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ABSTRACT. In this paper, we develop geometry-conforming immersed finite element (GC-IFE)
spaces on triangular meshes for elliptic interface problems. These IFE spaces are constructed
via a Frenet-Serret mapping that transforms the interface curve into a straight line, allowing the
interface jump conditions to be imposed exactly. Extending the framework of [7,8] from rectan-
gular to triangular meshes, we introduce three procedures for constructing high-degree Frenet-
IFE spaces: an initial construction based on monomial bases, a generalized construction using
orthogonal polynomials, and reconstruction methods aimed at improving the conditioning of
the associated mass matrix. The optimal approximation capability of the proposed IFE spaces
are demonstrated through numerical examples. We further incorporate these spaces into inte-
rior penalty discontinuous Galerkin methods for elliptic interface problems and observe optimal
convergence rates in the H' and L? norms.

1. INTRODUCTION

In this paper, we develop a high-degree geometry-conforming immersed finite element (GC-
IFE) on triangular meshes for the second-order elliptic interface problem:

-V-(BVw)=f, in Q uQ", (1.1)

u=g, on 0Q. (1.2)

Here, Q c R? is a polygonal domain separated by a smooth interface I' into two subdomains
Q™ and QF. The coefficient function g is discontinuous across the interface. Without loss of

generality, we assume that it is a piecewise constant |+ = f*. The solution u is assumed to
satisfy the following interface jump conditions:

[ul;=0, onT, (1.3)
Hﬁg—zﬂ =0, onT, (1.4)
T

where [v]:= v*|r — v™|r is the jump across the interface, and n denotes the normal on T’ from
Q™ to Q". Asin [6,[7,/13], for the construction of an IFE space with a high-degree polynomial
space P, we further assume that the solution u satisfies the Laplacian extended jump condi-
tions:

ol Au .
B . =0, j=0,1,---,m-2. (1.5)
on/ |

The interface problem (1.1)- (1.5) arises widely in science and engineering applications. Among
related numerical methods, the Immersed Finite Element (IFE) method [14}17-21] is a class of
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numerical techniques designed to solve such problems without requiring the mesh to align
with the interface. Its key idea is to modify the local shape functions only on interface elements
according to the prescribed jump conditions, while leaving those on non-interface elements
unchanged.

Traditionally, local IFE functions are constructed as piecewise polynomials on subelements
separated by the interface. For low-order IFE spaces [12,15}/18], the interface can be adequately
represented by a linear approximation, and the associated IFE spaces are built accordingly.
However, for high-degree IFE spaces, such a linear approximation becomes insufficient. When
the interface is an arbitrary curve, the jump conditions cannot be enforced exactly because
polynomials pieces cannot match perfectly along the interface curve. As a result, the jump con-
ditions are often imposed on the interface curve only in a weak sense. Examples include least-
squares enforcement of the jump conditions [6,(10,(11], Cauchy extension [4}/13], and enforcing
jump conditions on selected quadrature points [3]. While these approaches yield IFE spaces
with sufficient approximation capability, the resulting IFE spaces are geometrically noncon-
forming, meaning the local IFE functions generally are not in H'. This drawback has two main
ramifications. First, an appropriate penalty must be incorporated along the interface to miti-
gate the effects of the inherent discontinuity of the IFE functions [4,24], which consequently in-
creases the complexity of the IFE scheme. Second, the coexistence of discontinuity and penalty
terms along the interface poses additional challenges for the associated error analysis.

Recently, geometrically conforming IFE spaces were introduced on rectangular meshes [7].
These IFE space are constructed with the Frenet-Serret transformation, an idea from differential
geometry, to map an arbitrary interface curve in the Cartesian x- y plane into a straight line seg-
ment in the Frenet coordinates n-¢. Although standard tensor-product polynomial spaces Q,,
are used on Frenet reference elements, the corresponding IFE shape functions on the physical
element are no longer piecewise polynomials because of the nonlinearity of the Frenet map-
ping. Nevertheless, these new IFE functions preserve continuity inside each interface element,
which makes the resulting space geometry-conforming. In [9], the approximation properties
of the Frenet-IFE spaces were theoretically established and the optimal a priori error estimates
for associated immersed discontinuous Galerkin solution are proved. In [8], reconstruction
techniques for Frenet-IFE bases were further developed to improve the conditioning of the as-
sociated mass matrix.

The Frenet-IFE framework [7-9] has so far been developed exclusively for domains that can
be discretized by rectangular meshes. This restriction limits its applicability, since many practi-
cal problems involve domains with complex geometries. In particular, rectangular meshes can-
not be constructed on non-rectangular polygonal domains or domain with curved boundaries.
In contrast, triangular meshes provide much greater flexibility: they can naturally conform to
complex boundaries, and enable efficient local mesh refinement. These advantages motivate
us to generalize and extend the Frenet-IFE framework from Cartesian rectangular meshes to
unstructured triangular meshes.

This paper is strongly influenced by, and builds upon, the developments in [8]. We present
three approaches for constructing high-degree, geometry-conforming IFE spaces on triangular
meshes. The first approach, referred to as initial construction, uses (m + 1)(m + 2)/2 mono-
mials forming the basis of PP,,,. Thanks to its simple structure, m(m + 1)/2 of the resulting IFE
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basis functions can be written down explicitly, while the remaining m + 1 functions are deter-
mined by solving a small linear system. The second approach, called the general construction,
uses orthogonal polynomials to build IFE basis functions, not only providing a more general
framework but also facilitating the assembly of local matrices. The third approach, referred to
as reconstruction, employs a singular value decomposition to produce an enhanced Frenet-IFE
basis that yields optimally conditioned mass matrices, which is essential for numerical stability
for solving time-dependent interface problems.

The remainder of the paper is organized as follows. Section[2]reviews the necessary notations,
the Frenet transformation, and related results previously established for rectangular meshes.
Sections[3|and [4 present the initial and general constructions of the Frenet-IFE basis functions
on triangular meshes. In Section [5, we apply the reconstruction strategies introduced in [8]
to IFE basis functions on triangular mesh for improving the conditioning of mass matrices. In
Section@ we report numerical results for the L2 projection and discontinuous Galerkin approx-
imation of the elliptic interface problems. Finally, Section[7]provides some concluding remarks.

2. PRELIMINARIES

In this section, we review Frenet transformation and recall some related notations and for-
mula previously presented in [7-9].

Let 93, = {K} be a shape-regular triangulation of Q that is independent of the interface T'.
We call K an interface element if KNI = @, and denote by 7, h’ the collection of all interface
elements. The set of noninterface elements is then 9, = 9,/ 9, h’ .

h
Let I’ be a smooth interface in R?, parametrized by

g(&) = [81(6), g2(O)] : [E5, Eo] — R (2.6)

In differential geometry, the Frenet-Serret apparatus [2,22] associated with the curve g(¢) con-
sists of the unit tangent vector 7(¢), the unit normal vector n(¢), and the curvature x(¢) defined
by

1 ! 1 / T "
= , = ) = 2.7
(&) "g,(f)”g(f) n@)=Qr©), ||g,(g)”g(g )" Qg"(©) (2.7)
where
0 1
Q:[—l 0]
The Frenet transformation Pr: (1,¢) — (x, y) is defined by
_|x(m, 8] _ B
x(n,¢) = Y, &) = Pr(n,¢) = g(5) +nn(s).

It is well-known [1] that I has an e-tubular neighborhood
Nr(e) = Pr([—¢,€l x [¢5,Ee])

within which the transformation Pr is a bijection. Hence its inverse

Rr =Py ' Nr(e) — [—€,€l x [, (2.8)
is well defined such that
nl|_(ny| _
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For sufficiently small mesh size h, every interface elements in 97, lies inside Nr(e). Consider an
interface element K € 7, h’ with vertices A;, Ay, and As. Let Rr(A;) = [n;,¢;]. We form a fictitious
element Ky containing K, with two curved edges parallel to the interface I' and two straight
edges. By the inverse transformation, the interface triangle K becomes a curved triangle K =
Rr(K) € Kr = Rr(Kg). A key feature of the Frenet transformation is that the interface segment
I'k, = 'n KF is mapped to the vertical line segment T kr = Rr(I'k;) in the (1, ¢)-plane. See Figure
for an illustration.

[,
LRk )

Ry

FIGURE 1. Anillustration of an interface triangle K and its Frenet-mapping.

With B = Bo Pr and using this Frenet transformation, the interface jump conditions in (T.3)-
(1.5) become

[alr, = O 2.9)

[Biw]z,, = 0 (2.10)

Hﬁag,se(mﬂf -0, j=0,1,--,m-2, 2.11)
Kp

where the Laplacian expressed in Frenet coordinates is given by

2L, ) = lyy + Jom, ) lge(m, &) + J1 (1, 8) ity (0, &) + T2, §) e (0, §) (2.12)
with
g)-g'()
g’ )11

Following the ideas in [5], the extended jump conditions lead to the following weak
jump conditions on I'g,:

Jom, &) =p*Mm,6), J1im,H=x@Oym,, L0, =p*n,&|n' Opn,é (2.13)

f ﬁ[{ﬁa{;Z(mﬂA dé = 0, VOeEPy »jTky), j=0,1,--,m-2. (2.14)
FKF FKF

On each Frenet reference element K, we will construct the piecewise polynomial space

?ﬁm (Kp) = {¢3 :Kp—R: | &t €Pm, ¢ satisfies (2.9),(2.10), and (2.14) } (2.15)
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where P, is the polynomial space of degree at most m. The local geometry-conforming IFE
(GC-IFE) space on the original interface triangle K is defined by

Vﬁm(K):{(p:([)oerK: @e%m(kp)}. 2.16)
Then the global GC-IFE space based on the polynomial space P, is defined as
Vﬁm(f/‘h) = {v eL*(Q):vige Y/ﬁm(K), ifKe ﬂ‘hi; velP,(K)ifKe Q‘h”}. (2.17)

In the following three sections, we will present procedures to construct the GC-IFE space
Y/ﬁm (K) on each interface element K € J73,.

3. INITIAL CONSTRUCTION OF IFE SPACES ON TRIANGLES

The first procedure for constructing the P, Frenet-IFE space on a triangular interface ele-
ment follows the initial construction procedure of the Q,, Frenet-IFE space on a rectangular
interface element in [7]. We begin by constructing an IFE basis in Frenet coordinates 1-¢ on K.
Then, through a change of variable with the Frenet transformation, we obtain a set of IFE basis
functions on fictitious element Kr. Finally, the Frenet-IFE functions based on P, polynomials
are obtained by restricting these functions on Kr to the triangular interface element K.

Let {p; (6)};10 be a basis of P, (I'x;). It is straightforward to verify that the following polyno-

mials form a basis for P,,(Kp):

po(<)

P& npod)

p2&)  np@©  7Ppo(d)

ps@  np2&)  Ppi©)  7Ppo@)

(3.18)
Pm@&) Npm-1©) 1°pm—2@&) 1Ppm-3& - n"po(&)

For m = 2, there are [, = (m—1)m/2 polynomials listed between the third and (m + 1)-th
columns in the table (3.18). For convenience, we denote these basis polynomials by .A4;(n,¢)
withi=1,2,---,1, where

M =17po(&)
No =m?p1() Nz =13po (&)
e/Vlm—m+2 = nzpm—z(f) </Vlm—m+3 = ﬂSPm—g(f) e e/Vlm =1"po({)

Following the same argument used in proving Lemma 3 of [7] we obtain the analogous result
for P, polynomial spaces.

Lemma 3.1. The piecewise polynomials
. 1, . . .
<Pi,j(77’<f):E77 pj), l1sism, 0<sjsm-i (3.19)

satisfy the interface jump conditions (2.9), (2.10), and (2.14).
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As stated in Lemma the functions (f)i, jin provide m(m + 1)/2 IFE shape functions
on the Frenet fictitious element Kr. We now describe the construction of the remaining m + 1
IFE shape functions.

Using the basis in (3.18), we consider two polynomials (f)s Mm,&eP m(K Ii), s = + expressed as
follows:

$me = Y ZCfc,,nkm(vE)):an
k=0\ [=0 k=0

m—k m
> Ci,mz(f)) =Y n*pl©,
=0 k=0
where
m—k
AGE Z Cy 1 p1&) €P i (T

In the discussions from now on, for each interface element K, we let K$ = KNQS, s = +. Also, for
s =+, we have s’ = ¥. Following the idea of Lemma 1 in [7], we obtain the unlsolvency property.

Lemma3.2. Given a polynomial ([)3(17, e Pm(I%;), there exists a unique (/35, n, & e IPm(I%IfJ) such
that

A ¢~ 0,8, W,&ekKy,
M) =1~ N
Poms {(/)*(n,f), .8 e Ky
satisfies the jump conditions (2.9), (2.10) and (2.14).

Fori=0,1,---,m, Lemma 3.2]implies that an IFE shape function can be constructed in the
form

by 1,6) = pi(®), (m,&) e Ry,

boim &) =1 m N
‘/’0,,-(77»5):];077 (Z Cy lpl(f)) (n,¢) e Ky,

(3.20)

where coefficients C;C" p 0= l=m-k, 0<k=< m are to be determined so that (/30 i(n,¢&) satisfies

the interface jump conditions (2.9), (2.10), and (2.14). The jump condition (2.9) implies that

pi(€) =g ;0,8 = g ,(0,6) = Z P, VEeTk,.

Hence, we should have

Cy, = Lol=h em
' 0, I#i

and

2 LN RS <l> (nf)
by, 10,6 = pi(&) + an( > C,;lpl(f)),

k=1 1=0

m m—k
Sk (z c;,lpz(a).

Then, the jump condition (2.10) implies that

005,080 . 0y (0,8 mol
0=p on =p on = z;) Cupl(f)-
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Hence, Cflzo,OslSm—l,and

m m—k Im .

bg:(1,8) = pi©)+ ) nk( > C,t,lpz(cf)) =pi@)+) CiNMm,E,0<i<m (3.21)
k=2 =0 =1

We now use the jump conditions to derive the formulas for computing the coefficient

C;, 1=1,2,---, ;. These can be uniformly written as follows:

p-p*
p

Im

Z( A pk(é)(—xw(o 6)))d€ Cj =

o/
pi() (—..i”(pi(f))), (3.22)
on/

=1 FKF

for 0sk<m-2-j, 0< j<m-2.Thesystem (8.22) of /,,, = (m —1)m/2 linear equations about
the coefficients ¢! = (C] )l”‘ can be written as

+
Act = b ——b(i) (3.23)
p*
where the matrix and right-hand side are defined by
A0 b©@ (i)
AD b (i)
A= . y b(l) = . ’

and

. 9/ ; Rl
Agc],)l:[ pk(g)(_jg(,/v,(o,f)) dé, bgc])(i)= ) Pk(f)(—j.i”(l?i(f)))

Tk,
The system ( - ) is uniquely solvable, as guaranteed by Lemma. 3.2] Once the remaining m + 1
basis functions ¢ ; are determined, together with ¢;, jin , we obtain all (m+1)(m+2)/2

basis functions. Then, the Frenet IFE space on K is deﬁned as

Y%m(IA(F) =span{¢; ;:0<i<m,0<j<i}. (3.24)

Remark 1. The procedure for constructing the Frenet IFE space on K described above closely
follows the construction of the Frenet-IFE space on a rectangular interface element presented
in [7]. A key advantage of this approach is that the majority of basis functions are explicitly given
in formula (3.19). Specifically, m(m +1)/2 of the (m + 1) (m + 2)/2 basis functions of 7%’" (Kr) are

given explicitly by the simple formula (3.19), and only the remaining m + 1 basis functions need
to be constructed by solving an [,;, x [, linear system (3.22).

Remark 2. Each Frenet-IFE function ¢ in the space T/ﬁ’" (K) defined on an interface element K by

is geometrically conforming: its components ¢p* and ¢~ match along the entire interface
curve within K, as illustrated in the left plot of Figure[2| In contrast, classical P; IFE functions
(18] enforce continuity only at the two points where the interface intersects the element edges,
as shown in the right plot of Figure 2]
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FIGURE 2. A comparison of a P, Frenet-IFE function (left) and a classical P, IFE
function (right)

4. GENERAL CONSTRUCTION FOR FRENET-IFE BASIS ON TRIANGLES

The procedure described in the previous section for constructing a basis of 7//5’” (K) uses a
kind of monomial basis of P;,,,. However, it is known that using monomial bases may lead to
ill-conditioned computations, particularly when the polynomial degree becomes large. For ex-
ample, using the basis {xi}l’.’i , to compute the L? projection onto P,, leads to a Hilbert matrix,
whose condition number grows rapidly and is notoriously unfavorable for numerical approxi-
mation. In contrast, orthogonal polynomials bases, such as Legendre polynomials, often yield
much better conditioned system due to intrinsic orthogonality and reduced numerical cou-
pling among the basis functions. These considerations motivate the use of more general and
computationally robust polynomial bases to construct a basis for the GC-IFE space Vﬁm (K).

4.1. General Construction of GC-IFE Basis. Let {Rl};i;" , where d,, = (m+1)(m+2)/2, be a ba-
sis of the space P,,. For example, the high-degree polynomial basis with a certain orthogonal
properties described in Chapter 6 of [16] can be used. On the Frenet reference element K, we
consider a set of IFE basis functions {)1 j 1= j =dp}inthe following form:

A

dm
A;(,8) = Z Ci;Ri,8), n<0,
Ajn,&) = i=1

dyy 0<j<dpn. (4.25)
ATm,§)=) CjRim,&), n>0,
i=1

The coefficients C;—Lj are determined so that 1 j satisfies the interface jump conditions (2.9),
2.10), and 2.14) along I'k,,, which give rise to the following system of equations:

dm é1k dm ¢k
Z(L Ri(o,é)ﬁk(é)df)cf,-zz(f Ri(o,é)ﬁk(f)dé)c;j, k=0,1,---,m (4.26)

i=1 \JSo,k i=1 \Jéox

dm ( ré1x . . B dm ( ré1x A ~
> ([ omoopoa) o= ([ om0 opa) ey k=0 m1 w2

+
i=1 0,K ﬁ i=1 0,K
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fl,K an g d + — dm {LK an a g d
Ri ) ) . = — n Ri , N ._"
ffo,K pr (R;(0,8) px(S) é)C,J 5 izl(fm oy On (R (0,8) pr()d¢ | C7;

k=0,1,---, m-2-n, n=0,1,---m-2.

Let C;.—“ denote the column vector consisting of C;—'j for 1 < i < d,,. Then the linear system
(4.26)-([4.28) can be written in the following matrix form

Ac} = ]AC]T (4.29)

(4.28)

where J = diag(1,1,---,1, %, e ,%) is a diagonal matrix whose first m + 1 entries equal 1 and

the remaining (d,, — m — 1) entries equal f~/5".
The existence and uniqueness of GC-IFE basis functions imply that, for each fixed j, the vec-
tor C]‘.“ isuniquely determined from (4.29) once C]T is given. Thus, given any basis /l]‘. l<sj<dpn

of P,,, on K, the extension mapping (@.29) uniquely determines the corresponding functions
ft;’ :1<j<dy,on K; In this way, the complete set of local GC-IFE basis functions ij n,&, 1<

j < d,, is generated. Furthermore, let C* = [Ci,Cg—L,...,C;i—L ] denote the coefficient matrices.
Then (4.29) is equivalent to the matrix identity

ACY=JAC™. (4.30)

In practice, one may select any nonsingular matrix C~ and compute C* directly from (4.30); or
conversely, prescribe C* and compute C™.

With the basis functions constructed with this general construction procedure, we define the
Frenet IFE space on K as follows:

77[3"1(131:) =span{d;:1<j<dy}. (4.31)

Remark 3. As discussed in [8], the initial construction of the Frenet-based IFE basis functions
¢ij presented in Sectionis a special case of this general construction. The formulation intro-
duced here therefore not only unifies the two approaches but also provides greater flexibility
in the selection of polynomial bases, which may improve conditioning and numerical perfor-
mance.

4.2. Efficient generation of matrices and vectors. Next we present an approach to efficiently
generate the local mass and stiffness matrices, and the source vector on a triangular interface
element using GC-IFE basis functions. Let {1;(n,¢) : j = 1,2,---,d;;} be a basis for the reference
Frenet space 77ﬁm (Kp) via general construction. Then {A; := ij oRr,j=1,2,---,d,} is a basis for
the local GC-IFE space Vﬂm (K) on an interface element K. The local mass matrix Mg = (m;;)
can be written as

mij = f Aidjdx = f (AioRr)(AjoRr)dx= Y | (AjoRp)(AjoRr)dx. (4.32)

K K s=+JKS

On each piece K¥, the integration in (4.32) is approximated by a numerical quadrature, i.e.,

nS

ngo A 9 e
Y wi(AdioRrx))(AjoRrxy)) = Y. Y widi&DA; X}, (4.33)
k=1

mij=
S S==x k=1

I+
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where w; and x;. are quadrature weights and nodes on K* and ny, is the number of quadrature
points on K*® in a certain quadrature rule. Without loss of generality, K* is either a triangle or
a quadrilateral, each with one curved edge; hence, associated quadrature rules available in the
literature can be readily applied here.

Moreover, denote the Vandermonde matrices associated with the IFE basis ftl- and the basis
R; of P, associated with the nodes fcfc by

dm,n’

S
q dm,ny
i=1,k=1"

R ESS (4.34)

Ve = (L&) L* = (Ri®})
Then the relation (4.25) implies V* = (C%)T L. The mass matrix Mk on the interface element K

can be approximated by M 4 of the following form

s dm
g
Mg ~Mgg=|Y Y wil&DA; &) =Y viwswHl =Y «cH'LwwhH’ct, 435
s=+ k=1 o s=+ s=+
i,j=1
where W* = diag(wy, w;, -+, w;,) is the diagonal matrix consisting of quadrature weights.
q

Remark 4. The subscript g in Mk, ; emphasizes that the approximation depends on the quad-
rature rule used for integration.

Remark5. The procedure in yields an efficient approximation of the local mass matrix Mg
on an interface element K because the matrices L® are assembled by evaluating the standard
polynomial basis functions R; at the quadrature points X;, rather than the piecewisely defined
IFE basis functions. After the coefficients C* of the GC-IFE basis functions are computed, the
mass matrix M is efficiently obtained by standard matrix multiplication.

This approach is applicable to the local stiffness matrix Sk as well. In fact, the entries of
Sk = (S;i}) can be written as

Sij :f BVA; -VﬂjdX: Z f ﬁsV(/iioRF) 'V(/AleRr)dX. (4.36)
T s=xJT*
Note that
n; R )
Sij = 3 ) wiBV(AioRr(x}) V(Ao Rr(x}))
s=* k=1

n; A ) A A

P wi B (AigEDAj &) +p* i e (DA} £ (ED). (4.37)

Denote the Vandermonde matrices:

s _ i ~ dm,nfi s _ /,AL ~ dm,l’l;
and
dm,ns dm,ns
s _ e m g s _ (oS mitq _
Ln - (Rlﬂl(xk))i:Lk:l’ L.f - (Rl,f(xk))izl,kzl , §=+.
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Then the stiffness matrix Sk can be approximated by Sk, ; which can be written as

Squ — Z ﬁSVT}SW‘S‘(VT}S‘)T+ﬁ8p2‘/€SWS(‘/€S)T

Z BCH LW (L)' Co+ B p*(CH LW (L) C°. (4.38)

Once again, the generation of stiffness matrix requires the evaluation of the first derivative of
polynomial basis R; at the quadrature points, there is no need to evaluate the piecewisely de-
fined IFE basis functions.

The construction of the local source vector f on an interface element follows a similar proce-
dure. In fact,

frf, = Z VW = Y (COTLW,  where 1= (£(x]), FG5), - ,f(xfﬁ]))T. (4.39)

s=+

5. RECONSTRUCTION OF FRENET-IFE BASIS ON TRIANGLES

The GC-IFE bases in the general construction focus primarily on enforcing the jump
conditions, but not on computational performance when used to approximate interface prob-
lems. In this section, we show that the reconstruction procedure proposed in [8] is also appli-
cable to constructing a basis for the GC-IFE space on a triangular mesh with improved compu-
tational performance; in particular, the associated mass matrix is optimally conditioned.

For each interface element K, we write Frenet-IFE basis functions A j produced by the general
construction procedure in the previous as follows

Aim, & C; C+ j=1,-,dp.

We include Cj_, C]“.“ in this notation to emphasize that these IFE basis are completely determined
by C]._, C]Jf once the polynomial basis R; for P, is chosen. Also, we denote the basis of 77Bm (Kp)
by
B(C)=B(C,C):= {4, C;,CH): j=1,+ .
Following [8], we proceed to produce a reconstructed Frenet-IFE basis such that the resulting

mass matrix has optimal conditioning. We first recall the Lemma 1 from [9]:

Lemma5.1. Let B(C) be a basis of 7%’" (Kp) and let Q be a nonsingular matrix of size d,;, x d,

then B(CQ) is also a basis of 7%’”([%}:).

Let C = CQ, by (4.35), the mass matrix Mk (B(C)) on interface element K associated with the
basis B(C) = B(C~,C") = B(C~Q,C" Q) can be approximated by

Mg (B(O) =Y €T W @HTC =Y QL WS(ILHTC Q= Q" My 4(B(0)Q.  (5.40)

s=+ s=t

Hence, by choosing Q suitably, we may find a new GC-IFE basis B(C) such that the mass matrix
Mg, x(B(Q)) is better conditioned than the mass matrix M, K,q(B(C)). We consider the following
two approaches proposed in [8]
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Reconstruction Approach 1. We choose Q such that the mass matrix becomes the identity ma-
trix. Let V1AV1T = Mk,4(B(C)) be the singular value decomposition of the matrix My 4(B(C)).
Let Q; = ViA~V2 and CY = CQ;. Then we have

Mg 4(B(C™M)) = Mk 4(B(CQ1)) = Q] Mk 4(B(C))Q1 = A2V Mk ,(BIO)YVIA Y2 =1. (5.41)

This approach transforms the GC-IFE basis B(C) into an orthonormal basis B(C™") with re-
spect to the L? inner product and the chosen quadrature rule. We denote this reconstructed
basis by

B(C™M)=B(C Q,C* Q=AY j=1,,dm}. (5.42)

The resulting approximate mass matrix M, K,q(B(C(D)) achieves an optimal condition number
in theory. However, in practical finite-precision computations, this optimal conditioning may
not be preserved, especially for GC-IFE bases constructed using higher-degree polynomials, as
corroborated by the numerical examples in the next section.

Reconstruction Approach 2. This approach uses a factorization of matrix MK,q(B(C)) as fol-

lows. Denote ng = n, + n;;, then

{oc wn b, = {05 wpht, g w b,

then, by we can express M, K,q(B(C)) as
Mg,4(B(O) = V(B(C)) WV (B(C)), (5.43)

with W = diag(w;, wo, ..., w, 2 and V(B(C)) is the generalized Vandermonde matrix of the ba-
sis functions B(C) in with entries x;, 1 <1 < ng, i.e,,

Vi (BO)=Ajx,), 1<r<ng1<j<dn.
Let V(B(C)) = W2 V(B(C)), then we can factorize the matrix Mk, ;(B(C)) as follow

Mg,4(B(C)) = V(B(C) T V(B(C)).
Assume that ng = d;,, we can compute the reduced SVD
V=03V,

where U, is an ng x d,, matrix and X, V, are dy, x d, matrices. Let Q2 = V227! and C® = CQ,,
then we obtain the second reconstructed basis

B(C?)=B(C™Q,, C*Qy) := {;15.2) (=1, dml (5.44)
The associated mass matrix is
Mg 4(B(C™Q2, C*Q2)) = QF Mk (B(C)Qa == 'V, VIV =1y sa,.

Both reconstruction approaches make approximate mass matrix optimally conditioned. More-
over, when the eigenvalues of My ,(B(C)) are distinct and computations are exact, the two ap-
proaches are mathematically equivalent. In this case, they generate the same GC-IFE basis, i.e.,

B(C(l)) — B(C(Z))

up to signs of the corresponding basis functions.
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However, as already emphasized in [8], in finite-precision computations, the two reconstruc-
tion approaches may behave differently. This is because the condition number of M K,q(B(C))
is the square of the condition number of V(B(C)) since A = 22. As a result, MK,q(B(C)) is typ-
ically more ill-conditioned than V, and the numerical accuracy of the SVD in Reconstruction
Approach 1 (and therefore of Q) is limited by round-off errors in the small singular values of
M K,q(B(C)). Consequently, the matrix Q; obtained numerically may deviate substantially from
its exact counterpart. In contrast, the SVD of V(B(C)) in Reconstruction Approach 2 is less sen-
sitive to round-off errors because V has a smaller condition number. Thus the transformation
matrix Q; is generally more accurate.

6. NUMERICAL EXPERIMENTS

In this section, we present a set of numerical experiments to demonstrate the performance
of the geometrically conforming immersed finite element spaces on triangular meshes.

In these numerical examples, the computational domain is Q = (-1, 1)2 with a circular inter-
face I' = {|x| = ry} where ry = 1/v/3, which partitions Q into two subdomains Q™ = {|x| < ry} and
Q" = {|x| > ro}. The diffusion coefficient f(x) is piecewise constant (x)|q+ = f* where f~ =1
and B is varied in the tests. The exact solution the boundary problem and is:

1 , _
——cos(m|x[), xeQ,

— cos(|x|?) + cos(mr?) (i - i)

p* “\p- )
which satisfies the interface jump conditions (1.3)-(1.4) as well as the Laplacian extended jump
condition (I.5). We examine three types of bases: {ii}?fl produced by the general construction

procedure, {)ALE.D }4;"1 by Reconstruction Approach 1, and {;152)}?;”1 by Reconstruction Approach
2. Polynomial degrees up to p =9 are tested.

Numerical tests have been carried out on both structured and unstructured triangular meshes;
see Figure 3| for representative examples. Since the results are comparable, we only report the
data obtained from unstructured meshes, which are generated using the MATLAB PDE Toolbox.

ux) =
xeQt,

\

N

FIGURE 3. A structured triangular mesh and an unstructured mesh
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6.1. Conditioning of Mass Matrices. We first investigate the conditioning of the mass matrices
associated with different choices of basis functions. Local mass matrices are computed on all
interface elements of an unstructured triangular mesh with 7 = max{hg : K € 93} = 1/10, and
the maximum condition number over all interface elements is reported in Table|1| Three types
of basis functions are considered. For the general construction, the condition numbers grow
rapidly as both the polynomial degree and the jump ratio increase. In contrast, both recon-
struction approaches appear largely insensitive to these variations. Moreover, the second re-
construction approach demonstrates greater robustness for higher-degree polynomials. When
the degree exceeds 7, the condition numbers associated with the first reconstruction increase
noticeably, whereas those of the second reconstruction remain well controlled.

TABLE 1. Largest condition number of local mass matrices among all interface
elements on an unstructured triangular mesh with 4 =1/10.

max{Cond(Mg): KeJ}

m Bt =10 B =100 B+ =1000
General Rec1 Rec2 General Rec1 Rec2 General Recl Rec 2

1 4.75E+01 1 1 4.55E+03 1 1 4.45E+05 1 1
2 2.75E+03 1 1 4.15E+04 1 1 4.16E+06 1 1
3 2.70E+05 1 1 1.09E+06 1 1 1.07E+08 1 1
4 9.96E+06 1 1 4.33E+07 1 1 2.01E+09 1 1
5 6.32E+08 1 1 1.56E+10 1 1 1.48E+11 1 1
6 4.13E+10 1 1 6.24E+11 1 1 2.29E+13 1 1
7 1.66E+12 1 1 3.37E+13 1 1 1.14E+15 1 1
8 1.15E+14 1 1 3.59E+15 1.59 1 1.43E+17 4.69E+01 1
9 2.57E+17 1.20E+02 1 9.75E+18 1.82E+03 1 3.77E+20 2.00E+05 1

Table [2| reports the conditioning of the global mass matrices. Since the global mass matrix
is block diagonal, its condition number is equal to the maximum condition number among all
elements in the mesh. For each polynomial degree 1 < m <9, we report the condition numbers
on three different meshes. When h = 1/10, the condition number obtained from the general
construction coincides with that in Table |1, because the largest condition number occurs on
the interface elements. Moreover, no apparent growth trend is observed as the mesh is refined.
This indicates that the geometric configuration of the interface elements has a much stronger
impact on the conditioning than the element size itself.

In contrast, both reconstruction approaches yield identical condition numbers across all
meshes for polynomial degrees up to m = 8. In these cases, the observed condition numbers are
entirely determined by the non-interface elements, where an finite element basis with a certain
orthogonal property [16] is employed, since the condition numbers on all interface elements
are equal to 1, as reported in Table |1l For m = 9 with f* = 1000, the condition number of the
first reconstruction is dominated by the interface element, whereas the second reconstruction
remains robust.
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TABLE 2. Condition numbers of the global mass matrices

Cond(M)
m 1/h pr =10 p* =100 p* =1000
General Recl Rec2 General Recl Rec2 General Recl Rec 2
1 10 4.75E+01 4 4 4.55E+03 4 4 4.55E+05 4 4
20 4.09E+01 4 4 3.65E+03 4 4 3.65E+05 4 4
40 4.13E+03 4 4 3.23E+03 4 4 3.23E+05 4 4
2 10 2.75E+03 17 17  4.15E+04 17 17  4.16E+06 17 17
20 2.61E+03 17 17 2.54E+04 17 17  2.57E+06 17 17
40 2.65E+03 17 17 2.06E+04 17 17  2.08E+06 17 17
3 10 2.70E+05 35 35 1.09E+06 35 35 1.07E+08 35 35
20 2.22E+05 35 35 3.86E+05 35 35 3.60E+07 35 35
40 2.28E+05 35 35 3.17E+05 35 35 2.52E+07 35 35
4 10 9.96E+06 46 46  4.33E+07 46 46  2.01E+09 46 46
20 8.23E+06 46 46  4.54E+07 46 46  1.15E+09 46 46
40 8.74E+06 46 46  2.18E+07 46 46  2.14E+09 46 46
5 10 6.32E+08 62 62 1.56E+10 62 62 1.48E+11 62 62
20 5.63E+08 62 62 8.06E+09 62 62 1.97E+11 62 62
40 6.23E+08 62 62 2.72E+09 62 62 6.47E+10 62 62
6 10 4.13E+10 92 92  6.24E+11 92 92 2.29E+13 92 92
12 757E+10 92 92 1.66E+11 92 92  9.92E+12 92 92
14 4.85E+10 92 92 1.70E+11 92 92 2.08E+12 92 92

7 10 1.66E+12 125 125 3.37E+13 125 125 1.14E+15 125 125
12 3.59E+12 125 125 2.15E+13 125 125 6.69E+14 125 125
14 2.69E+12 125 125 6.22E+12 125 125 4.37E+13 125 125

8 10 1.15E+14 193 193 3.59E+15 193 193 1.43E+17 193 193
12 2.20E+14 193 193 3.42E+15 193 193 1.71E+17 193 193
14 1.89E+14 193 193 2.20E+15 193 193 4.47E+16 193 193

9 10 2.57E+17 285 285 9.75E+18 1819 285 3.77E+20 2.00E+05 285
12 1.26E+16 285 285 3.40E+17 285 285 2.20E+19 2.02E+03 285
14 1.04E+16 285 285 2.08E+17 285 285 2.16E+18 8.19E+02 285

6.2. Numerical Experiments on L? Projection. In this experiment, we examine the approxi-
mation properties of the GC-IFE spaces through the convergence of the L? projection 7, u. All
three types of IFE constructions are tested. For polynomial degrees m < 5, the convergence
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results obtained with the GC-IFE basis by Reconstruction Approach 2 are presented in Fig-
ures for both the L2 norm and H! semi-norm. In this range of polynomial degrees, the gen-
eral construction and Reconstruction Approach 1 perform comparably; therefore, their results
are omitted for brevity. The observed convergence rates indicate that

lu—Ppull 2y ~ O™, lu-Ppulp g ~0H™,

which are optional regarding the underlying polynomial space P,,.

As reported in Section[6.1} for GC-IFE basis constructed with higher degree polynomials (e.g.
m = 7), the conditioning of the mass matrices differs significantly among the three bases. As
shown in Figure |5, the accuracy of the approximation with the GC-IFE basis by the general
construction deteriorates dramatically from the expected optimal order, whereas both recon-
structed bases continue to exhibit good convergence. In particular, the GC-IFE basis by Recon-
struction Approach 2 is more robust and maintains the optimal convergence rates in both the
L? norm and H' semi-norm.

L2 Projection Errors in L2 norm -- Reconstruction #2 B=(1,10) . L2 Projection Errors in H' norm -- Reconstruction #2 £=(1,10)
T T T ¥ 10 T T T T

10! ;__e___eﬂf—e—/—j
0L Slope = 2.0 o Slope =0
| 102k
10°F
' slope =3.0 E ——— ] slope =2.0
S| ’

10% E

10

§ 10°F e § 10°F E!
5 :I slope = 4.0 > :I slope = 3.0
100 e
1070 —o—P_ 1 P
slope = 5.0 1 Wk i 13
—o—F’3 10% —o—P3 E
1077 El
lope = 6. P =}
: e P4 10 slope = 5.0 P4 E
5 /‘ = 5
ot | | | | 1070 | |
1/60 1/50 1/40 1/30 1/20 110 1/60 1/50 1/40 1/30 1/20 110
h h

FIGURE 4. Convergence of L? projection error in L? and H! norms with the GC-
IFE basis by Reconstructed Approach 2 for degree 1 < m <5.

6.3. IFE-DG Solution for Elliptic Interface Problems. Next, we apply our GC-IFE spaces in the
standard [23] symmetric interior penalty discontinuous Galerkin (SIPDG) method for solving
the elliptic interface problems (1.1)-(1.5). Specifically, this method is to find uj, € 7/13’” (93) such
that

fﬂVuh Vopdx— Y [ {BVup-n}[vp]ds— ). f{,ﬁVvh n}[u,]ds

K€Jh e(—:é’i € e(—:g’

(6.45)
f[[uh]] [vn] ds—f fondx, Vv, € V5" (Tp).
egl el
Here, the penalty parameter o, is set to be:
+ g2
max(f”, 7) i

Oe=0 Og=
e 0 min(ﬂ_'_,ﬁ_) ) 0
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FIGURE 5. Convergences of L? projection error in L? and H' norms using differ-

ent bases with degree m = 7.

Figure[6ldemonstrate the convergence of the DG-IFE solution uj, to the interface problem by

116

GC-IFE basis via the general construction. The performance of reconstructed basis {/15.1)} and

{/1;2)} is very similar and is therefore omitted. These numerical results demonstrate that the DG

IFE solutions produced with all three bases achieve the expected convergence orders in both
the L2 norm and H! norm for low polynomial degrees (m < 4).

For higher-degree cases, e.g., p = 5, the convergence behavior of the GD-IFE solution on a

finer mesh, i.e., h,4; = 1/60, will deteriorate. Since the magnitude of the error in numerical
solutions is around 10~ '2 or below, we think this behavior is attributed to finite-precision arith-
metic and round-off errors. Hence, we report the convergence of the DG solution obtained with
GC-IFE bases on coarser meshes in Figures[6|and[7] Overall, our numerical experiments indi-
cate that the reconstructed bases exhibit more robust performance compared with the general
construction.

error
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FIGURE 6. Convergence of DG-IFE errors in L? and H! norm with GC-IFE basis
by general construction for degree 1 < m < 4.
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DG-IFE Solution Errors in L% norm B=(1,10)
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FIGURE 7. Convergence of DG-IFE errors in L? and H! norm with GC-IFE basis
by Reconstructed Approach 2 for degrees 5 and 6.
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FIGURE 8. Convergence of DG-IFE errors in L? and H' norm using all three bases

with degree m =7.

We have developed geometry-conforming immersed finite element (GC-IFE) spaces on trian-
gular meshes for elliptic interface problems using a Frenet-Serret transformation that straight-
ens curved interfaces and enforces jump conditions exactly. Building on prior work on rectan-
gular meshes [7,8], we presented three construction procedures for higher-degree Frenet-IFE
spaces, including reconstructed approaches that substantially improve the conditioning of the

mass matrix.

Numerical experiments confirm the optimal approximation properties and robustness of the
proposed GC-IFE spaces on triangular meshes. When employed in the standard interior penalty
discontinuous Galerkin framework, the resulting scheme can achieve optimal convergence in
both the H' and L? norms. The methodology developed here provides a foundation for future
research on solving interface problems with higher-degree polynomials on general domains

7. CONCLUSION

using interface-independent meshes.

1/4
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