-1} be the poset such that $R(P_{k-1}) = R(P_k) \setminus (i, j)$ (the existence of P_{k-1} is guaranteed by Lemma 0.3). The label of this saturated chain is clearly increasing. Since any saturated chain between P and Q must be labeled with a permutation of the set $R(Q) \setminus R(P)$, it follows that this increasing chain is unique.

Corollary 0.6. For any *P*, the labeling constructed above is an $S_{|R(P)|}$ -EL-labeling of N(P).

Corollary 0.7. The lattice N(P) is supersolvable.

We write $\Delta(N(P))$ to denote the order complex of the proper part of N(P), for any poset *P*.

Proposition 0.8. For a poset P, $\Delta(N(P))$ is contractible if and only if ht(P) > 1.

Proof. Let *P* be a poset with $ht(P) \leq 1$. Then no two relations in R(P) imply a third, meaning every subset $X \subseteq R(P)$ is the set of relations of some poset, and so N(P) is the Boolean lattice $B_{|R(P)|}$, meaning $\Delta(N(P))$ is the boundary of the (|R(P)| - 1)-dimensional simplex.

Now let *P* be a poset with ht(P) > 1. Then there exist relations $(i, j), (j, k), (i, k) \in R(P)$. Suppose $\hat{0} \prec P_1 \prec P_2 \prec \cdots \prec P_{|R(P)|} = P$ is a maximal chain of N(P) with decreasing label. The relations (j, k) and (i, j) must precede (i, k) in the label of this chain, meaning some P_t contains the relations (i, j) and (j, k) but not (i, k), which is a contradiction. Thus N(P) has no decreasing chains, and $\Delta(N(P))$ is contractible.

Corollary 0.9. For a poset P,

$$\mu(\hat{0},P) := \left\{ \begin{array}{ll} (-1)^{|R(P)|} & \quad \textit{if } ht(P) \leq 1 \\ 0 & \quad \textit{if } ht(P) > 1 \end{array} \right.$$

Definition 0.10. For n > 0, let \mathcal{P}_n denote the lattice of all posets on the ground set [n], ordered by $P <_{\mathcal{P}_n} Q$ whenever $R(P) \subseteq R(Q)$. We affix a unique maximal element $\hat{1}$ to \mathcal{P}_n .

In (Björner, Edelman, and Welker), a nerve construction is employed to show that the order complex $\Delta(\mathcal{P}_n)$ is homotopy equivalent to the (n-2)-sphere, meaning that Möbius function μ of \mathcal{P}_n satisfies $\mu(\hat{0}, \hat{1}) = (-1)^{n-2}$. This can also be proven combinatorially, since Corollary 0.9 implies the following.

$$\mu(\hat{0},\hat{1}) = -\sum_{P} (-1)^{|R(P)|}$$

where the sum is taken over all posets on [n] of height ≤ 1 .