Math 2163, Practice Final Exam

1.

Pleaseread through previous practice exams. Problem typesthat have appeared
in previous practice examswill not be repeated herel

The angle formed by edgesB and AC' is given as the angles between vectors:

AB: (3,6)—(1,0)=<2,6>
AC: (—1,4)—(1,0) =< —2,4>

Therefore the angle is

/A = arccos — 20> <72 4> arccos 20 arccos ! /4
—ar = arccos ———— = arccos — =T
| <2,6>|]<—2,4>| V40v/20 V2

Similarly, we can find the angle betweéhd and BC'is

<=2, —6>-< -4, -2>

/B = arccos = arccos ———— = 7/4
| <=2, 6> || < —4, 2> Vv40v/20 /
and the angle betweenA andC B is
<2, —4>-<4, 2> 0
/C' = arccos ’ ’ = arccos ———— = arccos ) = 7/2
| <2, —4>1|<4,2>] v/204/20 /

Therefore, the triangle is right-angled.

. The vectors are orthogonal if

< —6,b,2>-<b,b* b>=0
which means
—6b+b°+2b=0
b* —4b =0
b(b* —4) =0
b(b—2)(b+2)=0
b=0orb=2o0rb= -2

Ll

. Solution 1:




First we have vectors
AB=<04>— < -2,1>=<2,3>
AD =<2, -1>—< =21 >=<4,-2>
Thencos /A can be calculated by

<2,3>-<4,-2> 2

1
[<23>[]<4,-2>] VI3v20 V65

1 8
sin/A=+v1—-cos2/A=14/1——=—+
65 /65

The area of the parallelogram is equal to lengtieight, where the length of D is

cos LA =

Hence

|AD| = | <4,—2> | =20

and the height is

8
Vi3-S

8
h=|AB|sin/A=]<2,3>|—
V65 V65

Sl

Then we have

AREA = |AD|h = VIS — 16
NG

Solution 2: Recall that for three-dimensional vecterandb,
la x b| = |a] |b] siné

which is exactly the area of the parallelogram spanned apdb. However, here
we only have two-dimensional vectass3 and AD. To make them 3-D, we assume
they both lie in thery-plane.

Then 3-D vectorsAB and AD are

AB =<2,3,0 >
AD =< 4,-2,0 >

and hence

AREA=]<23,0>x<4,-20>|=]<0,0-16> | = 16
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5. The line segment between two points is given by

r(t) = A+t(B—A) = (1—t)A+1tB
=(1-1)<10,3,1> +t <5,6,—-3 >
=< 10— 10t,3 —3t,1 —t > + < 5¢,6t, —3t >
=< 10—5t,3+3t,1— 4t >

for 0 <t < 1. So the parametric equation is

=10 —5¢
y=3+3t 0<t<1
z=1-—4t

6. We will randomly take two different point from the givemé&. Notice both(1, 2, 3),
(—1,-2,—3) are onthe line = y/2 = z/3. Now we have three points on the plane,
this gives us two vectors

(1,2,3) — (—1,2,—-1) =< 2,0,4 >
(=1,-2,-3) — (-1,2,-1) =< 0, -4, -2 >

Then the normal vector of the plane is
n=<204>x<0,-4,-2>=<16,4,-8>
So the plane is

n-(<z,y,z>-<-1,2-1>)=0
— 16z +1)+4(y—2)—8(z+1)=0

7. 6 in the cylindrical and spherical coordinates are the sasra.the rectangular and
cylindrical coordinates are the same.

(@) Cylindrical: r = /22 4+ 42 = 3v/2, § = arctan(y/x) = arctanl = /4,
z = =2

Spherical:p = /22 + 52 + 22 = /22, § = arctan(y/x) = arctan 1 = 7/4,

¢ = arccos(z/p) = arccos \;—232

(b) Rectangularz = rcos = @, y=rsing =1/2, 2z = /3.
Spherical:p = /22 + y2 + 22 = 2,0 = 71/6, ¢ = arccos(z/p) = arccos v/3/2 =

/6.
(c) Rectangularz = psin¢cosf = 4sinm/3cosm/4 = /6,y = psingsinf =
V6, z = pCcos o = 2.

Cylindrical: r = /22 +y2 = V12,0 = 7/4, 2 = 2.



8.

10.

11.

Sincezr? + zy + y? > 0 and it is equal td) only when(z,y) = (0,0), so we only
need to check the continuity at the origin. Notice that

-z

im ——~—— = Ilim 0=0
v=0,y—0 12 + 1y +y*  2=0,y—0

im ——Y  — Lm 0=0
y=0,2—0 2 + xy + y>  y=0,2—0

x? 1

: xy .

lm —"——= Ilm ——m——=-

r=y,zy—0 22 + 2y +y> e=yey—02?+xx+22 3

We get different limits when approachirg, 0) along different pathes. So the limit
does not exist. And hence The function is not continuou® dt). The function is

continuous everywhere else excépto).

Clearly, we have
—4e Msing

= 674

U =
Uy Leosx

Thenitis clear to see that = —4e % sinz = 41u,.,.

—4t

= —e singx

Given a surface = f(z,y), then the the tangent plane at pojnt, yo, 20) iS

fa (20, y0) (@ — 20) + fy (20, 0) (¥ — Yo) — (2 — 20) =0
Now the given point iz, yo, 20) = (3,6, 5), all we need to do is to calculajg =
% andf, z.g—; at point(zo, yo, 20). DefineF (z,y, 2) = 522 4 3y? + 822 — 353 = 0,
by the Implicit Function Theorem,

9z _ K _ 10z
or F, 16z
9 _ by _ by
oy F, 16z
Hence at pointxy, yo, 20) = (3,6, 5),
10(3) 3
2(3,6) = ———~ = —=
/+(3,6) 16(5) 8
B 6(6) 9
And the tangent plane is
3 9
—§($—3)—%( —6)—(2—5)=

Let F'(t) be the antiderivative ofost®, that is, F’'(t) = cost®. Then f(x,y) =
F(z) — F(y) and hence

fo=F'(z) —0=rcosa®
fy = O—F/(y)

cos y°
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12. First we calculate the critical points.

fo=06xy —62=0
fy =322 +3y*—6y =0

By solving the first equation, we have either= 0 ory = 1. First, if z = 0,
substitute it into the second equation gives — 6y = 0 which impliesy = 0 or

y = 2. So we have two critical pointd), 0) and(0, 2). Second, ify = 1, substitute
it into the second equation giv8s? — 3 = 0 which impliesz = 1 orz = —1. This
gives another two critical pointd, 1) and(—1, 1). Combine all the above, we have
four critical points(0, 0), (0,2), (1,1) and(—1,1).

Now we classify these critical points. Clearly
fmc:6y_6> fxy:6x> fyy:6y_6
By the formula

fxx fxy

f$y fyy - (6y0 - 6)2 - (6I0)2

D($07 yO) -

We have

D(0,0) =36 >0, f22(0,0) = =6 <0 = f(0,0) is local maximum
D(0,2) =36 >0, f22(0,2) =12 >0 = f(0,2) is local minimum
D(1,1) = —-36 <0, (1,1) is a saddle point

D(-1,1) = =36 < 0, (—1,1) is a saddle point

Finally, calculate the local maximuif(0, 0) = 2, and local minimuny (0, 2) = —2.
13. We need to calculate the maximum value of
P(p,q,7) = 2pq + 2pr + 2rq

under the constraint
gp,q,r)=p+q+r=1
Use the Lagangre multiplier method,

2q+2r =\
VP = \Vyg N 2p+2r = A
9(p,q,r) =1 2p+2q =\
ptg+r=1

It is easy to see that the solutionzis= ¢ = r = 1/3 and\ = 4/3. Hence the
maximum value is

P(1/3,1/3,1/3) =2/9 +2/9 +2/9 = 2/3
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14. Think of(1 — 22 — y* — 2?) as the “weight” function. When the “weight” is positive,
it will add to the total integral. And when the “weight” is native, it will lower the
total integral. To achieve maximum value of the integral,amy want to integrate
on regions with positive “weight”, which is

{(x,y,z)] 1 _:I"2 _y2 _22 > 0} = {(xayaz)’x2+y2+22 < 1}
In other words, the region is bounded inside the unit ball.

15. The region of the integral is shown in the graph.

Then 2
/ / cos tV'3 + cos? x dxdy
0 arcsiny

w/2  psinz
= / / cos £V 3 + cos? x dydx
0 0
/2 .
:/ cos V3 + cos? x y|g"* dx
0
w/2
:/ cos £V 3 + cos? x sinx dx
0

(Letu = cosz, thendu = — sin x dx)

-/ VAT (—du)

1 8
=3B+ =53

16. Using the spherical coordinates, the volumn is

A

=

{
i
\

=

77

P




T 27 1+% sin 6 sin 3¢
/// dV = / / / P sin ¢ dpdfdd
E 0 0 0

™ 2T
= / / 1(1 +lsin95in 3¢)*sin ¢ d0d¢
o Jo 9 5

! in 2
:/0 Slg¢(0—gcosé’sin3¢+5—30(9—sz 7 sin? 3¢
I 08”0\ or
~ g7 Sin 3¢ sin ¢(cos b — T)) o do
3608
T %625

17. The Jacobian is

A(z,y) 'xa T
a(a7ﬁ) Ya Yp
5sinf3  bacos
4cos —4asin

= —20asin® B — 20a cos? f = —20a

18. Substitute: = v/5u — \/gv, y = vVbu+ \/gv into the ellipser? — 2y + y? = 5, and
then simplify

(V5u — \/gvf — (V5u — \/gv)(\/gu + \/gm + (V5u + \/gv)Q =5

=5l +50%=5
=ul+0v?P=1

The Jacobian is




Hence

Iz, y)
2 —ay+yh)dA = // (5u’ + 5v dudv
//D( Y y u2 v2<1 >|a(u )‘
// (5u® + 50v°) dudv
u2+v2<1

(using polar coordinatgs

10 27 1 )
— (5r%)r drdf
sl

25
= —T
V3

19. Vf =< &>

:c+8y 48y

20.

w/2
/ vyt ds :/ cost(sint)*y/(—sint)? + (cost)? dt
C —7/2

w/2 1 9
= t( t dt = = (sint)’|"?, =2
/W/2 cos t(sin 5(sm ) |77r/2 5

mass = / plx,y)ds = /(x +y)ds
c c
w/2
:/ (3cost + 3sint)y/(—3sint)2 + (3cost)2 dt
0

21.

w/2
:9/ (cost +sint) dt = 9(sint — cos t)[3/* = 18
0

22. Solution 1: The parametric equation for the line segméhtfrom (0,0) to (1,2) is
x=1t,y=2t0<t<1. Therefore

1 1
/xde+y2dy:/ tht+/(2t)22dt:3
Cq 0 0

The parametric equation for the line segméhtfrom (1,2) to (3,2) isz = 1 + 2t,
y=2,0<t<1. Therefore

1 1
1
/x2dx+y2dy=/(1+2t)22dt+/(2)20dt:9——
Co 0 0 3

Hence

8
/xQd:E+y2dy:/ x2dx+y2dy+/ w?dr+y*dy =9+ -
c Cq Co 3



Solution 2: Notice that< 22, 3% > is a conservative vector field, and the potential
function is f(z,y) = (2* + y*)/3. Applying the Fundamental Theorem 6h and
C, (both are smooth curves) seperately, then

/:L’de—irdey:/ w2dx+y2dy—|—/ v dx + y? dy
C 1

Co
=[£(1,2) ~ F(0.0)] +[/3,2) ~ f(1,2)] = /3.2) ~ f(0.0) =9+
23, 1 1
/ yzdy + vy dz — / (56)(242) 54t + / (42 (5¢) Atdt
C ) 2_% . @ 0
> v
24. () 2Bremiucst) - _gysiny — cosz = O -ta’siny_sinz) ang clearly both are

continuous everywhere. Therefore it is conservative vefobtd. To find the

potentialf, we use
fo =8xcosy —ycosx

fy = —4z%siny — sinz

Integrate the first equation with respecttgives

f =42 cosy — ysinz + g(y)
Then taking derivative with respect fogives

fy, = —4a’siny —sinz + ¢'(y)
Compare it with the the known conditiof) = —44? siny — sin z, we immedi-
ately see thag'(y) = 0. Thereforeyg(y) = C and

f=42*cosy —ysinz + C

(b) 6(“’”3824”) — 4z and 242=v) — 4y There are not equal and hence it is not a

conversative field.

25. Since it is stated “Use the fundamental theorem of linegrals”, the given vector
fields must be conservative. You can skip the step of chec%:ﬁng: %. Of course
it is always safer to check this condition before you stadalzulate the potential.

@ f.= % implies f = y* arctan z+g(y). Taking partial derivative with respect
to y gives f, = 2y arctanz + ¢'(y). Clearly¢'(y) must be0 and consequestly
g(y) = C. We just need to pick a value far to continue the calculation.
The easiest way is to sét = 0. Thenf = y?arctanz. The starting point is
A =r(0) =< 0,0 > and the ending point i# = r(1) =< 1,2 >. By the
Fundamental theorem:

/F-dr:f(B)—f(A) =4arctanl — 0=
c
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(b) f. = (2xz + y?) implies f = 2%z + zy* + g(y, z). Then by comparing
fy - ny + gy(yu Z) and fy =2zr
fz:$2+gz(yaz> fz:$2+322

We havey, (y, z) = 0 andg. (y, z) = 3z%. Thereforey(y, z) = z*+C. Combine
these together and s€ét= 0, we have one potential function

f=2"2+ay* +2°
Now the starting point isA = r(0) =< 0,1,—1 > and the ending point is
B =r(1) =< 1,2,1 >. Therefore
[ Fedr=(B) - ) =6 (-1) =7
C

26. Notice that the line segmentsihare arranged in the negative orientation. According
to the Green’s Theorem

/y dr + 2z dy = — //%_G_P
3x
//2—2y )dA = — // (2 — 2y) dydx

= /0(635—995)0[ =12
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