Notes on the Subposet Lattice

All our posets are on the ground set [n], and are naturally labeled (meaning $1<2<\cdots<n$ is always an order completion). For a poset P, let $R(P)=\{(i, j) \in$ $\left.[n]^{2}: i<_{P} j\right\}$. Note that, since P is naturally labeled, $(i, j) \in R(P) \Rightarrow i<j$. The subposet lattice of P, which we denote $N(P)$, has ground set $\{Q: R(Q) \subseteq R(P)\}$ with order relation $Q<_{N(P)} Q^{\prime}$ whenever $R(Q) \subseteq R\left(Q^{\prime}\right)$.

Definition 0.1. Let P be a graded poset of rank r. An EL-labeling of the Hasse diagram of P is an S_{r}-EL-labeling if every maximal chain of P is labeled with a permutation of the set $[r]$.

Theorem 0.2. (MacNamara) If P has an S_{r}-EL-labeling, it is a supersolvable lattice.
Let C be the n-element chain (note that $R(C)=\{(i, j): i<j\}$). We construct an S_{n}-EL-labeling of $N(C)$, which is simply the lattice of naturally labeled posets on [n]. Order the relations in $R(C)$ by $(i, j)<(k, l)$ if either $i<k$ or $i=k$ and $j>l$. For example, the ordering in the case $n=4$ is:

$$
(1,4)<(1,3)<(1,2)<(2,4)<(2,3)<(3,4)
$$

Lemma 0.3. Let $P<Q$ in $N(C)$, and let (i, j) be the largest relation in $R(Q) \backslash R(P)$. Then there is a poset Q^{\prime} such that $R\left(Q^{\prime}\right)=R(Q) \backslash(i, j)$.

Proof. Let Q^{\prime} be the smallest poset containing the relations $R(Q) \backslash(i, j)$. Failure of the lemma would imply that $Q^{\prime}=Q$, meaning that the relation (i, j) is implied by two relations $(i, k),(k, j) \in R(Q)$. If both these relations are in $R(P)$, then $(i, j) \in R(P)$, contradicting our assumption that $(i, j) \in R(Q) \backslash R(P)$. Otherwise, one of (i, k) or (k, j) belongs to $R(Q) \backslash R(P)$. Since $i<k<j$, each of these relations is later in our ordering than (i, j), which is a contradiction.

Corollary 0.4. (to a lemma?!) If P and Q are posets with $R(P) \subseteq R(Q)$, then Q covers P if and only if $|R(P)|=|R(Q)|-1$. Thus $N(C)$ (and hence $N(P)$ for any P) is ranked, where the rank of P is $|R(P)|$.

Theorem 0.5. Labeling each cover $P \prec Q$ with the unique relation in $R(Q) \backslash R(P)$ gives an $S_{\binom{n}{2}}$-EL-labeling on $N(C)$.

Proof. Let $P<Q$ be an interval in $N(C)$. Let $P \prec P_{1} \prec P_{2} \prec \cdots \prec P_{t}=Q$ by the saturated chain defined as follows. If (i, j) is the largest relation in $R\left(P_{k}\right) \backslash R(P)$, let P_{k-1} be the poset such that $R\left(P_{k-1}\right)=R\left(P_{k}\right) \backslash(i, j)$ (the existence of P_{k-1} is guaranteed by Lemma 0.3. The label of this saturated chain is clearly increasing. Since any saturated chain between P and Q must be labeled with a permutation of the set $R(Q) \backslash R(P)$, it follows that this increasing chain is unique.

Corollary 0.6. For any P, the labeling constructed above is an $S_{|R(P)|}$-EL-labeling of $N(P)$.

Corollary 0.7. The lattice $N(P)$ is supersolvable.
We write $\Delta(N(P))$ to denote the order complex of the proper part of $N(P)$, for any poset P.

Proposition 0.8. For a poset $P, \Delta(N(P))$ is contractible if and only if $h t(P)>1$.
Proof. Let P be a poset with $h t(P) \leq 1$. Then no two relations in $R(P)$ imply a third, meaning every subset $X \subseteq R(P)$ is the set of relations of some poset, and so $N(P)$ is the Boolean lattice $B_{|R(P)|}$, meaning $\Delta(N(P))$ is the boundary of the $(|R(P)|-1)$-dimensional simplex.

Now let P be a poset with $h t(P)>1$. Then there exist relations $(i, j),(j, k),(i, k) \in$ $R(P)$. Suppose $\hat{0} \prec P_{1} \prec P_{2} \prec \cdots \prec P_{|R(P)|}=P$ is a maximal chain of $N(P)$ with decreasing label. The relations (j, k) and (i, j) must precede (i, k) in the label of this chain, meaning some P_{t} contains the relations (i, j) and (j, k) but not (i, k), which is a contradiction. Thus $N(P)$ has no decreasing chains, and $\Delta(N(P))$ is contractible.

Corollary 0.9. For a poset P,

$$
\mu(\hat{0}, P):= \begin{cases}(-1)^{|R(P)|} & \text { if } h t(P) \leq 1 \\ 0 & \text { if } h t(P)>1\end{cases}
$$

Definition 0.10. For $n>0$, let \mathcal{P}_{n} denote the lattice of all posets on the ground set [n], ordered by $P<\mathcal{P}_{n} Q$ whenever $R(P) \subseteq R(Q)$. We affix a unique maximal element $\hat{1}$ to \mathcal{P}_{n}.

In (Björner, Edelman, and Welker), a nerve construction is employed to show that the order complex $\Delta\left(\mathcal{P}_{n}\right)$ is homotopy equivalent to the $(n-2)$-sphere, meaning that Möbius function μ of \mathcal{P}_{n} satisfies $\mu(\hat{0}, \hat{1})=(-1)^{n-2}$. This can also be proven combinatorially, since Corollary 0.9 implies the following.

$$
\mu(\hat{0}, \hat{1})=-\sum_{P}(-1)^{|R(P)|}
$$

where the sum is taken over all posets on $[n]$ of height ≤ 1.

