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Abstract

In this paper, we introduce an immersed C0 interior penalty method for solving two-dimensional bi-
harmonic interface problems on unfitted meshes. To accommodate the biharmonic interface conditions,
high-order immersed finite element (IFE) spaces are constructed in the least-squares sense. We establish
key properties of these spaces including unisolvency and partition of unity are, and verify their opti-
mal approximation capability. These spaces are further incorporated into a modified C0 interior penalty
scheme with additional penalty terms on interface segments. The well-posedness of the discrete solution
is proved. Numerical experiments with various interface geometries confirm optimal convergence of the
proposed method in L2, H1 and H2 norms.

AMS suject classification: 35R05, 65N15, 65N30
Keywords: immersed finite element, C0 interior penalty method, biharmonic interface problems

1 Introduction

The biharmonic equation arises from plate bending theory in continuum mechanics. Its numerical solution
poses significant challenges, particularly when using conforming finite element methods, since constructing
C1-conforming elements [6] is notoriously difficult and expensive. To address this difficulty, a wide range of
alternative discretization techniques have been developed over the past several decades.

One direction involves nonconforming finite element methods [38], which relax inter-element continuity
requirements. However, these elements lack a systematic hierarchy to higher-order spaces. Another approach
is mixed finite element methods [27, 7], which reformulate the fourth-order PDE into a system of second-
order equations. While effective in some cases, the mixed formulation introduces saddle-point structures and
require stable element pairs that satisfy the Ladyshenskaya–Babušhka–Brezzi (LBB) condition [13], which
is often nontrivial to construct. In addition, discontinuous Galerkin (DG) methods [39, 23], weak Galerkin
(WG) methods [40] are very flexible on approximation spaces and mesh types, but they usually have the
very high number of degrees of freedom, which makes these method costly to use.

A balanced alternative between H2-conforming finite elements and fully discontinuous Galerkin methods
is the H1 semi-conforming approximation, known as the C0 interior penalty method [26, 11]. This method
is particularly attractive because it uses only standard C0 Lagrange elements while preserving the positive-
definiteness of the resulting linear system and maintaining a natural hierarchy to higher order. Its flexibility
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has enabled extensions to a variety of PDEs, including optimal control problems [12], phase field crystal
equations [25], and Hamilton–Jacobi–Bellman equations [9], among others.

In this paper, we focus on biharmonic interface problems, governed by fourth-order elliptic equations
with discontinuous coefficients across heterogeneous media. Such problems arise in composite plate bending,
multiphase materials, and phase transition models. Let Ω ⊂ R2 be an open bounded domain separated by
a closed interface Γ such that Ω = Ω+ ∪ Ω− ∪ Γ. Consider the two-dimensional biharmonic problems:

∆(β(x)∆u) = f, in Ω/Γ, (1.1a)

u = 0, on ∂Ω, (1.1b)

∂nu = 0, on ∂Ω, (1.1c)

where the Laplacian is ∆ := ∂2

∂x2
1
+ ∂2

∂x2
2
. n = (n1, n2) and t = (t1, t2) denote the outward normal and

tangential unit vectors, respectively, and β is a piecewise constant coefficient that takes distinct values β±

on Ω±. Across the interface Γ, the solution satisfies continuity conditions on the displacement and the
normal derivative (see (1.1d)-(1.1e)), as well as two Neumann-type interface conditions (see (1.1d)–(1.1g)):

[[u]]Γ = 0, on Γ, (1.1d)

[[∂nu]]Γ = 0, on Γ, (1.1e)

[[β∂nnu]]Γ = 0, on Γ, (1.1f)

[[∂n (β∆u+ β∂ttu)]]Γ = 0, on Γ, (1.1g)

where the jump operator [[v]]Γ := v+|Γ − v−|Γ. Here and thereafter, we denote

∂nv =
2∑

i=1

ni∂iv, ∂tv =
2∑

i=1

ti∂iv, ∂nnv =
2∑

i=1

2∑
j=1

ninj∂ijv, ∂tnv =
2∑

i=1

2∑
j=1

tinj∂ijv,

where ∂i =
∂
∂xi

, and ∂ij =
∂2

∂xi∂xj
. For biharmonic interface problems, while the Dirichlet interface conditions

(1.1d)-(1.1e) are universal, there are two types of Neumann interface conditions in the literature. The first
one, derived from Stokes formulation, takes the form

[[β∆u]]Γ = 0, [[∂n(β∆u)]]Γ = 0. (1.2)

The second type is derived form the energy functional of free thin plate bending problem, which takes the
form of (1.1f)-(1.1g).

The main idea of immersed finite element methods is to solve interface problems on unfitted meshes
by designing special shape functions with similar behaviors as exact solutions around the interface. On
the interface elements, piecewise polynomials are enforced to (weakly) satisfy jump conditions on interface.
Over the past decades, the IFE method has been developed to solve elliptic equations [35, 30], elasticity
systems [36, 29], Stokes equations [32, 21], and Navier Stokes equations [22, 42], to name only a few. The
IFE method has been extended to higher order for solving elliptic problems through weak enforcement [2],
least square construction [3], Cauchy extension [28, 1], and Frenet transformation [4, 5]. The main obstacle
of high-order IFE construction is that polynomials are impossible to satisfy interface conditions exactly
on general curves. The least-squares approximation provides an efficient approach to weakly impose the
interface jump conditions [3, 21, 22].
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Several immersed finite element approaches have been developed for biharmonic interface problems. For
instance, [34, 18] employed a mixed formulation, and used piecewise linear IFE functions to approximate
the resulting saddle problem. In a recent paper [19], the mixed formulation was extended to biharmonic
interface problems on surfaces. The same idea has also been used in a finite difference framework [33]. In the
nonconforming framework, an immersed Morley element was constructed in [17] and a Nitsche extended finite
element method was developed for solving biharmonic interface problems. Nevertheless, the development of
high-order IFE spaces for fourth-order interface problems remains limited.

Other methods for biharmonic interface problems on unfitted meshes have also been proposed. For
example, CutFEM [14, 15, 16] use C1 finite element space with Nitsche’s method for weak enforcement
of the interface conditions. A reconstructed discontinuous Galerkin method [20] has been developed using
unfitted meshes, where the approximation space is constructed by patch reconstruction and the interface
conditions are enforced weakly through Nitsche-type techniques. More recently, a nonconforming virtual
element method on unfitted polygonal meshes has been developed in [37].

In this paper, we introduce a modified C0 interior penalty method with immersed Pk finite elements
for solving the biharmonic interface problem (1.1). High-order Pk immersed finite element spaces are
constructed through a recently developed least-squares approach [3, 21]. We analyze key properties of new
IFE space, such as unisolvency and partition of unity, and verify their approximation capability. These
spaces are incorporated into a modified C0 interior penalty method, in which additional penalty terms are
imposed along the interface curves for stabilization. We prove the well-posedness of the numerical scheme
and present extensive numerical examples to demonstrate the optimal convergence in L2, semi-H1 and
semi-H2 norm.

The rest of paper is organized as follows: Section 2 introduces notations and assumptions used throughout
the text. Section 3 develops the high-order immersed finite element spaces and establish their fundamental
properties. Section 4 presents the modified C0 interior penalty scheme and its theoretical analysis on well-
posedness. Section 5 reports numerical experiments to assess the performance of the method. Section 6
concludes with a brief summary.

2 Notations and Assumptions

In this section, we introduce some notations and assumptions to be used in this paper. Let Ω̃ ⊂ Ω, we
denote the standard Sobolev space W k,p(Ω̃) with norm ∥ · ∥Wk,p(Ω̃) and semi-norm | · |Wk,p(Ω̃) for k ≥ 1 and

1 ≤ p ≤ ∞. For p = 2, we write Hk(Ω̃) with norm ∥·∥k and semi-norm | · |k. If Ω̃∩Γ ̸= ∅, we set Ω̃s = Ω̃∩Ωs

(s = +,−) and define the broken Sobolev space

PW k,p(Ω̃) = {u : u|Ω̃s ∈W k,p(Ω̃s), s = +,−, u satisfies (1.1d)− (1.1g)}. (2.1)

For p = 2, we denote PW k,2(Ω̃) by PHk(Ω̃). For matrix value functions u with ui,j ∈ W k,p(Ω̃), we denote
the corresponding Sobolev space Wk,p(Ω̃) and define

∥u∥Wk,p(Ω̃) =
∑
i,j

∥uij∥Wk,p(Ω̃). (2.2)

Let Th be a shape-regular [10] triangular mesh on Ω with mesh size h = maxT∈Th{hT } where hT is the
diameter of the element T ∈ Th. Define the set of interface elements T i

h = {T ∈ Th : T ∩ Γ ̸= ∅}, and the
non-interface elements T n

h = Th\T i
h . For T ∈ T i

h , we let T± = T ∩ Ω±, and ΓT = Γ ∩ T .
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Let Eh denote the set of all edges of the mesh Th, and E̊h the interior edges. Denote E i
h and En

h = Eh\E i
h

the set of interface edges and non-interface edges, respectively. For each e ∈ E i
h, define e

± = e∩Ω±. Let F i
h

be the set of edges belonging to interface elements. For any e ∈ E̊h denote the adjacent elements by T 1
e and

T 2
e , and define their jump and average by

[[w]]e = w|T 1
e
− w|T 2

e
, {{w}}e =

1

2

(
w|T 1

e
+ w|T 2

e

)
. (2.3)

The unit normal ne is oriented from T 1
e to T 2

e , and the tangent vector te is taken counterclockwise along e.
These notations are illustrated in Figure 2.1.

We assume that the interface Γ is C2 smooth and satisfies the following assumptions:

(H1) The interface Γ cannot intersect an edge of any element at more than two points unless the edge is
part of Γ.

(H2) If Γ intersects the boundary of an element at two points, these intersection points must be on different
edges of this element.

The smoothness of Γ ensures the following lemma holds:

Lemma 2.1 (r-tubular neighborhood). Let Γ be a regular, simple, C2 curve. For each point X ∈ Γ, let
Nx(r) to be the line segment of length 2r centered at x and perpendicular to Γ. Then, there exists r > 0
such that for any two points X,Y ∈ Γ, X ̸= Y , the line segments NX(r) and NY (r) are disjoint. We define
the r-tubular neighborhood of Γ by UΓ(r) = ∪X∈ΓNX(r).

As in most cases, our analysis in this paper is conducted on the mesh Th with sufficiently small h. To
make it precise, inspired by [31], we denote the radius of the tubular neighborhood of the interface Γ by r
and then restrict h < r/2.

Ω−

Ω+

Γ

te
ne

T 1,−
e

T 1,+
e

T 2,−
e

T 2,+
e

ΓT 1
e

ΓT 2
e A1

A2

A3

O

Aλ
1

Aλ
2

Aλ
3

Dλ

D

E
Eλ

Figure 2.1: Notations of this article (Left) and fictitious element (Right)

3 High-Order Immersed FEM Space

In this section, we construct IFE spaces that approximately satisfy the biharmonic interface conditions
(1.1d)-(1.1g).
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3.1 Least-Squares Biharmonic IFE Spaces

For each triangular element T ∈ Th, let Pp(T ) be the standard polynomial space of degree at most p on
T . Let {Ai : i ∈ Ip} be the set of Lagrange nodes with set Np(T ) = {Ai}i∈Ip and Ip the index set. For
example, when p = 2, we have |Ip| = 6, with A1, A2, A3 are vertices of T , and A4, A5, A6 are midpoints of
its edges.

On each non-interface element T ∈ T n
h , the local IFE space on T is identical to the standard Lagrange

finite element space, i.e. Pp(T ). Let ψ
p
i,T ∈ Pp(T ) be the Lagrange shape functions such that

ψp
i,T (Aj) = δij , ∀ i, j ∈ Ip,

where δij is Kronecker delta function. In this case, the local IFE space on T is given by

Sp
h(T ):=span{ψp

i,T : i ∈ Ip}, for T ∈ T n
h .

On each interface element T ∈ T i
h , the interface conditions are enforced in a least-squares sense. We

denote I±
p = {i ∈ Ip : Ai ∈ T±} the index set of Lagrange nodes located in T±. Moreover, we define the

tensor polynomial space Sp(T ) = Pp(T )× Pp(T ) and the piecewise polynomial space

Hp(T ) = {v ∈ L2(T ) : v|T+ ∈ Pp(T
+), v|T− ∈ Pp(T

−)}. (3.1)

The spaces Sp(T ) and Hp(T ) are isomorphic, i.e., there exists a natural isomorphism MT : Sp(T ) →
Hp(T ) given by

MT (u, v) =

{
u, on T+

v, on T−,
∀(u, v) ∈ Sp(T ). (3.2)

The local IFE space on the interface element is constructed as a subspace of Hp(T ). For ease of expo-
sition, we construct the IFE space as a subspace of Sp(T ) and then map into Hp(T ) through MT . It is
straightforward to verify that the following functions form a basis of Sp(T ):

ξpi,T =


(
ψp
i,T , 0

)
, if i ∈ I+

p(
0, ψp

i,T

)
, if i ∈ I−

p ,
ηpi,T =


(
0, ψp

i,T

)
, if i ∈ I+

p(
ψp
i,T , 0

)
, if i ∈ I−

p .
(3.3)

We may write Sp = Sp,1 ⊕ Sp,2 where Sp,1 = span{ξpi,T , i ∈ Ip} and Sp,2 = span{ηpi,T , i ∈ Ip}. To enforce

interface conditions, we define bilinear form J p
λ (·, ·) : Sp(T ) × Sp(T ) 7→ R+ ∪ {0}, which measures the

violation of the interface conditions:

J p
λ (u, v) =ω0

∫
Γλ
T

[[u]] [[v]] ds+ ω1h
2

∫
Γλ
T

[[∂nu]] [[∂nv]] ds+ ω2h
4

∫
Γλ
T

[[β∂nnu]] [[β∂nnv]] ds

+ ω3h
6

∫
Γλ
T

[[β(∂n∆u+ ∂nttu)]] [[β(∂n∆v + ∂nttv)]] ds,

(3.4)

here we adopted the idea of fictitious element introduced in [44], which constructs local IFE spaces on an
enlarged element to alleviate ill-conditioning caused by extremely small-cut subelements. Specifically, for
each T ∈ T i

h , we define the fictitious element

Tλ = {X ∈ R2 : ∃Y ∈ T s.t.
−−→
OX = λ

−−→
OY },
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where O is the barycenter of T . The extended interface segment is then Γλ
T = Tλ ∩Γ. An illustration of the

fictitious element is show in the right hand side of Figure 2.1.
The bilinear functional J p

λ (·, ·) defines a semi-norm on Sp, denoted by | · |J p
λ
. In fact, for p = 2 or 3, it

induces a norm, as will be shown later.
Given nodal values v = (vi)i∈Ip , the associated Sp IFE function on T takes the form

φp
T |v =

∑
i∈Ip

viξ
p
i,T +

∑
i∈Ip

ciη
p
i,T , (3.5)

where the unknown coefficient vector c = (ci)i∈Ip is determined by minimizing the violation of inter-
face conditions | · |J p

λ
. The precise statement is in Theorem 3.2. We test (3.5) against ηpi,T to enforce

J p
λ (φ

p
T |v, η

p
i,T ) = 0, i = 1, 2, ..., |Ip| leading to the following linear system:

Ap,λc = −Bp,λv, (3.6)

with
Ap,λ

ij =
(
J p
λ (ηj,T , ηi,T )

)
i,j∈Ip ∈ R|Ip|×|Ip|, Bp,λ

ij =
(
J p
λ (ξj,T , ηi,T )

)
i,j∈Ip ∈ R|Ip|×|Ip|. (3.7)

The IFE functions of space Hp are then constructed by mapping φp
T |v back via MT . In summary, the IFE

basis functions on T ∈ T i
h is defined by:

ϕpi,T := MTφ
p
T |ei , i ∈ Ip. (3.8)

where ei is the canonical basis vector in R|Ip|. It is straightforward to verify ϕpi,T (Aj) = δij for i, j ∈ Ip.
Examples of P2 and P3 IFE basis functions are shown in Figure 3.1. In the first row, the third, fifth and
sixth P2 IFE basis functions are presented, while the second row lists the third, fifth and tenth P3 basis
functions. It is clear that the pointwisely continuity of basis functions along the interface ΓT cannot be
guaranteed. In fact, enforcing two distinct polynomials to coincide pointwise on nontrivial curve is generally
impossible. Instead, the IFE basis functions are weakly continuous across the interface.

For each T ∈ Th, we define the local finite element space Sp
h(T ) by:

Sp
h(T ) :=

{
span{ψp

i,T , i ∈ Ip}, if T ∈ T n
h

span{ϕpi,T , i ∈ Ip}, if T ∈ T i
h .

(3.9)

The global IFE space Sp
h(Ω) is then defined by

Sp
h(Ω) =

{
u ∈ L2(Ω) : u satisfies conditions (C1)-(C4)

}
. (3.10)

where

(C1) u|T ∈ Sp
h(T ), for all T ∈ Th.

(C2) u is continuous on every non-interface edge e ∈ En
h .

(C3) u is continuous at all nodals Ai, i ∈ Ip for all T ∈ Th.

(C4) u|∂Ω = 0.

Remark 3.1. This least-squares functional (3.4) is sufficient for polynomial degree p ≤ 3. For higher
degree such that p ≥ 4, an appropriate extended jump conditions across interface needs to be employed in
the least-squares functional.
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Figure 3.1: First Row: 3rd, 5th, 6th P2 basis functions; Second Row: 3rd, 5th, 10th P3 basis functions.

Figure 3.2: The exemplified cut cases when interface is a line. The sub-figures 1-3 are Type I elements for
P2, the sub-figures 4-6 are Type II elements for P2.
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3.2 Property of Biharmonic IFE Spaces

In this subsection, we present some basic properties for the biharmonic IFE space (3.9).

Theorem 3.1 (Unisolvence). On every interface element T ∈ T i
h , for polynomial degrees p = 2 and p = 3

with Γ not a straight line segment, given any nodal values v, there exists a unique IFE shape function in
the form of (3.5).

Proof. The proof of existence follows arguments similar to Theorem 2.1 of [21]. For uniqueness, let Kp
λ

denote the null space of Sp,2. Then we prove the uniqueness in different categories of curve types for Γλ
T .

Case 1. Γλ
T is a straight line.

We consider p = 2 as an example. For this degenerate case, let u = (u1, u2) ∈ Sp,2 ∩ Kp
λ. Since v = 0,

we may write u =
∑|I|

i=1 ciηi,T . Because Γλ
T is a line, the condition u ∈ Kp

λ implies

[[u]] ≡ 0, [[∂nu]] ≡ 0, [[β∂nnu]] ≡ 0 and [[β (∂n∆u+ ∂nttu)]] ≡ 0

on Γλ
T . Equivalently, this yields a linear system Mc = 0 where M ∈ R|Ip|×|Ip|. The structure of M depends

on how the interface segment intersects the element T . If the interface passes through two legs of the right
angle, T is called a type I element; otherwise, it is called a type II element. Some exemplified cutting
configurations are illustrated in Figure 3.2. In each case, uniqueness follows by verifying that det(M) ̸= 0
through direct computations. For instance, in the left configuration of Figure 3.2, the determinant can be
explicitly written as:

det(M) = 32(d2 + e2)2(P1 + ρP2) > 0 (3.11)

where 1/2 ≤ d ≤ 1 and 1/2 ≤ e ≤ 1, ρ = β+/β−, and P1 are P2 are polynomial of d and e which cannot be
equal to 0 at the same time:

P1 =− d3(1− 2e)2e− 2d2(−2 + e)e3 − e4 + de3(−1 + 4e) + d4(−1 + 4e− 2e2) ≥ P1(1/2, 1/2) ≥ 1/8,

P2 =2d4(−1 + e)2 + d3(1− 2e)2e+ 2d2(−1 + e)2e2 + 2e4 + d(e3 − 4e4) ≥ P2(1, 1) ≥ 0.

(3.12)

The remaining case can be verified using the same logic, although the computation are tedious to included
here. This proves the positive definiteness of J p

λ on Sp,2, which means J p
λ (·, ·) is an inner product on Sp,2.

Consequently, the matrix A is positive definite and therefore invertible.

Case 2. Γλ
T is either a non-algebraic curve or an algebraic curve with degree greater than p.

In this case, let (u1, u2) ∈ Sp,2 ∩ Kp
λ, then we claim that (u1, u2) ≡ (0, 0). Indeed, note that u1 − u2 is

a polynomial of degree at most p. It is impossible for such a polynomial to vanish almost everywhere on a
non-algebraic curve, or an algebraic curve with degree greater than p. Therefore, we must have u1 − u2 ≡ 0
on Tλ, which implies u1 = u2. Since both vanish at all nodes Ai,i ∈ Ip, it follows that u1 = u2 ≡ 0. Hence,
J p
λ (·, ·) is an inner product on Sp,2. Again, we conclude that A is positive definite and thus invertible.

Case 3. Γλ
T is an algebraic curve of degree larger than p/2 but less than or equal to p.

8



In this case, let (u1, u2) ∈ Sp,2 ∩ Kλ. We may write

u1 − u2 = LkQ

where L(x, y) is a polynomial whose zeros are given by Γλ
T and k ≥ 1. Without loss of generality, assume

that L is irreducible and relatively prime to the non-constant polynomial Q. Since u1−u2 is of oder at most
p and Γλ

T is of degree larger than p/2, we can only have k < 2, i.e. k = 1. Since (u1, u2) ∈ Kp
λ, we must have

∂n(L
kQ) ≡ 0

on Γλ
T . By direct computation, we have

∂nL
kQ = kLk−1∂n(L)Q+ Lk∂nQ.

When k = 1, this reduces to ∂nLQ = (∂nL)Q on Γλ
T . Here, (∂nQ)L = 0 is due to L = 0 on Γλ

T . Since L and
Q are relatively prime, it follows that ∂nL ≡ 0 on Γλ

T . This implies ∂xL = ∂yL = 0 on Γλ
T , contradicting the

assumption that Γλ
T is a nontrivial algebraic curve. Thus, the only possibility is k = 0 and Q ≡ 0, so that

u1 − u2≡0 on Tλ. The remaining conclusion follows as in the previous cases.

Remark 3.2. For general polynomial order p, the construction based on the bilinear form (3.4) guarantees
the existence of IFE shape functions. However, uniqueness can only be established when the interface curve
is either non-algebraic or an algebraic curve of degree strictly greater than p/2. So for higher-order cases,
it is natural to extend the interface jump conditions by incorporating additional terms in (3.4).

Theorem 3.2 (Least Square Construction). On every interface element T ∈ T i
h , given nodal values v, the

IFE shape function constructed by the above procedure minimizes the semi norm | · |J p
λ
over Sp.

Proof. The proof follows the same argument as Theorem 2.2 in [21]. The property is a consequence of the
least-squares construction of the IFE shape functions.

Theorem 3.3 (Partition of Unity). On every interface element T ∈ T i
h , IFE basis functions satisfy the

following partition of unity property: ∑
i∈Ip

ϕpi,T ≡ 1, p = 2, 3. (3.13)

Proof. Let ϕpT =
∑

i∈Ip ϕ
p
i,T , so that M−1

T ϕpT ∈ Sp(T ). By direct computation, we have

ϕpT (Ai) = 1, i ∈ Ip
since ϕpi,T (Aj) = δij . This corresponds to the case v = 1 in the IFE construction. By Theorem 3.1, there
exists a coefficient vector c such that

ψp
T = M−1

T ϕpT , ψp
T =

∑
i∈Ip

ξpi,T +
∑
i∈Ip

ciη
p
i,T . (3.14)

It is clear that c = 1 is a valid solution due to the partition of unity results of standard Lagrange type basis
functions and the definitions of ξpi,T and ηpi,T . By uniqueness result in Theorem 3.1, this solution is unique,
so c = 1. Therefore,

ϕpT = MT

∑
i∈Ip

ξpi,T +
∑
i∈Ip

ηpi,T

 ≡ 1, on T. (3.15)
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4 Immersed C0 Interior Penalty Method

In this section, we derive the immersed C0 interior penalty scheme for the biharmonic interface problem.

4.1 Derivation of Immersed C0 Interior Penalty Method

Let u ∈ PH4(Ω) be the true solution of the problem (1.1). Define

Vh = {v ∈ H1
0 (Ω) : v|T ∈ H2(T ) if T ∈ T n

h , v|T± ∈ H2(T±) if T ∈ T i
h}. (4.1)

On each interface element T ∈ T i
h , multiplying the equation (1.1a) by v ∈ Vh and integrating by parts on

the subelement T s (s = ±) gives∫
T s

∆(β∆u) v dX = −
∫
T s

∇v · (∇β∆u) dX +

∫
∂T s

v (∇β∆u · n) ds

=

∫
T s

β∇2u : ∇2v dX +

∫
∂T s

β (∂n∆u) v ds−
∫
∂T s

β
(
∇2u

)
: (∇v ⊗ n) ds,

(4.2)

where (a⊗ b)ij = aibj . After some simplification, we obtain∫
T s

(
β∆2u

)
v dX =

∫
T s

β∇2u : ∇2v dX +

∫
∂T s

[β∂n∆uv − β∂nnu∂nv − β∂ntu∂tv] ds. (4.3)

Using the tangential derivative identity:∫
∂T s

∂ntu∂tv ds =

∫
∂T s

∂t (∂ntuv) ds−
∫
∂T s

∂nttuv ds, (4.4)

together with the gradient theorem ∫
∂T s

∂t (∂ntuv) ds = 0. (4.5)

The equation (4.3) becomes∫
T s

(
β∆2u

)
v dX =

∫
T s

β∇2u : ∇2v dX −
∫
∂T s

β∂nnu∂nvds+

∫
∂T s

β (∂n∆u+ ∂nttu) vds. (4.6)

Similarly, on non-interface elements T ∈ T n
h , it holds [11]∫

T

(
β∆2u

)
v dX =

∫
T
β∇2u : ∇2v dX −

∫
∂T
β∂nnu∂nvds+

∫
∂T
β (∂n∆u+ ∂nttu) vds. (4.7)

Summing (4.6) over s = +,− and all interface elements T ∈ T i
h , together with summing (4.7) over all

T ∈ T n
h , yields∑

T∈Th

∫
T
fv dX =

∑
T∈Th

∫
T
β∇2u : ∇2v dX

−
∑
e∈E̊h

∫
e
{{β∂nnu}} [[∂nv]] ds+

∑
e∈E̊i

h

∫
e
{{β (∂n∆u+ ∂nttu)}} [[v]] ds

−
∑
T∈T i

h

∫
ΓT

{{β∂nnu}} [[∂nv]] ds+
∑
T∈T i

h

∫
ΓT

{{β (∂n∆u+ ∂nttu)}} [[v]] ds.

(4.8)
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Finally, adding symmetric terms and stabilization terms following the convention of interior penalty methods,
the immersed C0 interior penalty Galerkin scheme for the biharmonic interface problem is defined as: find
uh ∈ Sp

h(Ω), such that:
ah(uh, vh) = Lf (vh), ∀ vh ∈ Sp

h(Ω), (4.9)

where ah(uh, vh) = Ah(uh, vh) + Jh,u(uh, vh) + Jh,n(uh, vh). The components of ah(uh, vh) are given by

Ah(u, v) =
∑
T∈Th

∫
T
β∇2u : ∇2v dX,

Jh,u(u, v) =−
∑
e∈E̊h

∫
e
{{β∂nnu}} [[∂nv]] ds−

∑
e∈E̊h

∫
e
{{β∂nnv}} [[∂nu]] ds+

∑
e∈E̊n

h

σuβ

|e|

∫
e
[[∂nu]] [[∂nv]] ds

+
∑
e∈E̊i

h

(
σuβ

+

|e+|

∫
e+

[[∂nu]] [[∂nv]] ds+
σuβ

−

|e−|

∫
e−

[[∂nu]] [[∂nv]] ds

)
+

∑
T∈T i

h

σu {{β}}
hT

∫
ΓT

[[∂nu]] [[∂nv]] ds,

(4.10)

Jh,n(u, v) =
∑
e∈E̊i

h

σF

(
|e+|β+

∫
e+

[[∂nnu]] [[∂nnv]] ds+ |e−|β−
∫
e−

[[∂nnu]] [[∂nnv]] ds

)

+
∑

e∈E̊n
h∩Fi

h

σF |e|β
∫
e
[[∂nnu]] [[∂nnv]] ds+

∑
e∈E̊i

h

σn {{β}}
|e|3

∫
e
[[u]] [[v]] ds+

∑
T∈T i

h

σn {{β}}
h3T

∫
ΓT

[[u]] [[v]] ds.

(4.11)
with {{β}} = (β+ + β−)/2. In this scheme, stabilization terms are included both on interface edges and
interface segments, since the IFE space does not enforce the interface conditions pointwise. Inspired by [31],
we further add penalty terms on the flux ∂2nu to enhance the numerical stability. These terms are applied
to all edges of interface elements. A similar idea was employed in [21] where additional penalty terms were
introduced to stabilize the pressure field in Stokes interface problems.

4.2 Well-posedness of the Numerical Solution

We establish the well-posedness of the numerical solution uh obtained by the scheme (4.9). Define the
mesh-dependent norm ∥ · ∥h on Sp

h by

∥v∥2h =
∑
T∈Th

β∥∇2v∥2L2(T ) +
∑
e∈E̊n

h

σuβ

|e| ∥[[∂nv]]∥2L2(e) +
∑
T∈T i

h

σu {{β}}
hT

∥[[∂nv]]∥2L2(ΓT )

+
∑
e∈E̊i

h

σu

(
β+

|e+| ∥[[∂nv]]∥
2
L2(e+) +

β−

|e−| ∥[[∂nv]]∥
2
L2(e−)

)
+

∑
e∈E̊n

h∩Fi
h

σF |e|β ∥[[∂nnv]]∥2L2(e)

+
∑
e∈E̊i

h

σF

(
|e+|β+ ∥[[∂nnv]]∥2L2(e+) + |e−|β− ∥[[∂nnv]]∥2L2(e−)

)
+

∑
e∈E̊i

h

σn {{β}}
|e|3 ∥[[v]]∥2L2(e)

+
∑
T∈T i

h

σn {{β}}
h3T

∥[[v]]∥2L2(ΓT ) .

(4.12)

Lemma 4.1. ∥ · ∥h defines a norm on Sp
h.
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Proof. It is clear that ∥ · ∥h defines a semi-norm, so it remains to show positivity. Let v ∈ Sp
h and assume

∥v∥h = 0. Then for each T for T n
h and each each subelement T± with T i

h , we have ∥∇2v∥2 = 0. Hence, v
is piecewise linear. By the definition of ∥ · ∥h, the jump of v vanish across all non-interface edges, interface
edges e ∈ E i

h, and interface segments ΓT . Thus, v is continuous across the entire domain Ω. Similarly,
the jumps of normal derivatives vanish, indicating v is globally linear. Since v|∂Ω = 0 and Ω is a polygon
domain, it follows that v ≡ 0. Hence ∥ · ∥h is a norm on Sp

h.

Next we prove the trace inequality for IFE spaces. We first recall the standard trace inequality for a
kth-degree polynomial v on a triangle T , with edge e [43]:

∥v∥L2(e) ⩽

√
(k + 1)(k + 2)

2

|e|
|T |∥v∥L2(T ). (4.13)

Building on this estimate, we derive trace inequalities tailored to IFE functions on interface elements/edges.

Lemma 4.2. Let e ∈ E i
h be an interface edge with neighboring element T 1

e and T 2
e . Suppose v is a polynomial

of degree k. Then for s = +,−, there exists a constant C, independent of interface location and h, such that
the following estimate holds for at least one of i ∈ {1, 2}:

∥v∥L2(es) ≤ C|es|−1/2∥v∥
L2(T i,s

e )
. (4.14)

Proof. Without loss of generality, consider the isosceles subtriangle T̃1 ⊂ T 1,s
e with base edge es and base

angle α̃ = min{α, π/4}, as constructed in the proof of Lemma 6 in [31] (see Figure 4.1). The existence of
such a subtriangle is guaranteed by Lemma 2.1. Here, α is the minimum nonzero angle of the triangulation
whose existence is ensured by the shape regularity assumption on Th. Clearly, α̃ is independent of the
interface location. Applying the standard trace inequality on T̃1, we obtain

∥v∥L2(es) ⩽

√
(k + 1)(k + 2)

2

|es|
|T̃1|

∥v∥L2(T̃1)
=

√
2(k + 1)(k + 2)

|es| tan α̃ ∥v∥
L2(T 1,s

e )
. (4.15)

The equality is due to |T̃1| = 1
4 |es|2 tan(α̃). Setting C =

√
2(k+1)(k+2)

tan α̃ , we obtain the estimate. The constant
C depends only on the polynomial degree k and shape-regularity constant.

Then we derive the following estimate for the symmetric term of (4.9) on interface edge.

Lemma 4.3. Let u, v ∈ Sp
h. Then∣∣∣∣ ∑

e∈E̊i
h

∫
e
{{β∂nnu}} [[∂nv]] ds

∣∣∣∣
≤1

8

( ∑
T∈Th

β∥∇2u∥2L2(T ) +
∑
e∈E̊i

h

β+|e+| ∥[[∂nnu]]∥2L2(e+) +
∑
e∈E̊i

h

β−|e−| ∥[[∂nnu]]∥2L2(e−)

)

+ C

( ∑
e∈E̊i

h

β+

|e+| ∥[[∂nv]]∥
2
L2(e+) +

∑
e∈E̊i

h

β−

|e−| ∥[[∂nv]]∥
2
L2(e−)

)
,

(4.16)

where C > 0 is independent of the interface location and the mesh size h.

12



α̃

α̃

Γ

T̃

Figure 4.1: An illustration of triangular T̃

Proof. On the subedge e+, we have the following equality:∑
e∈E̊i

h

∫
e+

{{β∂nnu}} [[∂nv]] ds =
∑
e∈E̊i

h

∫
e+

(
β∂nnu

∣∣
T 2
e
+

1

2
[[β∂nnu]]

)
[[∂nv]] ds

=
∑
e∈E̊i

h

∫
e+
β∂nnu

∣∣
T 2
e
[[∂nv]] ds+

1

2

∑
e∈E̊i

h

∫
e+

[[β∂nnu]] [[∂nv]] ds =: Q1 +Q2.

(4.17)

Without loss of generality, choose T 2,+
e to be the subelement satisfying Lemma 4.2. Then by Cauchy-Schwarz

inequality, we have

|Q1| ≤
( ∑

e∈E̊i
h

β+|e+|
∥∥∥∂nnu∣∣T 2

e

∥∥∥2
L2(e+)

) 1
2
( ∑

e∈E̊i
h

β+

|e+| ∥[[∂nv]]∥
2
L2(e+)

) 1
2

. (4.18)

Applying Lemma 4.2 on T 2,+
e , we have

|Q1| ≤C
( ∑

e∈E̊i
h

β+ ∥∂nnu∥2L2(T 2,+
e )

) 1
2
( ∑

e∈E̊i
h

β+

|e+| ∥[[∂nv]]∥
2
L2(e+)

) 1
2

≤C
( ∑

T∈T i
h

β+∥∇2u∥2L2(T+)

) 1
2
( ∑

e∈E̊i
h

β+

|e+| ∥[[∂nv]]∥
2
L2(e+)

) 1
2

.

(4.19)

By Young’s inequality ab ≤ 1
8a

2 + 2b2, we have

|Q1| ≤
1

8

( ∑
T∈T i

h

β+∥∇2u∥2L2(T+)

)
+ 2C2

( ∑
e∈E̊i

h

β+

|e+| ∥[[∂nv]]∥
2
L2(e+)

)
. (4.20)
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For Q2, Cauchy-Schwarz and Young’s inequality give

|Q2| ≤
1

2

( ∑
e∈E̊i

h

β+|e+| ∥[[∂nnu]]∥2L2(e+)

) 1
2
( ∑

e∈E̊i
h

β+

|e+| ∥[[∂nv]]∥
2
L2(e+)

) 1
2

≤ 1

8

( ∑
e∈E̊i

h

β+|e+| ∥[[∂nnu]]∥2L2(e+)

)
+

1

2

( ∑
e∈E̊i

h

β+

|e+| ∥[[∂nv]]∥
2
L2(e+)

)
.

(4.21)

Combine estimates of Q1, Q2, we have:∣∣∣∣ ∑
e∈E̊i

h

∫
e+

{{β∂nnu}} [[∂nv]] ds
∣∣∣∣ ≤1

8

( ∑
T∈T i

h

β+∥∇2u∥2L2(T+) +
∑
e∈E̊i

h

β+|e+| ∥[[∂nnu]]∥2L2(e+)

)

+ (2C2 +
1

2
)

( ∑
e∈E̊i

h

β+

|e+| ∥[[∂nv]]∥
2
L2(e+)

)
.

(4.22)

An analogous estimate holds on e−. Adding the two sides, we obtain the estimate (4.17).

We have a similar estimate for the edges e ∈ E̊n
h ∩F i

h neighbored by a non-interface element and interface
element. This result is summarized in the following Lemma.

Lemma 4.4. Let u, v ∈ Sp
h. Then∣∣∣∣ ∑

e∈E̊n
h∩Fi

h

∫
e
{{β∂nnu}} [[∂nv]] ds

∣∣∣∣ ≤1

8

( ∑
T∈Th

β∥∇2u∥2L2(T ) +
∑

e∈E̊n
h∩Fi

h

β|e| ∥[[∂nnu]]∥2L2(e)

)

+ C
∑
e∈E̊n

h

β

|e| ∥[[∂nv]]∥
2
L2(e) .

(4.23)

where C > 0 is independent of the interface location and the mesh size h.

Proof. For e ∈ E̊n
h ∩ F i

h, at least one neighborhood element is a non-interface element. Without loss of
generality, assume T 2

e is non-interface. Then∑
e∈E̊n

h∩Fi
h

∫
e
{{β∂nnu}} [[∂nv]] ds =

∑
e∈E̊n

h∩Fi
h

∫
e

(
β∂nnu

∣∣
T 2
e

)
[[∂nv]] ds+

1

2

∑
e∈E̊n

h∩Fi
h

∫
e
[[β∂nnu]] [[∂nv]] ds =: Q3 +Q4.

(4.24)

For Q3, applying standard trace inequality similar to Lemma 4.2 and summing over all elements gives

|Q3| ≤ C

( ∑
T∈Th

β∥∇2u∥2L2(T )

) 1
2
( ∑

e∈E̊n
h∩Fi

h

β

|e| ∥[[∂nv]]∥
2
L2(e)

) 1
2

. (4.25)

For Q4, Cauchy-Schwarz inequality gives

|Q4| ≤
1

2

( ∑
e∈E̊n

h∩Fi
h

β|e| ∥[[∂nnu]]∥2L2(e)

) 1
2
( ∑

e∈E̊n
h∩Fi

h

β

|e| ∥[[∂nv]]∥
2
L2(e)

) 1
2

. (4.26)

Applying Young’s inequality to the bounds for Q3 and Q4 yields the estimate (4.23).
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Next we prove the continuity and coercivity for ah(u, v):

Theorem 4.1 (Continuity). For all u, v ∈ Sp
h, there exists a constant C independent with the interface

location such that:
ah(u, v) ≤ C ∥u∥h ∥v∥h . (4.27)

Proof. It suffices to bound the symmetric terms, since the other terms follow directly by Cauchy-Schwarz
inequality. For e ∈ En

h \F i
h, the standard estimate [8] together with trace and inverse inequalities gives∣∣∣∣ ∑

e∈En
h \Fi

h

∫
e
{{β∂nnu}} [[∂nv]] ds

∣∣∣∣ ≤ C

( ∑
T∈Th

β∥∇2u∥2L2(T )

) 1
2
( ∑

e∈E̊n
h

β

|e| ∥[[∂nv]]∥
2

) 1
2

≤ C ∥u∥h ∥v∥h . (4.28)

For e ∈ En
h ∩ F i

h, the bound follows from (4.25) and (4.26) . For e ∈ E̊ i
h we use (4.19) and (4.21). The

stabilization terms in Jh,u(u, v) and Jh,n(u, v) are bounded by Cauchy-Schwarz inequality. Finally, for
Ah(u, v) we have ∣∣∣∣Ah(u, v)

∣∣∣∣ ≤ ( ∑
T∈Th

β∥∇2u∥2L2(T )

) 1
2
( ∑

T∈Th

β∥∇2v∥2L2(T )

) 1
2

≤ ∥u∥h ∥v∥h . (4.29)

Combining all estimates gives the continuous result (4.27).

Theorem 4.2 (Coercivity). For all v ∈ Sp
h, there exists a constant c,, independent of the interface location,

such that
ah(v, v) ≥ c ∥v∥2h . (4.30)

Proof. As before, we only need to estimate the symmetric terms. For e ∈ E̊n
h \F i

h, the standard estimate
yields

−
∑

e∈En
h \Fi

h

∫
e
{{β∂nnv}} [[∂nv]] ds ≥− C

( ∑
T∈Th

β∥∇2u∥2L2(T )

) 1
2
( ∑

e∈E̊n
h

β

|e| ∥[[∂nv]]∥
2

) 1
2

≥− C

[
1

8C

( ∑
T∈Th

β∥∇2u∥2L2(T )

)
+ 2C

( ∑
e∈E̊n

h

2 {{β}}e
|e| ∥[[∂nv]]∥2

)]

≥− 1

8

( ∑
T∈Th

β∥∇2u∥2L2(T )

)
− C

( ∑
e∈E̊n

h

{{β}}e
|e| ∥[[∂nv]]∥2

)
.

(4.31)

For e ∈ En
h ∩ F i

h, Lemma 4.4 gives

−
∑

e∈E̊n
h∩Fi

h

∫
e
{{β∂nnv}} [[∂nv]] ds

≥− 1

8

( ∑
T∈Th

β∥∇2v∥2L2(T ) +
∑

e∈E̊n
h∩Fi

h

β|e| ∥[[∂nnv]]∥2L2(e)

)
− C

( ∑
e∈E̊n

h

β

|e| ∥[[∂nv]]∥
2
L2(e)

)
.

(4.32)
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For e ∈ E̊ i
h, we use Lemma 4.3 to get:

−
∑
e∈E̊i

h

∫
e
{{β∂nnv}} [[∂nv]] ds

≥− 1

8

( ∑
T∈Th

β∥∇2v∥2L2(T ) +
∑
e∈E̊i

h

β+|e+| ∥[[∂nnv]]∥2L2(e+) +
∑
e∈E̊i

h

β−|e−| ∥[[∂nnv]]∥2L2(e−)

)

− C

( ∑
e∈E̊i

h

β+

|e+| ∥[[∂nv]]∥
2
L2(e+) +

∑
e∈E̊i

h

β−

|e−| ∥[[∂nv]]∥
2
L2(e−)

)
.

(4.33)

Taking the generic C to be the maximum in the above three estimate, we have

ah(v, v) ≥
1

4

∑
T∈Th

β∥∇2v∥2L2(T ) + (σu − 2C)
∑
e∈E̊n

h

{{β}}e
|e| ∥[[∂nv]]∥2 +

∑
T∈T i

h

σu {{β}}e
|hT |

∥[[∂nv]]∥2L2(ΓT )

+(σu − C)

( ∑
e∈E̊i

h

β+

|e+| ∥[[∂nv]]∥
2
L2(e+) +

∑
e∈E̊i

h

β−

|e−| ∥[[∂nv]]∥
2
L2(e−)

)

+(σF − 1

8
)

( ∑
e∈E̊n

h∩Fi
h

|e|β ∥[[∂nnv]]∥2L2(e) +
∑
e∈E̊i

h

β+|e+| ∥[[∂nnv]]∥2L2(e+) +
∑
e∈E̊i

h

β−|e−| ∥[[∂nnv]]∥2L2(e−)

)

+
∑
e∈E̊i

h

σn {{β}}e
|e|3 ∥[[v]]∥2L2(e) +

∑
T∈T i

h

σn {{β}}e
h3T

∥[[v]]∥2L2(ΓT ) .

(4.34)

Choosing σu = 3C, σF = 1, and defining With c = min{1
4 , 2C}, we have the coercivity result.

The well-posedness of our numerical scheme follows directly from the continuity and coercivity results,
and the Lax-Milgram Theorem.

5 Numerical Examples

In this section, we present three numerical examples to demonstrate the performance of the immersed
C0 interior penalty method. Throughout all computation, the computational domain is chosen as Ω =
[−1, 1]× [−1, 1].

The interface-unfitted triangular mesh Th is constructed as follows: we first partition Ω into N2 uniform
squares with side length h = 2/N , and then subdivide each square into two triangles by its diagonals with
the negative slope.

For the construction of the IFE shape functions, we set the parameters in the bilinear form (3.4) as
ω0 = max{β+, β−}2 and ω1 = ω2 = ω3 = 1. Numerical quadratures on curve interface segments and curved
subelements are carried out by suitable mappings onto line segment and standard triangles, respectively.
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Figure 5.1: Illustration of interfaces used in Examples

5.1 Straight Line Interface

In this first example, we test the accuracy and consistency of proposed method with a straight line interface.
The interface is represented by the level set

Γ = {(x, y) ∈ Ω : 2x+ y − c = 0},

which partitions the domain into Ω+ = {(x, y) ∈ Ω : 2x+ y− c > 0} and Ω− = {(x, y) ∈ Ω : 2x+ y− c < 0}.
The exact solution is given by

u(x, y) =

{
1
β− (2x+ y − c)2 sin2(πy), x ∈ Ω−

1
β+ (2x+ y − c)2 sin2(πy), x ∈ Ω+.

(5.1)

In the following result, we take c =
√
0.5, see left plot of Figure 5.1 for a visualization.

Tables 1 and 3 report the interpolation errors of the P2 and P3 IFE spaces for the case (β−, β+) = (1, 100).
Both spaces exhibit optimal approximation order of convergence:

∥Ip
hu− u∥0 + h|Ip

hu− u|1 + h2|Ip
hu− u|2 ≈ O(hp+1), p = 2, 3. (5.2)

Tables 2 and Table 4 display the numerical solution errors. For p = 2, we observe optimal convergence in
the H1 and H2-seminorms, and suboptimal convergence in L2-norm, consistent with the known behavior of
the C0 interior penalty method for non-interface problems [26]. For p = 3, all norms convergence optimally,
These results confirm that our immersed finite element spaces, combined with the proposed immersed C0

interior penalty method, achieves the expected accuracy for the line interface case.
To further test the consistency with respect to the interface location, we consider a vertical interface

aligned with y-axis. The new line interface can be written as

Γ = {(x, y) : x− c = 0}.

The exact solution is

u(x, y) =

{
1
β− (x− c)2 sin2(πy), x ≤ c
1
β+ (x− c)2 sin2(πy), x > c

(5.3)
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N ||Ip
hu− u||0 order |Ip

hu− u|1 order |Ip
hu− u|2 order

10 2.2981× 10−2 9.2168× 10−1 3.5313× 101

20 2.9230× 10−3 2.97 2.3391× 10−1 1.98 1.7926× 101 0.98
40 3.6703× 10−4 2.99 5.8708× 10−2 1.99 8.9983× 100 0.99
80 4.5932× 10−5 3.00 1.4692× 10−2 2.00 4.5036× 100 1.00
160 5.7431× 10−6 3.00 3.6738× 10−3 2.00 2.2524× 100 1.00

Table 1: Interpolation error of immersed P2 element of line interface when β+ = 100, β− = 1

N ||uh − u||0 order |uh − u|1 order |uh − u|2 order

10 1.1367× 10−1 1.0854× 100 3.5853× 101

20 2.7870× 10−2 2.03 2.6715× 10−1 2.02 1.8030× 101 0.99
40 7.2460× 10−3 1.94 6.7052× 10−2 1.99 9.0140× 100 1.00
80 1.8531× 10−3 1.97 1.6832× 10−2 1.99 4.5059× 100 1.00
160 4.6735× 10−4 1.99 4.2162× 10−3 2.00 2.2527× 100 1.00

Table 2: Numerical solution errors of P2 element of line interface when β+ = 100, β− = 1

N ||Ip
hu− u||0 order |Ip

hu− u|1 order |Ip
hu− u|2 order

10 1.6860× 10−3 1.0195× 10−1 6.4074× 100

20 1.0708× 10−4 3.98 1.2934× 10−2 2.98 1.6289× 100 1.98
40 6.7182× 10−6 3.99 1.6225× 10−3 2.99 4.0884× 10−1 1.99
60 1.3280× 10−6 4.00 4.8104× 10−4 3.00 1.8184× 10−1 2.00
80 4.2028× 10−7 4.00 2.0298× 10−4 3.00 1.0231× 10−1 2.00
100 1.7218× 10−7 4.00 1.0394× 10−4 3.00 6.5485× 10−2 2.00

Table 3: Interpolation error of immersed P3 element of line interface when β+ = 100, β− = 1

N ||uh − u||0 order |uh − u|1 order |uh − u|2 order

10 6.4599× 10−3 1.3698× 10−1 6.0325× 100

20 4.1086× 10−4 3.97 1.7319× 10−2 2.98 1.5031× 100 2.00
40 2.7180× 10−5 3.92 2.1956× 10−3 2.98 3.7432× 10−1 2.01
60 5.4620× 10−6 3.96 6.5410× 10−4 2.99 1.6610× 10−1 2.00
80 1.7460× 10−6 3.96 2.7676× 10−4 2.99 9.3358× 10−2 2.00
100 7.1692× 10−7 3.99 1.4196× 10−4 2.99 5.9720× 10−2 2.00

Table 4: Numerical solution errors of P3 element of line interface when β+ = 100, β− = 1
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In this experiment, we set (β−, β+) = (1, 10) and fix the mesh size h = 2/40 = 0.05. The parameter
c varies across the interval [0.71, 0.79], so that the interface {x = c} moves through grid columns. When
c = 0.75, the interface align exactly with the mesh, and the immersed C0 interior penalty method reduces
to a standard C0 interior penalty method. Figure 5.2 reports the error in three norms as the interface
moves. The results demonstrates that the errors evolve smoothly with respect to the interface location,
including at the degenerated case when the interface coincides with the mesh. This confirms the robustness
and consistency of our method under interface movement.
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Figure 5.2: Errors of an moving line with respect to position

5.2 Parabola Interface Case

In this example, we test our method on a curved interface defined by a parabola. The interface is given by

Γ = {(x, y) ∈ Ω : y − (x2 + 2x+ c) = 0}

which divides the domain into Ω+ = {(x, y) ∈ Ω : y − (x2 + 2x + c) > 0} and Ω− = {(x, y) ∈ Ω :

y − (x2 + 2x+ c) < 0}. We set c = −
√
2
2 in the experiment, see the middle plot of Figure 5.1 for reference.

The exact solution is defined by

u(x, y) =

{
1
β−

(
x2 + 2x+ c− y

)2 (
1− y2

)2
, x ∈ Ω−,

1
β−

(
x2 + 2x+ c− y

)2 (
1− y2

)2
, x ∈ Ω+.

(5.4)
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Tables 5 and 6 report interpolation errors of the immersed P2 and P3 spaces for the case β+ = 10 and
β− = 1. In both cases, we observe optimal convergence rates consistent with theoretical expectations.

N ||Ip
hu− u||0 order |Ip

hu− u|1 order |Ip
hu− u|2 order

10 5.8973× 10−3 2.5587× 10−1 8.2234× 100

20 7.5802× 10−4 2.96 6.6025× 10−2 1.95 4.2167× 100 0.96
40 9.5420× 10−5 2.99 1.6647× 10−2 1.99 2.1224× 100 0.99
80 1.1949× 10−5 3.00 4.1718× 10−3 2.00 1.0631× 100 1.00
160 1.4944× 10−6 3.00 1.0437× 10−3 2.00 5.3187× 10−1 1.00

Table 5: Interpolation error of immersed P2 element of parabola interface when when β+ = 10, β− = 1

N ||Ip
hu− u||0 order |Ip

hu− u|1 order |Ip
hu− u|2 order

10 3.9532× 10−4 2.5529× 10−2 1.3731× 100

20 2.5089× 10−5 3.98 3.2559× 10−3 2.97 3.4956× 10−1 1.97
40 1.5807× 10−6 3.99 4.1044× 10−4 2.99 8.8171× 10−2 1.99
60 3.1153× 10−7 4.01 1.2152× 10−4 3.00 3.9124× 10−2 2.00
80 9.8835× 10−8 3.99 5.1370× 10−5 2.99 2.2057× 10−2 1.99
100 4.0438× 10−8 4.00 2.6281× 10−5 3.00 1.4101× 10−2 2.00

Table 6: Interpolation error of immersed P3 element of parabola interface when when β+ = 10, β− = 1

Figure 5.3 summarizes numerical solution errors for the parabola case with fixed β− = 1 and varying
β+. When β+ = 1, the interface disappears and the method reduces to the standard C0 interior penalty
method. In all cases, the proposed method achieves expected rates of convergence for both P2 and P3

spaces. The results also indicates mild variations in error magnitudes across different parameter values., but
the convergence remains robust.

5.3 Circular Interface Case

In this example, we consider a circular interface. The interface is the level-set function

Γ = {(x, y) ∈ Ω : x2 + y2 = r20}.

which separates the domain into Ω+ = {(x, y) ∈ Ω : x2 + y2 > r20} and Ω− = {(x, y) ∈ Ω : x2 + y2 < r20}.
The exact solution is

u(x, y) =


(x2+y2−r20)

2
sin2(πy)

β− , x ∈ Ω−

(x2+y2−r20)
2
sin2(πy)

β+ , x ∈ Ω+
(5.5)

We take r0 = π/6.28 in our tests, see the right plot of Figure 5.1 for reference.
Tables 7 and 9 report interpolation errors for β+ = 1 and β− = 50. As in previous examples, the

immersed P2 and P3 spaces exhibit optimal approximation in ∥ · ∥0, | · |1 and | · |2 norms. Tables 8 and 10
present the numerical solution errors for the proposed scheme.
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Figure 5.3: Numerical solution errors of P2 (first row) and P3 (second row) for parabola interface case

Finally, we examine the conditioning of the stiffness matrix associated with the scheme 4.9. Figure
5.4 shows condition number versus N for fixed β− = 1 and varying β+. For the P2 space (left), the
condition number scales like O(h−4); moreover, the magnitude is higher for large coefficient jumps than
for moderate ones. Similar behavior is observed for the immersed P3 space (right). These results indicate
regular conditioning of the proposed method.

N ||Ip
hu− u||0 order |Ip

hu− u|1 order |Ip
hu− u|2 order

10 7.5156× 10−3 3.0133× 10−1 1.1212× 101

20 9.8140× 10−4 2.94 7.8906× 10−2 1.93 5.8092× 100 0.95
40 1.2383× 10−4 2.99 1.9919× 10−2 1.99 2.9275× 100 0.99
80 1.5514× 10−5 3.00 4.9916× 10−3 2.00 1.4666× 100 1.00
160 1.9404× 10−6 3.00 1.2486× 10−3 2.00 7.3364× 10−1 1.00

Table 7: Interpolation error of immersed P2 element of circular interface when when β+ = 1, β− = 50
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N ||uh − u||0 order |uh − u|1 order |uh − u|2 order

10 3.7308× 10−2 4.3174× 10−1 1.1364× 101

20 1.0019× 10−2 1.90 1.2319× 10−1 1.81 5.8557× 100 0.96
40 2.9634× 10−3 1.76 3.4468× 10−2 1.84 2.9410× 100 0.99
80 8.2261× 10−4 1.85 9.1887× 10−3 1.91 1.4702× 100 1.00
160 2.1543× 10−4 1.93 2.3678× 10−3 1.96 7.3458× 10−1 1.00

Table 8: Numerical solution errors of P2 element of circular interface when β+ = 1, β− = 50

N ||Ip
hu− u||0 order |Ip

hu− u|1 order |Ip
hu− u|2 order

10 7.0400× 10−4 4.3002× 10−2 2.5482× 100

20 4.3799× 10−5 4.01 5.3550× 10−3 3.01 6.3730× 10−1 2.00
40 2.7397× 10−6 4.00 6.6977× 10−4 3.00 1.5955× 10−1 2.00
60 5.4131× 10−7 4.00 1.9849× 10−4 3.00 7.0938× 10−2 2.00
80 1.7129× 10−7 4.00 8.3747× 10−5 3.00 3.9910× 10−2 2.00
100 7.0169× 10−8 4.00 4.2880× 10−5 3.00 2.5545× 10−2 2.00

Table 9: Interpolation error of immersed P3 element of circular interface when when β+ = 1, β− = 50

5.4 A Flower Interface Case

In this final example, we consider a relatively complex flower-shaped interface. The level-set function of the
interface is defined as

ϕ(x, y) = (x2 + y2)[1 + 0.6 sin(6 arctan(y/x))]− (1.5π/6.28)4 ,

which splits the domain into Ω+ = {(x, y) ∈ Ω : ϕ(x, y) > 0} and Ω− = {(x, y) ∈ Ω : ϕ(x, y) < 0}. The
shape of this interface is shown in the left plot of Figure 5.5. We set the source term f = 0 and homogenous
boundary conditions.

Since it is difficult to construct an exact solution for this geometry, we adopt a reference solution û
computed on a very fine mesh (N = 320) to evaluate errors. To facilitate high-order numerical quadrature
on this irregular domain, we employ the technique described in [24, 41]. The computed errors for the

N ||uh − u||0 order |uh − u|1 order |uh − u|2 order

10 2.9512× 10−2 1.6345× 10−1 4.2294× 100

20 4.7377× 10−3 2.64 2.2606× 10−2 2.85 1.0358× 100 2.03
40 2.0030× 10−4 4.56 2.0387× 10−3 3.47 2.1701× 10−1 2.25
60 4.3622× 10−5 3.76 5.0789× 10−4 3.43 8.4434× 10−2 2.33
80 1.4458× 10−5 3.84 1.8888× 10−4 3.44 4.3573× 10−2 2.30
100 6.0724× 10−6 3.89 8.8723× 10−5 3.39 2.6391× 10−2 2.25

Table 10: Numerical solution errors of P3 element of circular interface when β+ = 1, β− = 50
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Figure 5.4: Condition number of P2 (left) and P3 (right) IPIFEM for circular interface case

immersed P2 C0 interior penalty method are reported in Table 11. The approximate error norms are
defined as

||uh − û||0̃ = h

 ∑
X∈Nh

(uh(X)− û(X))2

1/2

, |uh − û|1̃ = ||D2uh −D2û||0̃, (5.6)

where D2u denotes the second-order central difference approximation of ∇u on the grid function u. The
surface plot of the numerical solution is shown in the right plot of Figure 5.5.

N ||uh − û||0̃ order |uh − û|1̃ order

10 2.9510× 10−3 4.8539× 10−3

20 1.2720× 10−3 1.21 2.0239× 10−3 1.26
40 4.3351× 10−4 1.55 6.7660× 10−4 1.58
80 1.0786× 10−4 2.01 1.6779× 10−4 2.01
160 2.2620× 10−5 2.25 3.5572× 10−5 2.24

Table 11: Numerical solution errors of P2 element of flower interface when β+ = 1, β− = 50

6 Conclusion

In this paper, we developed immersed P2 and P3 finite element spaces for biharmonic interface problems.
We analyzed key properties of these spaces, including unisolvence and the partition of unity. The number
of degrees of freedom is identical to that of standard finite element spaces. The approximation capabilities
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Figure 5.5: The shape (Left) and surface plot (Right) of the flower interface example

of the proposed spaces were confirmed to be optimal through numerical experiments. We further applied
these spaces to solve biharmonic interface problem using an immersed C0 interior penalty method, where
additional penalty terms were introduced on both interior edges and interface segments to ensure stability
and theoretical consistency. Extensive numerical experiments with various interface shapes demonstrated
the optimal accuracy, robustness with respect to interface location, and regular conditioning of the proposed
method.
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