
LECTURE 17

Green’s Identities and Green’s Functions

Let us recall The Divergence Theorem in n-dimensions.

Theorem 17.1. Let F : Rn → Rn be a vector field over Rn that is of class C1 on some closed, connected,
simply connected n-dimensional region D ⊂ Rn. Then∫

D

∇ · F dV =
∫
∂D

F · n dS

where ∂D is the boundary of D and n(r) is the unit vector that is (outward) normal to the surface ∂D at
the point r ∈ ∂D.

As a special case of Stokes’ theorem, we may set

(1) F = ∇φ

with φ a C2 function on D. We then obtain

(2)
∫
D

∇2φ dV =
∫
∂D

∇φ · dS .

Another special case of Stokes’ theorem comes from the choice

(3) F = φ∇ψ .

For this case, Stokes’ theorem says

(4)
∫
D

∇ · (φ∇ψ) dV =
∫
∂D

φ∇ψ · ndS .

Using the identity

(5) ∇ · (φF) = ∇φ · F + φ∇ · F
we find (4) is equivalent to

(6)
∫
D

∇φ ·∇ψ dV +
∫
D

φ∇2ψ dV =
∫
∂D

φ∇ψ · n dS .

Equation (6) is known as Green’s first identity.

Reversing the roles of φ and ψ in (6) we obtain

(7)
∫
D

∇ψ ·∇φdV +
∫
D

ψ∇2φdV =
∫
∂D

ψ∇φ · n dS .

Finally, subtracting (7) from (6) we get

(8)
∫
D

(
φ∇2ψ − ψ∇2φ

)
dV =

∫
∂D

(φ∇ψ − ψ∇φ) · n dS .

Equation (8) is known as Green’s second identity.

Now set
ψ(r) =

1
|r− ro|+ ε
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and insert this expression into (8). We then get∫
D

φ

(
∇2 1
|r− ro|+ ε

)
dV =

∫
D

1
|r− ro|+ ε

∇2φdV

+
∫
∂D

(
1

|r− ro|+ ε
∇φ− φ

(
∇ 1
|r− ro|+ ε

)
· ndS

)
.

Taking the limit ε→ 0 and using the identities

lim
ε→0
∇2 1
|r− ro|+ ε

= −4πδn (r− ro)

lim
ε→0

1
|r− ro|+ ε

=
1

|r− ro|

lim
ε→0
∇ 1
|r− ro|+ ε

= ∇ 1
|r− ro|

we obtain

(9)
−4πφ (ro) =

∫
D

1
|r−ro|∇

2φdV

+
∫
∂D

(
1

|r−ro|∇φ− φ
(
∇ 1
|r−ro|

)
· ndS

) .

Equation (9) is known as Green’s third identity.

Notice that if φ satisfies Laplace’s equation the first term on the right hand side vanishes and so we have

(10)
φ (ro) = −1

4π

∫
∂D

(
1

|r−ro|∇φ− φ
(
∇ 1
|r−ro|

)
· ndS

)
= 1

4π

∫
∂D

(
φ ∂
∂n

1
r−ro

− 1
|r−ro|

∂φ
∂n

)
dS .

Here ∂
∂n is the directional derivative corresponding to the surface normal vector n. Thus, if φ satisfies

Laplace’s equation in D then its value at any point ro ∈ D is completely determined by the values of φ and
∂φ
∂n on the boundary of D.
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1. Green’s Functions and Solutions of Laplace’s Equation, II

Recall the fundamental solutions of Laplace’s equation in n-dimensions

(11) Φn (r, ψ, θ1, . . . , θn−2) =
{

log |r| , if n = 2
1

rn−2 , if n > 2 .

Each of these solutions really only makes sense in the region Rn−O; for each possesses a singularity at the
origin.

We studied the case when n = 3, a little more closely and found that we could actually write

(12) ∇2

(
1
r

)
= −4πδ3 (r) =

{
0 , if r 6= 0
∞ , if r = 0

In fact, using similar arguments one can show that

(13) ∇2Φ(r) = −cnδn (r)

where cn is the surface area of the unit sphere in Rn. Thus, the fundamental solutions can actually be
regarded as solutions of an inhomogeneous Laplace equation where the driving function is concentrated
at a single point.

Let us now set n = 3 and consider the following PDE/BVP

(14) ∇2Φ(r) = f(r) , r ∈ D
Φ(r)|∂D = h(r)|∂D

where D is some closed, connected, simply connected region in R3. Let ro be some fixed point in D and set

(15) G (r, ro) =
−1

4π |r− ro|
+ φo(r, ro)

where φo(r, ro) is some solution of the homogeneous Laplace equation

(16) ∇2φo(r, ro) = 0 .

Then

(17) ∇2G (r, ro) = δ3 (r− ro) .

Now recall Green’s third identity

(18)
∫
D

(
Φ∇2Ψ−Ψ∇2Φ

)
dV =

∫
∂D

(Φ∇Ψ−Ψ∇Φ) · n dS .

If we replace ψ in (18) by G (r, ro) we get

(19)

Φ (ro) =
∫
D

Φ(r)δ3 (r− ro) dV
=

∫
D

Φ∇2GdV
=

∫
D
G∇2Φ dV +

∫
∂D

(Φ∇G−G∇Φ) · n dS
=

∫
D
Gf dV +

∫
∂D

(
h∂G∂n −G

∂Φ
∂n

)
dS

=
∫
D
Gf dV +

∫
∂D

h∂G∂n dS −
∫
∂D

G∂Φ
∂n dS .

Up to this point we have only required that the function φo satisfies Laplace’s equation. We will now make
our choice of φo more particular; we shall choose φo(r, ro) to be the unique solution of Laplace’s equation
in D satisfying the boundary condition

(20)
1

4π |r− ro|

∣∣∣∣
∂D

= φo(r, ro)|∂D

so that
G (r, ro)|∂D = 0 .
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Then the last integral on the right hand side of (19) vanishes and so we have

(21) Φ (ro) =
∫
D

G(r, ro)f(r) dV +
∫
∂D

h(r)
∂G

∂n
(r, ro) dS .

Thus, once we find a solution φo (r, ro) to the homogenenous Laplace equation satisfying the boundary
condition (21), we have a closed formula for the solution of the PDE/BVP (14) in terms of integrals of
G (r, ro) times the driving function f(r), and of ∂G

∂n (r, ro) times the function h(r) describing the boundary
conditions on Φ. Note that the Green’s function G (r, ro) is fixed once we fix φo which in turn depends only
on the nature of the boundary of the region D (through condition (20)).

Example

Let us find the Green’s function corresponding to the interior of sphere of radius R centered about the
origin. We seek to find a solution of φo of the homogenous Laplace’s equation such that (20) is satisfied.
This is accomplished by the following trick.

Suppose Φ (r, ψ, θ) is a solution of the homogeneous Laplace equation inside the sphere of radius R centered
at the origin. For r > R, we define a function

(22) Φ̃ (r, ψ, θ) =
R

r
Φ
(
R2

r
, ψ, θ

)
.

I claim that Φ̃ (r, ψ, θ) so defined also satisfies Laplace’s equation in the region exterior to the sphere.

To prove this, it suffices to show that

(23) 0 = r2∇Φ̃ = ∂
∂r

(
r2 ∂Φ̃

∂r

)
+ 1

sin(θ)
∂
∂θ

(
sin(θ)∂Φ̃

∂θ

)
+ 1

sin2(θ)
∂2Φ̃
∂ψ2

or

(24)
∂

∂r

(
r2 ∂Φ̃
∂r

)
= − 1

sin(θ)
∂

∂θ

(
sin(θ)

∂Φ̃
∂θ

)
− 1

sin2(θ)
∂2Φ̃
∂ψ2 .

Set

(25) u =
R2

r
.

so that

(26)
r = R2

u

Φ̃ (r, ψ, θ) = u
RΦ (u, ψ, θ)

∂
∂r = −dudr

∂
∂u = −R

2

r2
∂
∂u = − u2

R2
∂
∂u

and so

(27)

∂
∂r

(
r2 ∂Φ̃

∂r

)
=

(
− u2

R2
∂
∂u

)(
R4

u2

(
− u2

R2
∂
∂u

) (
u
RΦ
))

= u2

R
∂
∂u

(
∂
∂u (uΦ)

)
= u2

R

(
u∂

2Φ
∂u2 + 2∂Φ

∂u

)
= u

R

(
∂
∂u

(
u2 ∂Φ

∂u

))
= − u

R

(
1

sin(θ)
∂
∂θ

(
sin(θ)∂Φ

∂θ

)
+ 1

sin2(θ)
∂2Φ
∂ψ2

)
= −

(
1

sin(θ)
∂
∂θ

(
sin(θ)∂Φ̃

∂θ

)
+ 1

sin2(θ)
∂2Φ̃
∂ψ2

)

Notice that

(28) lim
r→R

Φ̃ (r, ψ, θ) = Φ (r, ψ, θ)

This transform is called Kelvin inversion.
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Now let return to the problem of finding a Green’s function for the interior of a sphere of radius. Let

(29) r̃ = r
(
R2

r
, ψ, θ

)
=
R2

r2
r .

In view of the preceding remarks, we know that the functions

(30)
Φ1 (r) = 1

|r−ro|
Φ2 (r) = R

r
1

|r̃−ro| = Φ̃1(r)

will satisfy, respectively,

(31)
∇2Φ1(r) = −4πδ3 (r− ro)
∇2Φ2 (r) = − 4πR

r δ3
(
R2r
r2 − ro

)
.

However, notice that the support of ∇2Φ2 (r) lies completely outside the sphere. Therefore, in the interior
of the sphere, Φ2 is a solution of the homogenous Laplace equation. We also know that on the boundary of
the sphere that we have

(32) Φ1(r) = Φ2(r) .

Thus, the function

(33)
G (r, ro) = R

r
1

4π|r̃−ro| −
1

4π|r−ro|
= 1

4π|Rr r− r
R ro| −

1
4π|r−ro|

thus satisfies

(34) ∇2
rG (r, ro) = δ3 (r− ro)

for all r inside the sphere and

(35) G (r, ro) = 0

or all r on the boundary of the sphere. Thus, the function G (r, ro) defined by (33) is the Green’s function
for Laplace’s equation within the sphere.

Now consider the following PDE/BVP

(36) ∇2Φ(r) = f(r) , r ∈ B
Φ (R,ψ, θ) = 0 .

where B is a ball of radius R centered about the origin.

According to the formula (21) and (33), the solution of (36) is given by

Φ (ro) =
∫
B

G(r, ro)f(r) dV +
∫
∂B

h (ψ, θ)
∂G

∂n
(r, ro) dS

=
∫
B

G(r, ro)f(r) dV

To arrive at a more explicit expression, we set

ro = (r cos(ψ) sin(θ), r sin(ψ) sin(θ), r cos(θ))
r = (ρ cos(α) sin(β), ρ sin(α) sin(β), ρ cos(β)) .

Then

dV = ρ2 sin2(θ) dρ dα dβ
dS = ρ2 sin2(θ) dα dβ
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and after a little trigonometry one finds
1

4π |r− ro|
=

1
4π
√
r2 + ρ2 − 2rρ (cos(ψ − α) sin(θ) sin(β) + cos(θ) cos(β))

1
4π
∣∣R
r ro − r

Rro
∣∣ =

R

4π
√
R4 + r2ρ2 − 2R2rρ (cos(ψ − α) sin(θ) sin(β) + cos(θ) cos(β))

.

Thus,

Φ(r, ψ, θ) =
∫ R

0

∫ 2π

0

∫ π

0

Rf(r, ψ, θ)r2 sin(θ)drdθdψ
4π
√
R4 + r2ρ2 − 2R2rρ (cos(ψ − α) sin(θ) sin(β) + cos(θ) cos(β))

−
∫ R

0

∫ 2π

0

∫ π

0

f(r, ψ, θ)r2 sin(θ)drdθdψ
4π
√
r2 + ρ2 − 2rρ (cos(ψ − α) sin(θ) sin(β) + cos(θ) cos(β))


