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Abstract

This paper designs and analyzes a new and stable Petrov–Galerkin (PG) immersed finite element method (IFEM) for the
econd-order elliptic interface problems by introducing stabilization terms based on the classical PG-IFEM, which lacks the
ocal positivity. The Petrov–Galerkin immersed finite element method uses the immersed finite element functions for the trial
pace and the standard finite element functions for the test space. Both the a priori and a posteriori error estimates of the

method are analyzed in this paper. We prove the continuity and inf-sup condition and the a priori error estimate of the energy
orm. The proposed a posteriori error estimator is proved to be both reliable and efficient, with both reliability and efficiency
onstants independent of the location of the interface. Extensive numerical results confirm the numerical scheme’s optimal
onvergence and indicate the robustness with respect to the interface-mesh intersection and the coefficient contrast, despite the
obustness of the inf-sup constant with respect to the interface-mesh intersection has yet been theoretically proved.

2022 Elsevier B.V. All rights reserved.
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1. Introduction

In the past decades, there has been a growing interest in numerical simulations for real-world multi-physics
roblems, such as multi-phase flow, fluid–structure interaction, biology membranes, and protein simulations, to name
few. The numerical simulations are often carried out over domains consisting of multiple materials separated by

nterfacial surfaces. The governing models for the numerical simulations are the commonly used partial differential
quations (PDE) of the interface type, widely known as interface problems.

There are generally two classes of numerical methods for interface problems: fitted-mesh methods and unfitted-
mesh methods. The fitted-mesh methods, such as the classical finite element method (FEM), require the compu-
tational mesh to align with the interface; otherwise, the convergence and accuracy might be compromised. Such
requirement often hinders applications with complex interfacial geometry or time-dependent problems with evolving

∗ Corresponding author.
E-mail addresses: cuiyu.he@okstate.edu (C. He), shun.zhang@cityu.edu.hk (S. Zhang), xzhang@okstate.edu (X. Zhang).

1 The research of this author was partially supported by the Research Grants Council of the Hong Kong SAR, China under the GRF Grant
rojects No. CityU 11302519 and CityU 11305319.
2 The research of this author was partially supported by the National Science Foundation grant DMS-2110833 and the 2021 ORAU Ralph

. Powe Junior Faculty Enhancement Award.
ttps://doi.org/10.1016/j.cma.2022.115744
045-7825/© 2022 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2022.115744
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2022.115744&domain=pdf
mailto:cuiyu.he@okstate.edu
mailto:shun.zhang@cityu.edu.hk
mailto:xzhang@okstate.edu
https://doi.org/10.1016/j.cma.2022.115744


C. He, S. Zhang and X. Zhang Computer Methods in Applied Mechanics and Engineering 404 (2023) 115744

i
p
p
i
G

c
i
a
p

n
t
t
d
m

interfaces. Because generating a high-quality three-dimensional mesh of a complicated geometry is extremely time-
consuming. In contrast, unfitted-mesh methods, such as Extended FEM [1–4], Cut-FEM [5–8], unfitted Hybrid
High-Order (HHO) method [9,10], Multiscale FEM [11–14] and Immersed FEM (IFEM) [15–18], etc., significantly
alleviate the body-fitting restriction on the mesh generation, therefore, have gained enormous popularity recently.

The main idea of IFEM is to incorporate interface jump conditions in designing IFE shape functions around
nterfaces. The development of IFEM can be traced back to [15] for one-dimensional (1D) elliptic interface
roblems using piecewise linear polynomial approximations. Since then, the IFEM has been extended to high-order
olynomial approximations [19,20], and multi-dimensional PDE problems [16–18,21–25]. Besides, the immersed
dea has been applied in other computational frameworks such as nonconforming FEM [26,27], discontinuous
alerkin method [28,29], finite volume method [30,31], and weak Galerkin method [32].
For multi-dimensional interface problems, using the classical IFEM [16,17,23] can only guarantee a sub-optimal

onvergence order. This sub-optimality is caused by its lack of consistency since the IFE basis functions are not
n the H 1-conforming subspace. One remedy is to use the partially-penalized IFEM [18], in which the consistency
nd stability terms are added on interface edges. The optimal convergence in the energy norm has been rigorously
roved [18,33].

An alternative strategy to ensure consistency is to use standard finite element functions in the test space. We
ote that the approximation property is only required for the trial space. Therefore, we have some flexibility for
he test space as long as the resulting linear system is stable, i.e., the resulting variational formulation satisfies
he continuity and the inf-sup condition. The resulting numerical scheme lies in the Petrov–Galerkin framework
ue to the difference in test and trial functional spaces. Some applications of the Petrov–Galerkin method in
ultiscale finite element methods can be found in [34,35]. The P1 Petrov–Galerkin type immersed finite element

method has been developed and widely applied for 2D elliptic interface problems, e.g., see [36–39], and for 3D
problems [40,41]. In [42], the authors developed a high-degree discontinuous PG-IFEM. The theoretical analysis of
the inf-sup condition for the one-dimension case has been proved in [43]. Optimal convergence rates are observed
for numerous numerical results in various dimensions. Theoretically, however, there is minimal analysis concerning
the well-posedness and optimal convergence rates for the error to our knowledge.

This paper analyzes the stability of several PG-IFEM schemes for two-dimensional interface problems. The main
difficulty is proving the inf-sup stability because the local stiffness matrix is not always positive due to arbitrary
interface-mesh intersection. Note that when the jump of coefficients vanishes, the PG-IFEM evolves into the classical
FEM, which is stable. This indicates that one can possibly obtain stability when the contrast is relatively small.
Such stability results in interface problems with mild coefficient contrast (< 16) are proved in [42]. In this paper,
without any restriction on the coefficient’s contrast, we also prove the inf-sup stability for the classical PG-IFEM
scheme under certain geometrical conditions of the interface.

Note that the positivity of local stiffness matrices is only a sufficient condition typically used to guarantee the
inf-sup stability. Therefore, lacking this property does not necessarily indicate that the global system is not inf-sup
stable. Indeed, though theoretically, the inf-sup stability has not been proved, extensive numerical results for the
classical PG-IFEM have shown its effectiveness in solving elliptic interface problems.

Since we cannot manage to prove the unconditional stability of the classical PG-IFEM scheme, we develop a
novel enhanced PG-IFEM with additional penalty terms for which we can theoretically establish the stability. Note
that one can no longer directly apply the classical penalty based on the solution jump along the interface edges
since the test function is conforming, nullifying the penalty term. The intuition is to penalize the distance between
the test and trial spaces. To do so, we first project the test function in the classical FE space into the IFEM space by
nodal interpolation and then penalize its solution jump along interface edges. We further add the penalization of the
normal flux jump along the interface edges. This enhanced formulation is consistent, continuous, and inf-sup stable
without any assumption on the mesh-interface intersection or the coefficient contrast. A priori error estimates are
established in the energy norm. We note that the inf-sup constant in the a priori error estimation has yet been proved
independent of the interface-mesh intersection in this paper. Nevertheless, extensive numerical results confirm the
numerical scheme’s optimal convergence and indicate robustness with respect to the interface-mesh intersection
and the coefficient contrast. We also derive the residual-based a posteriori error estimator. Furthermore, the a
posteriori error estimate is proved to be both reliable and efficient, with constants independent of the interface-mesh
intersection.

Although the theoretical analysis is based on the enhanced PG-IFEM, extensive numerical results indicate that
the classical PG-IFEM without any penalty performs as well as the enhanced PG-IFEM. The numerical performance
2
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will not be compromised, plus the condition number is usually smaller. We believe our proposed PG-IFEM is of great
interest to mechanical and aerospace engineering applications which seek a simple, accurate, and robust numerical
scheme for their applications of interface problems [44–48]. The proposed enhanced PG-IFEM can be naturally
applied to problems in three dimensions. Several numerical experiments of 3D interface problems are provided in
Section 6.

The rest of the paper is organized as follows. In Section 2, we describe the interface problems and develop
he enhanced Petrov–Galerkin IFEM. In Section 3, we analyze the stability of the classical and enhanced Petrov–
alerkin IFEMs. We analyze the a priori and a posteriori error estimates of the enhanced PG-IFEM in Sections 4

and 5, respectively. In Section 6, we report some numerical examples to demonstrate the features of these PG-IFEMs.

2. Interface problems and Petrov–Galerkin IFEM

Let Ω ⊂ R2 be a polygonal domain with a Lipschitz boundary ∂Ω = Γ D ∪ Γ N , where ΓD ∩ ΓN = ∅. Assume
that meas(ΓD) > 0. We consider the elliptic interface problem:

− ∇ · (β∇u) = f in Ω+
∪ Ω− (2.1)

with boundary conditions

u = 0 on ΓD and − β∇u · n = gN on ΓN .

Here, f ∈ L2(Ω ), gN ∈ L2(ΓN ), and n is the unit vector outward normal to ∂Ω . The zero Dirichlet boundary
condition is assumed for simplicity. The method can be readily extended to non-homogeneous boundary conditions.
The notations ∇ and ∇· are the gradient and divergence operators, respectively. Furthermore, assume that Ω is
separated by a closed smooth interface curve Γ into Ω+ and Ω− such that Ω = Ω+ ∪ Γ ∪ Ω−. The diffusion
oefficient β is assumed to be a positive piecewise constant function as follows

β(x, y) =

{
β+ if (x, y) ∈ Ω+,

β− if (x, y) ∈ Ω−.

enote by r =
β+

β−
the ratio of the coefficient jump. The solution is assumed to satisfy the following interface jump

conditions:

[[u]]Γ = 0 and [[β∇u · n]]Γ = 0, (2.2)

where the jump of a function v across the interface Γ is defined by

[[v]]Γ = v+
|Γ − v−

|Γ .

We use the standard notations for the Sobolev spaces. Let

H 1
D(Ω ) = {v ∈ H 1(Ω ) : v = 0 on ΓD}.

hen the variational problem for (2.1) is to find u ∈ H 1
D(Ω ) such that

a(u, v) := (β∇u,∇v) = ( f, v) −
⟨
gN , v

⟩
ΓN
, ∀ v ∈ H 1

D(Ω ), (2.3)

here (·, ·)ω or ⟨·, ·⟩ω is the L2-inner product on ω ⊂ Rd or Rd−1. The subscript ω is omitted when ω = Ω .

.1. Triangulation and notations

In this paper, we only consider the triangular meshes in two dimensions. Let Th be a triangulation of Ω that is
egular and interface-independent. Thus, the mesh may not be interface-fitted. Denote the set of all vertices of the
riangulation Th by

N := NI ∪ ND ∪ NN

here NI is the set of all interior vertices, ND and NN are the sets of vertices on Γ̄D and ΓN , respectively. Denote
he set of all edges of the triangulation Th by
E := EI ∪ ED ∪ EN

3
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where EI is the set of all interior edges, ED and EN are the sets of boundary edges on ΓD and ΓN , respectively.
or each element K ∈ Th , denote by hK the diameter of K , and by NK and EK the sets of all vertices and edges

on K , respectively. Without loss of generality, we assume the interface Γ and the background mesh Th satisfy the
following conditions

(I) The interface Γ cannot intersect an edge of any element at more than two points unless the edge is part of Γ .

(II) If Γ intersects the boundary of an element at two points, these intersection points must be on different edges
of this element.

(III) The interface Γ is a piecewise C2-continuous function, and for any K ∈ Th , ΓK := Γ ∩ K is a straight line
segment if ΓK ̸= ∅.

We assume ΓK is a straight line for simplicity. In the general case, the smooth interface is approximated by
a line segment for linear elements, and the corresponding approximation error will not be greater than h2

K in the
L2 norm, which preserves the optimal convergence for the numerical method. Based on the above assumptions,
elements in Th can be categorized into two classes: non-interface elements that either has no intersection with Γ or
Γ ∩ K ⊂ ∂K , and interface elements whose interior is cut through by Γ . Denote the set of all interface elements
by T i

h , and the set of non-interface elements by T n
h = Th/T i

h . For each K ∈ T i
h , we also let K +

= K ∩ Ω+ and
K −

= K ∩ Ω−.
For an edge F ∈ E , if F is cut through by Γ , i.e., F ∩ Γ ̸= ∅ and F ̸⊂ Γ , then F is called an interface edge.

We denote by E i the set of all such interface edges. For each F ∈ E , denote by hF the length of F . Denote by
nF = (n1, n2) and tF = (−n2, n1) fixed unit vectors normal and tangential to F , respectively. Let KF,1 and KF,2

be the two elements sharing the common edge F ∈ EI such that the unit vector out normal to KF,1 coincides with
nF . When F ⊂ ∂Ω , nF is the unit outward vector normal to ∂Ω , and denote by KF,1 the boundary element having
he edge F . For a function v that is defined on KF,1 ∪ KF,2, denote its traces on F by v1

F and v2
F restricted on KF,1

nd KF,2, respectively. Define the jump of a function v on the edge F by

[[v]]F =

{
v1

F − v2
F , for F ∈ EI ,

v1
F , for F ∈ ED ∪ EN

nd the average of a function v on the edge F by

{v}F =

{ (
v1

F + v2
F

)
/2, for F ∈ EI ,

v1
F , for F ∈ ED ∪ EN .

t is easy to verify that

[[vw]]F = [[v]]F {w}F + {v}F [[w]]F , ∀ F ∈ E . (2.4)

or simplicity, we may drop the subscript F in the notations [[·]]F and {·}F if there is no confusion on where the
ump and average are defined.

.2. Petrov Galerkin IFEM

For simplicity, we assume that the interface does not intersect with the boundary, which indicates that E i
⊂ EI .

or each interface element K ∈ T i
h , define the local IFE space by

P̃1(K ) =
{
v ∈ H 1(K ) : β∇v ∈ H (div, K ), v|K̄ ± ∈ P1(K̄ ±)

}
here P1(w) is the space of all polynomial functions in the domain w of degree no more than 1. We refer readers

o [16–18] for more details about the construction of the linear IFE space P̃1(K ). The global IFE space S(Th) is
hen defined to include all functions such that

(1) v|K ∈ P̃1(K ) for all K ∈ T i
h , v|K ∈ P1(K ) for all K ∈ T n

h , and

(2) v is continuous at every vertex z ∈ N .

4
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Note that for each z ∈ N , there exists a unique IFE nodal basis function [16,17], denoted by λ̃z ∈ S(Th), such that

λ̃z(z′) = δzz′ , ∀ z′
∈ N

where δ is the Kronecker delta function. We also define the classical H 1 conforming linear finite element space by
V(Th), i.e.,

V(Th) = {v ∈ H 1(Ω ) : v|K ∈ P1(K ) ∀K ∈ Th}.

For each v ∈ S(Th), we define the discrete gradient operator ∇h by

(∇hv)|K = ∇(v|K ), ∀ K ∈ Th .

We now define two interpolation operators to the spaces S(Th) and V(Th),

Π (v) :=

∑
z∈N

v(z)λ̃z, I(v) :=

∑
z∈N

v(z)λz,

respectively, where λz is the classical nodal basis function of z ∈ N .
The enhanced Petrov–Galerkin IFEM for the interface problem is to find
uh ∈ SD(Th) such that

ãh(uh, v) = ( f, v) −
⟨
gN , v

⟩
ΓN
,∀v ∈ VD(Th) (2.5)

where

SD(Th) :=
{
v ∈ S(Th) : v|ΓD = 0

}
, VD(Th) = {v ∈ V(Th), v|ΓD = 0},

nd

ãh(uh, v) := ah(uh, v) +

∑
F∈E i

∫
F

(
γ1h−1

F β[[uh]][[Π v]] + γ2hFβ[[∇uh · nF ]][[∇Π v · nF ]]
)

ds, (2.6)

ith

ah(w, v) :=

∑
K∈Th

∫
K
β∇w · ∇v dx . (2.7)

It is easy to verify that the following error equation holds

ãh(u − uh, v) = 0, ∀v ∈ VD(Th). (2.8)

emark 2.1. The classical PG-IFEM is a special case for the enhanced PG-IFEM, i.e., γ1 = γ2 = 0. The main
ifficulty of the stability analysis for the classical PG-IFEM is proving the inf-sup stability because the local stiffness
atrix is not always positive definite due to arbitrary interface-mesh intersection [38,39,42]. Though this does not

ecessarily lead to the instability of the classical PG-IFEM, it is highly challenging, if not impossible, to analyze
ts stability theoretically. On the other hand, adding the penalty terms makes the analysis much more manageable.

. Stability

In this section, we analyze the stability of the PG-IFEM. First, we will prove the conditional stability for the
lassical PG-IFEM without penalties under some geometric constraints. Next, we will prove the unconditional
tability of the enhanced PG-IFEM.

.1. Stability for the classical PG-IFEM

In the following lemma, we prove a special case for which the classical PG-IFEM is stable. Recall that for the
lassical PG-IFEM, γ1 = γ2 = 0 in (2.6).

i
ssumption 3.1. Assume that for each K ∈ Th , there exists an edge F ∈ EK such that F is parallel to ΓK .

5
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Lemma 3.1. Assume that Th satisfies Assumption 3.1. Then the bilinear form ah(·, ·) defined in (2.7) satisfies the
following inf-sup condition

ah(v, Iv) ≥ C∥
√
β∇v∥2

Ω ∀v ∈ S(Th), (3.1)

here the constant C is independent of the jump of the coefficient and the interface-mesh intersection.

roof. We prove (3.1) on the reference element. Let K be the reference triangle and denote by Ai , i = 1, 2, 3
he vertices of A (counterclockwise) with A1 = (0, 0) being the vertex on the right angle. For the first case, we
onsider K as an interface element, and D, E are the intersection points on the x and y axes, respectively. Assume
hat D = (d, 0) and E = (0, e). Assume that A1 DE is the triangle in Ω+. The normal of the interface is chosen to
e nΓ |K = (e, d)/

√
d2 + e2.

Based on the fact that ∇v is piecewise constant, a simple calculation leads to the following,

(β∇v,∇Iv)K = (β∇v,∇v)K + (β∇v,∇Iv − ∇v)K

=0.5β+de∥∇v+
∥

2
+ 0.5β−(1 − de)∥∇v−

∥
2
+ (β∇v,∇Iv − ∇v)K ,

(3.2)

where ∥v∥ without a subscript denotes the Euclidian 2-norm of the vector v. It is also straightforward to obtain the
following identities:

∂xIv = d∂xv
+

+ (1 − d)∂xv
− and ∂yIv = e∂yv

+
+ (1 − e)∂yv

−. (3.3)

efine [[∂xv]] = (∂xv
+

− ∂xv
−) and [[∂yv]] = (∂yv

+
− ∂yv

−). Then by direct calculations we have

(β∇v,∇Iv − ∇v)K = (β+
∇v+, (∇Iv − ∇v+))K + + (β−

∇v−, (∇Iv − ∇v−))K −

= − 0.5deβ+
(
(1 − d)∂xv

+[[∂xv]] + (1 − e)∂yv
+[[∂yv]]

)
+ 0.5(1 − de)β−

(
d∂xv

−[[∂xv]] + e∂yv
−[[∂yv]]

)
.

(3.4)

hanks to the fact [[β∇v · nΓ ]] = 0 and [[v]]|Γ = 0 there also holds

β+
∇v+

· nΓ = β−
∇v−

· nΓ , ∇v+
· n⊥

Γ = ∇v−
· n⊥

Γ , (3.5)

here n⊥

Γ is the clockwise perpendicular vector to nΓ . In this case, we have n⊥

Γ = (d,−e)/
√

d2 + e2. Recall that
:= β+/β−, then

∇v+
= (∇v+

· nΓ )nΓ + (∇v+
· n⊥

Γ )n⊥

Γ =
1
r

(∇v−
· nΓ )nΓ + (∇v−

· n⊥

Γ )n⊥

Γ ,

∇v−
= (∇v−

· nΓ )nΓ + (∇v−
· n⊥

Γ )n⊥

Γ = r (∇v+
· nΓ )nΓ + (∇v+

· n⊥

Γ )n⊥

Γ ,

(3.6)

nd hence,

∇v+
− ∇v−

= (1 − r) (∇v+
· nΓ )nΓ ,

[[∂xv]] = (1 − r) (∇v+
· nΓ ) sin(θ ),

[[∂yv]] = (1 − r) (∇v+
· nΓ ) cos(θ ),

(3.7)

here θ is the angle formed by A1 D and DE . Note that nΓ = (sin(θ ), cos(θ )).
From (3.7), (3.4) can be rewritten as

(β∇v,∇Iv − ∇v)K = 0.5β+de(r − 1)(1 − d)(∇v+
· nΓ )∂xv

+ sin(θ )
+ 0.5β+de(r − 1)(1 − e)(∇v+

· nΓ )∂yv
+ cos(θ )

+ 0.5β−(1 − de)d(1 − r )(∇v+
· nΓ )∂xv

− sin(θ )
+ 0.5β−(1 − de)e(1 − r )(∇v+

· nΓ )∂yv
− cos(θ ).

(3.8)

When d = e, i.e, ΓK = DE is parallel to the hypotenuse of the reference triangle, (3.8) can be simplified as follows:

(β∇v,∇Iv − ∇v)K

=0.5β+e2(1 − e)(r − 1)(∇v+
· nΓ )2

+ 0.5β−(1 − e2)e (1 − r) (∇v+
· nΓ )(∇v−

· nΓ )

=0.5β+e2(1 − e)(r − 1)(∇v+
· nΓ )2

+ 0.5β+(1 − e2)e (1 − r) (∇v+
· nΓ )2

+ + 2

(3.9)
=0.5β e(1 − e)(1 − r )(∇v · nΓ ) .
6
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If r ≤ 1, we immediately have that (β∇v,∇Iv − ∇v)K ≥ 0 and therefore,

(β∇v,∇Iv)K ≥ ∥
√
β∇v∥2

K .

f r ≥ 1, we could instead prove by using an alternative format. From (3.5) and (3.9), we have

(β∇v,∇Iv − ∇v)K = 0.5β−e(1 − e)
(

1
r

− 1
)

(∇v−
· nΓ )2, (3.10)

hich, combined with (3.2), gives

(β∇v,∇Iv)K =0.5β+e2
∥∇v+

∥
2
+ 0.5β−(1 − e2)∥∇v−

∥
2

+ 0.5β−(e − e2)
(

1
r

− 1
)

(∇v−
· nΓ )2

=0.5β+e2
∥∇v+

∥
2
+ 0.5β−

(
(1 − e) +

1
r

(e − e2)
)

(∇v−
· nΓ )2

+ 0.5β−(1 − e2)(∇v−
· n⊥

Γ )2

≥∥
√
β∇v∥2

K + + min

⎧⎪⎨⎪⎩
(1 − e) +

1
r

(e − e2)

1 − e2 , 1

⎫⎪⎬⎪⎭ ∥
√
β∇v∥2

K −

≥
1

1 + e
∥
√
β∇v∥2

K ≥
1
2
∥
√
β∇v∥2

K .

(3.11)

For the other cases when ΓK is parallel to the adjacent sides of the right angle, we can prove (3.1) in a similar way.
This completes the proof of the lemma.

Remark 3.1. Since the eigenvalues of the local stiffness matrix continuously depend on the variables d and e, the
local matrix should remain to be positive for a range of d and e values. Therefore, the unconditional stability result
will continue to hold for interfaces that are “almost” parallel to mesh edges.

We also note that even though currently we are not able to prove the unconditional stability (inf-sup condition),
numerical results by us and other works, e.g., see [36–38,40,49], have shown that the classical PG-IFEM always
yields the optimal convergence rates for various test problems.

3.2. The unconditional stable scheme with penalty

We now prove the unconditional well-posedness, i.e., continuity and inf-sup condition, for the stabilized
PG-IFEM. Define the following energy norms: for w ∈ S(Th),

|||w||| :=

⎛⎝∥
√
β∇hw∥

2
Ω +

∑
F∈E i

h−1
F ∥

√
β[[w]]∥2

F

⎞⎠1/2

;

for w ∈ S(Th) ⊕ H 1(Ω ),

|||w|||∗ :=

⎛⎝∥
√
β∇hw∥

2
Ω +

∑
F∈E i

h−1
F ∥

√
β[[w]]∥2

F + hF∥
√
β[[∇w · nF ]]∥2

F

⎞⎠1/2

,

and for v ∈ V(Th),

|||v||| :=

⎛⎝∥
√
β∇hv∥

2
Ω +

∑
F∈E i

h−1
F ∥

√
β[[Π v]]∥2

F

⎞⎠1/2

.

Note that we used the same notation ||| · ||| for w ∈ S(Th) and v ∈ V(Th) because indeed they can be defined in the
ame format since Πw = w for any w ∈ S(T ).
h

7



C. He, S. Zhang and X. Zhang Computer Methods in Applied Mechanics and Engineering 404 (2023) 115744

w

m

L

w

P

w

L

We will use the following stability results for the interpolation operator I (Lemma 4.6 in [50]):

c∥∇v∥K ≤ ∥∇Iv∥K ≤ C∥∇v∥K ∀K ∈ T i
h , ∀v ∈ S(Th), (3.12)

here the constants c,C are independent of the mesh-interface intersection.
For simplicity, from now on we will use ≲ to represent ≤ C where the generic constant C is independent of the

esh size, mesh-interface intersection, and coefficient contrast.

emma 3.2 (Continuity). For any w ∈ H 1(Ω ) ⊕ S(Th) and v ∈ V(Th) we have the following continuity result,

ãh(w, v) ≲ |||w|||∗|||v|||, (3.13)

here ãh(·, ·) is defined in (2.6).

roof. By definition, it is sufficient to prove that∑
F∈E i

hF∥
√
β[[∇Π v · nF ]]∥2

F ≲ |||v|||2.

Applying the trace inequality and the stability result in (3.12) give

h1/2
F ∥

√
β[[∇Π v · nF ]]∥F ≲ ∥

√
β∇Π v∥K 1

F ∪K 2
F
≲ ∥

√
β∇v∥K 1

F ∪K 2
F
, (3.14)

here K 1
F and K 2

F are the two elements sharing the interior edge F . □

emma 3.3. There holds the following inf-sup type condition: given γ1 and γ2 large enough in (2.6), there exists
a constant C independent of mesh size such that

ã(v, Iv) ≥ C |||v|||2, |||Iv||| ≲ |||v|||, ∀v ∈ S(Th). (3.15)

Proof. Note that if v ∈ S(Th), then Π ◦ I is the identity operator. The second part of (3.15) is then a direct
consequence of (3.12).

By a direct calculation, we have

ã(v, Iv) =

∑
K∈Th

(β∇v,∇Iv)K +

∑
F∈E i

γ1h−1
F ∥

√
β[[v]]∥2

F +

∑
F∈E i

γ2hF∥
√
β[[∇v · nF ]]∥2

F . (3.16)

To estimate the first term in (3.16), we first apply the add-and-subtract technique:

(β∇v,∇Iv)K = (β∇v,∇v)K + (β∇v,∇Iv − ∇v)K . (3.17)

Using integration by parts, Cauchy–Schwartz inequality, trace and inverse inequalities, we have∑
K∈Th

(β∇v,∇Iv − ∇v)K =

∑
F∈E i

⟨[[β∇v · nF ]], {Iv − v}⟩F −

∑
F∈E i

⟨{β∇v · nF }, [[v]]⟩F

≤

∑
F∈E i

∑
K∈{K 1

F ,K
2
F }

(
∥β1/2[[∇v · nF ]]∥F∥β1/2(Iv − v)∥F + ∥β∇v · nF∥−1/2,F∥[[v]]∥1/2,F

)
≲
∑
F∈E i

∑
K∈{K 1

F ,K
2
F }

(
∥β1/2[[∇v · nF ]]∥F ∥β1/2(Iv − v)∥F + ∥β∇v∥K h−1/2

F ∥[[v]]∥F

)
.

(3.18)

In the last inequality, we used the trace inequality, and therefore the constant only depends on the shape regularity

of the triangle.

8
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We now proceed to bound the term ∥β1/2(Iv−v)∥F . By direct computations and the Poincaré inequality, thanks
to the fact that Iv − v = 0 at the endpoints of F , we have

∥β1/2(Iv − v)K ∥
2
F = β+

∥Iv − v∥2
F+ + β−

∥Iv − v∥2
F−

≤C p

(
β+

|F+
|
2
∥∇(Iv − v) · tF∥

2
F+ + β−

|F−
|
2
∥∇(Iv − v) · tF∥

2
F−

)
≤C p

(
β+

|F+
|
2
∥∇(Iv − v)∥2

F+ + β−
|F−

|
2
∥∇(Iv − v)∥2

F−

)
=C p

(
β+

|F+
|
2 |F+

|

|K +|
∥∇(Iv − v)∥2

K + + β−
|F−

|
2 |F−

|

|K −|
∥∇(Iv − v)∥2

K −

)
≤C phF

(
β+

|F+
|
2

|K +|
∥∇(Iv − v)∥2

K + + β−
|F−

|
2

|K −|
∥∇(Iv − v)∥2

K −

)

≤C p max

{
|F+

|
2

|K +|
,
|F−

|
2

|K −|

}
hF∥

√
β∇(Iv − v)∥2

K

≤C1hF∥
√
β∇v∥2

K .

(3.19)

where C p is the Poincaré constant. Indeed, by a direct calculation, C p can be replaced by 1/3. In the last inequality,

we used (3.12). Unfortunately, the constant max

{
|F+

|
2

|K +|
,
|F−

|
2

|K −|

}
, and hence, C1, depends on the interface-mesh

intersection.
Combining (3.18) and (3.19) yields∑

K∈Th

(β∇v,∇Iv − ∇v)K

≲C1

∑
F∈E i

∑
K∈{K 1

F ,K
2
F }

∥
√
β∇v∥K h1/2

F ∥
√
β[[∇v · nF ]]∥F

+

√
β+

β−

∑
F∈E i

∑
K∈{K 1

F ,K
2
F }

∥
√
β∇v∥K h−1/2

F ∥
√
β[[v]]∥F

≲C1

∑
F∈E i

hF

2ϵ1
∥
√
β[[∇v · nF ]]∥2

F +
√

r
h−1

F

2ϵ1
∥
√
β[[v]]∥2

F

+
C1ϵ1 +

√
rϵ2

2

∑
K∈T i

h

∥
√
β∇v∥2

K .

(3.20)

Finally, choosing ϵi , i = 1, 2 small enough and γi , i = 1, 2 large enough proves the first part of (3.15). This
completes the proof of the lemma. □

4. A priori error estimation

Lemma 4.1. We have the following best approximation result:

|||u − uh |||∗ ≤ C min
v∈SD (Th )

|||u − v|||∗, (4.1)

where the constant C depends on the constants in (3.12) and (3.15).

Proof. Thanks to (2.8), (3.13) and (3.15), we have for any v ∈ SD(Th)

|||uh − v|||2 ≤ Cãh(uh − v, I(uh − v)) = Cãh(u − v, I(uh − v))
≲C |||u − v|||∗|||I(uh − v)||| = C |||u − v|||∗|||uh − v|||,

(4.2)

which, combining with the triangle inequality gives (4.1). □
9
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Lemma 4.2. We have the following optimal convergence result for the energy norm:

min
v∈SD(Th )

|||u − v|||∗ ≤ Ch∥u∥P H2(Ω), (4.3)

where ∥u∥
2
P H2(Ω)

:= ∥u∥
2
2,Ω+ + ∥u∥

2
2,Ω− .

Proof. Choose v = Π u. From Theorem 4.1 in [33], we have∑
F∈E i

hF∥β1/2[[∇(u − Π u) · nF ]]∥2
F ≤ Ch2

∥u∥
2
P H2(Ω), (4.4)

where the constant C is independent of the mesh-interface intersection.
By the triangle, Young’s, and the trace inequalities, we have the following bounds,∑

F∈E i

h−1
F ∥

√
β[[u − v]]∥2

F ≲
∑
F∈E i

h−1
F ∥

√
β(u − v)|K 1

F
∥

2
F + h−1

F ∥
√
β(u − v)|K 2

F
∥

2
F

≤ C
∑
F∈E i

(
h−2

F ∥u − v∥2
K 1

F ∪K 2
F

+ ∥∇(u − v)∥2
K 1

F ∪K 2
F

)
.

(4.5)

Note that the constants in (4.4) and (4.5) depend on the coefficient β. Finally, combining (4.4) and (4.5) with
he following optimal interpolation result in [17]∑

K∈Th

h−2
K ∥u − Π u∥

2
K + ∥∇(u − Π u)∥2

K ≲ h2
∥u∥

2
P H2(Ω),

ields (4.3). This completes the proof of the lemma. □

. A posteriori error estimation

In this section, we derive the residual-based a posteriori error analysis based on the formulation (2.5). The
G-IFEM algorithm without the stabilization terms shares the same error estimator.

.1. Residual-based a posteriori error estimator and indicator

For every K ∈ Th we define the local error indicator ηK by

η2
K =

∑
F∈EK ∩E i

(
hF

2
∥β1/2[[∇uh · nF ]]∥2

F +
hF

2
∥β1/2[[∇uh · tF ]]∥2

F

)

+

∑
F∈EK ∩EI \E i

hF

2
∥β

−1/2
F [[β∇uh · nF ]]∥2

F +

∑
F∈EK ∩EN

hF∥β
−1/2
F [[β∇uh · nF ]]∥2

F

(5.1)

where βF = max
(
β|K 1

F
, β|K 2

F

)
. The global error estimator η is then defined by

η =

⎛⎝∑
K∈Th

η2
K

⎞⎠1/2

. (5.2)

Since the error estimator ηK is the same as in the penalized immersed finite element method introduced in [51],
we refer [51] for the efficiency proof of the local error indicator ηK . It remains to prove the global reliability.

5.2. Global reliability

In this subsection, we establish the reliability bound of the global estimator η given in (5.2). The analysis here
s similar to that as in [51]. In this paper, for simplicity, we assume that the computational interface is exact and
herefore carries no geometric approximation on the interface. For the general geometry case, we refer to [51]

n which the curved interface is considered. For the curved interface, an additional geometry approximation error

10
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should also be added to the a posteriori error estimation. However, numerical experiments have shown reliability
without adding such a term for interfaces of various regularity.

Define the following Sobolev space

H 1
N (Ω ) =

{
v ∈ H 1(Ω ) :

∫
Ω

v dx = 0 and
∂v

∂t
= 0 on ΓN

}
.

ere,
∂v

∂t
= ∇u · t denotes the tangential derivative of u. For φ ∈ H 1(Ω ), define the adjoint curl operator by

∇
⊥ φ =

(
−
∂φ

∂y
,
∂φ

∂x

)
.

emma 5.1 (Helmholtz Decomposition). Let u and uh be the solutions of (2.3) and (2.5), respectively. Then there
xist uniquely φ ∈ H 1

D(Ω ) and ψ ∈ H 1
N (Ω ) such that

β∇u − β∇huh = β∇φ + ∇
⊥ ψ. (5.3)

oreover,

(∇φ,∇⊥ψ) = 0 (β∇he,∇he) = (β∇φ,∇φ) + (β−1
∇

⊥ψ,∇⊥ψ), (5.4)

here e = u − uh and ∇
⊥

=

(
∂

∂y
,−

∂

∂x

)
.

A proof of the lemma can be found in Lemma 4.1 [51].
We now define a Clément-type interpolation operator Ic : H 1

D(Ω ) → V(Th) by

Ic(v) =

∑
z∈N

(πzv)λz(x) (5.5)

here πz is defined by

πz(v) =

⎧⎪⎨⎪⎩
∫
ωz
λzv dx∫

ωz
λz dx

, ∀ z ∈ N \ ND,

0, ∀ z ∈ ND,

(5.6)

where λz is the classical barycentric hat function of V(Th) associated to z ∈ N and ωz is the union of elements
sharing z as a common vertex. Note that

(v − πzv, λz)ωz = 0 ∀ z ∈ N \ ND. (5.7)

By Lemma 6.1 in [52] there holds for all v ∈ H 1
D(Ω )

∥v − πzv∥ωz ≤ Cdiam(ωz)∥∇v∥ωz , ∀ z ∈ N . (5.8)

Note that Π (Ic(v)) is the corresponding modified Clément type interpolation of v into the space of S(Th) defined
n [51]. We recall the approximation and stability results for the above two types of Clément-type interpolation
perators.

emma 5.2 (Clément-type Interpolation). Let v ∈ H 1
D(Ω ), and Icv ∈ V(Th) be the interpolation of v defined in

5.5). Then there exists a constant C > 0 that is independent of the mesh size and the location of the interface such
hat v − Icv


K +

v − Π (Ic(v))


K ≤ ChK
∇v

ωK
,∀ K ∈ Th,∇(v − Icv)


K +

∇(v − Π (Ic(v)))


K ≤ C
∇v

ωK
, ∀ K ∈ Th,(v − Icv)|K


F +

(v − Π (Ic(v)))|K


F ≤ Ch1/2
F

∇v
ωK
,∀ F ∈ EK ,

(5.9)

here ω is the union of all elements sharing at least one vertex with K .
K

11
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s

Lemma 5.3. Let φ and ψ be given in (5.3). Then we have the following error representations in the weighted
emi-H 1 norm:

∥
√
β∇φ∥

2
Ω = ( f, φ − v) −

∑
F∈EI ∪EN

∫
F

[[β∇uh · nF ]](φ − v)ds

+

∑
F∈E i

∫
F

(
γ1h−1

F β[[uh]][[Π v]] + γ2hFβ[[∇uh · nF ]][[∇Π v · nF ]]
)

ds.
(5.10)

for any v ∈ VD(Th) and

∥β−1/2
∇

⊥ψ∥
2
Ω = −

∑
F∈E i

∫
F

[[uh]]
(
∇

⊥ψ · nF
)
ds. (5.11)

Proof. Let v ∈ V(Th) be arbitrary. Applying (5.4), (5.3), and integration by parts gives

(β∇φ,∇φ) = (β∇he,∇φ) =

(
β∇he,∇(φ − v)

)
+
(
β∇he,∇v

)
=

∑
K∈Th

(∫
K

(
f, φ − v

)
dx +

∫
∂K

(
β∇e · n

)(
φ − v

)
ds
)

+
(
β∇he,∇v

)
=( f, φ − v) −

∑
F∈EI ∩EN

∫
F

[[β∇uh · nF ]](φ − v) ds +
(
β∇he,∇v

)
.

(5.12)

Applying (2.8) and the facts that [[u]] = [[φ]] = [[β∇u · nF ]] = 0 for all F ∈ EI ,(
β∇he,∇v

)
=
(
β∇he,∇v

)
− ãh(e, v)

=

∑
F∈E i

∫
F

(
γ1h−1

F β[[uh]][[Π v]] + γ2hFβ[[∇uh · nF ]][[∇Π v · nF ]]
)

ds. (5.13)

(5.10) is a direct consequence of (5.12) and (5.13).
To prove (5.11), by (5.4), (5.3), integration by parts, and the facts that

[[e]]F = −[[uh]]F and [[∇⊥ψ · nF ]]F = 0, ∀ F ∈ EI ,

we have

(β−1
∇

⊥ψ,∇⊥ψ) = (∇e,∇⊥ψ) =

∑
K∈Th

∫
∂K

e(∇⊥ψ · n) ds

= −

∑
F∈E i

∫
F

[[uh]]
(
∇

⊥ψ · nF
)

ds.

This completes the proof of the lemma. □

Define the data oscillation term,

H f (Th) =

⎛⎝ ∑
z∈N \ND

h2
z∥β

−1/2( f − πz f )∥2
ωz

+

∑
z∈ND

h2
z∥β

−1/2 f ∥
2
ωz

⎞⎠1/2

,

where πz is defined in (5.6) and hz is the diameter of ωz .

Theorem 5.4 (Global Reliability). There exists a constant Cr > 0 that is independent of the location of the interface
and the mesh size, such that√

β(∇u − ∇ u )∥ ≤ C (η + H (T )). (5.14)
∥ h h Ω r f h

12
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S

F

F

Proof. Recall from (5.10),

∥
√
β∇φ∥

2
Ω = ( f, φ − v)Ω −

∑
F∈EI ∪EN

∫
F

[[β∇uh · nF ]](φ − v)ds

+

∑
F∈E i

∫
F

(
γ1h−1

F β[[uh]][[Π v − φ]] + γ2hFβ[[∇uh · nF ]][[∇Π v · nF ]]
)

ds.

Let v = Icφ in (5.10). Applying the definition of Icφ, partition of unity, (5.7), (5.9) and the Poincaré inequality
yields

( f, φ − v)Ω =

(
f,

(∑
z∈N

λz

)
φ −

∑
z∈N

πzφλz

)
=

∑
z∈N

( f, (φ − πzφ)λz) =

∑
z∈N \ND

( f − πz f, (φ − πzφ)λz) +

∑
z∈ND

( f, φλz)

≤

∑
z∈N \ND

∥ f − πz f ∥ωz ∥φ − πzφ∥ωz +

∑
z∈ND

∥ f ∥ωz ∥φ∥ωz

≤C

⎛⎝ ∑
z∈N \ND

h2
z∥β

−1/2( f − πz f )∥2
ωz

+

∑
z∈ND

h2
z∥β

−1/2 f ∥
2
ωz

⎞⎠1/2

∥
√
β∇φ∥Ω .

(5.15)

By the triangle and trace inequalities and (5.9), we have for all F ∈ E i

h−1/2
F ∥[[φ − Π (Icφ)]]∥F ≤

∑
K∈{K 1

F ,K
2
F }

h−1/2
F ∥(φ − Π (Icφ))|K ∥F ≤ C

∑
K∈{K 1

F ,K
2
F }

∥∇φ∥ωK . (5.16)

imilarly, we have

h−1/2
F ∥(φ − Icφ)|K ∥F ≤ C∥∇φ∥ωK , ∀F ∈ EI . (5.17)

Combining the triangle inequality and (5.9) also yields

h1/2
F ∥

√
β[[∇Π (Icφ) · nF ]]∥F ≲

∑
K∈{K 1

F ,K
2
F }

h1/2
F ∥

√
β∇(Π (Icφ)) · nF |K ∥F

≤ C
∑

K∈{K 1
F ,K

2
F }

∥
√
β∇φ∥ωK .

(5.18)

From Lemma 4.4 in [51], we also have that

∥[[uh]]∥F ≤ ChF∥[[∇uh · tF ]]∥F , ∥[[uh]]∥1/2,F ≤ h1/2
F ∥[[∇uh · tF ]]∥F ∀ F ∈ E i . (5.19)

Combining the Cauchy–Schwartz inequality and (5.15)–(5.19) gives that

∥
√
β∇φ∥Ω ≤ Cr (η + H f (T )). (5.20)

inally, by applying (5.11), the duality, (5.19), and trace inequality, we have

∥β−1/2
∇

⊥ψ∥
2
Ω = −

∑
F∈E i

∫
F

[[uh]]
(
∇

⊥ψ · nF
)
ds

≤

∑
F∈E i

∥[[uh]]∥1/2,F∥∇
⊥ψ · nF∥−1/2,F ≲

∑
F∈E i

h1/2
F ∥[[∇uh · tF ]]∥F∥∇

⊥ψ · nF∥−1/2,F

≲

⎛⎝∑
F∈E i

hF∥[[∇uh · tF ]]∥2
F

⎞⎠ ∥∇
⊥ψ∥Ω .

(5.21)

inally, (5.14) is a direct result of (5.4), (5.20) and (5.21). Note that here we use the fact that [[uh]]|F ∈ H 1/2
00 (F)
since [[uh]]|F takes zero value at the end points of F . This completes the proof of the theorem. □
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6. Numerical results

In this section, we report some numerical results to demonstrate the performance of Petrov–Galerkin IFEM. In
articular, we will compare three different PG-IFEMs as follows

a(i)
h (uh, v) = ( f, v) −

⟨
gN , v

⟩
ΓN

(6.1)

where the bilinear forms take the form:

Algorithm 1 : a(1)
h (u, v) =

∑
K∈Th

∫
K
β∇u · ∇v dx . (6.2)

Algorithm 2 : a(2)
h (u, v) = a(1)

h (u, v) +

∑
F∈E i

γ1h−1
F

∫
F
β[[u]][[Π v]] ds. (6.3)

Algorithm 3 : a(3)
h (u, v) = a(2)

h (u, v) +

∑
F∈E i

γ2hF

∫
F
β[[∇u · nF ]][[∇Π v · nF ]] ds. (6.4)

Here, a(1)(·, ·) is the classical Petrov–Galerkin IFEM without any penalty, a(2)(·, ·) takes into account the solution
jump, and a(3)(·, ·) includes additional normal flux jump.

We use unfitted Cartesian triangular meshes for all numerical experiments. The adaptive mesh refinement follows
the standard procedure:

Solve −→ Estimate −→ Mark −→ Refine.

The residual-based error indicator ηK on each element are computed in (5.1). We adopt the equilibration marking
strategy, i.e., construct a minimal subset T̂h of Th such that∑

K∈T̂

η2
K ≥ θ2η2,

where the threshold θ = 0.5. Finally, we refine the marked triangles by the newest vertex bisection [53]. We use
log–log plots for all error reporting figures. In our numerical experiments, we report errors of numerical solutions
in the L2 norm and semi-H 1 norm. We note that the H 1 semi-norm should have the similar convergence behavior
to the weighted semi-H 1 norm, i.e., ∥

√
β∇(u −uh)∥Ω , for reasonable large jumps of β used in our numerical tests.

In addition, we report the error in L∞ norm, which measures the largest discrepancy among all the mesh points.

xample 6.1 (Smooth Interface with Moderate Jump). In this example, we consider a diffusion problem with a
mooth circular interface which has been reported in [18]. Let Ω = (−1, 1)2, and the interface Γ is a circle centered
t (x0, y0) = (0, 0) with radius r0 = π/6.28. The interface separates Ω into two sub-domains, denoted by Ω− and
Ω+ such that

Ω−
= {(x, y) ∈ Ω : r (x, y) < r0} and Ω+

= {(x, y) ∈ Ω : r (x, y) > r0},

where

r (x, y) = (x − x0)2
+ (y − y0)2.

The exact solution to this interface problem is

u(x, y) =

{ 1
β− r p, if (x, y) ∈ Ω−,

1
β+ r p

+

(
1
β− −

1
β+

)
r p

0 , if (x, y) ∈ Ω+.
(6.5)

Here β± > 0 are the diffusion coefficients, and p = 5 is the regularity parameter. We let (β−, β+) = (1, 10) which
represents a moderate jump of the diffusion coefficients.

We use uniform meshes to test the convergence rates. We start from an 8 × 8 Cartesian triangular mesh and
perform uniform mesh refinement until 1024 × 1024. All three algorithms (6.2)–(6.4) are examined. Errors in L2 and
H 1 norms are reported Fig. 6.1(a)–(b), respectively. It can be observed that errors in L2, H 1 norms decay in optimal
rders, which confirms our theoretical results (4.1). The error in the L∞ norm which measures the maximum error
14
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Fig. 6.1. Uniform mesh convergence results of Example 6.1 with (β−, β+) = (1, 10).

among mesh points is reported in Fig. 6.1(c). We also observe that the error in L∞ norm is second-order. Condition
numbers of these algorithms are reported in Fig. 6.1(d). All three algorithms demonstrate a similar O(h−2) growth
rate, while the Algorithm 3 (6.4) has a relatively larger condition number due to additional penalties.

For the adaptive mesh refinement test, we use the Algorithm 3 (6.4) to carry out all computation. However, we
note that the classical PG-IFEM, i.e., Algorithm 1 (6.2), has similar numerical performance and is computationally
much simpler than Algorithm 3 (6.4). The numerical solution is plotted in Fig. 6.2(a). The mesh depicted in
Fig. 6.2(b) shows the adaptive refinement. We observe relatively dense mesh refinements around the four corners
where the solution changes more dramatically. There is no extensive mesh refinement around the interface, because
PG-IFEM itself can resolve the interface accurately for a moderate coefficient jump. This expected feature was
also observed for partially penalized IFEM [51]. In Fig. 6.2(c), we report the convergence of PG-IFEM and the
error estimators under adaptive mesh refinements. The decay rates are both close to (DoF)−1/2, which indicates the
optimal order of errors with respect to the number of degrees of freedom (DoF). In comparison, errors of PG-IFEM
under uniform refinement are very close to the errors of adaptive refinements.

Example 6.2 (Smooth Interface with Large Jump). In this example, we use the same problem in Example 6.1, but
with a larger jump, i.e., β−

= 1, β+
= 1000.

The errors in L2, H 1, and L∞ norms decay in optimal orders, as reported in Fig. 6.3(a)–(c). In this example,
we see a slightly better performance in Algorithm 3 (6.4) in the L2 norm. On the other hand, (6.4) also gives the
argest condition number among all three algorithms as shown in Fig. 6.3(d). The error surfaces on the 256 × 256

esh are depicted in Fig. 6.4 for these algorithms. We can observe that similar magnitudes of errors for all three
lgorithms, while the behavior of the first two algorithms (6.2) and (6.3) are more similar.

A numerical solution is depicted in Fig. 6.5(a). For adaptive mesh refinement tests, we can see in Fig. 6.5(b) that
he mesh is refined around the interface where the changes of solutions are more dramatic due to the large coefficient
ariation. In Fig. 6.5(c), the errors and the estimators decay optimally with respect to the degrees of freedom.
oreover, the errors are slightly smaller for adaptive mesh refinement than for uniform refinement, although the
atter also decays at an optimal rate.

15
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Fig. 6.2. Adaptive mesh results of Example 6.1 with (β−, β+) = (1, 10).

Fig. 6.3. Uniform mesh convergence results of Example 6.2 with (β−, β+) = (1, 1000).

Fig. 6.4. From left: Error surfaces of Algorithms 1–3 on a 256 × 256 mesh of Example 6.2.

Example 6.3 (Complicated Interfacial Shape). In this example, we consider an interface problem with a more
complicated interfacial shape. The exact solution has the following form
u(x, y) =

{
1
β−φ(x, y), if φ(x, y) < 0,
1
β+φ(x, y), if φ(x, y) ≥ 0,

in Ω = (−1 , 1)2 (6.6)
16
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Fig. 6.5. Adaptive mesh convergence results of Example 6.2 with (β−, β+) = (1, 1000).

Fig. 6.6. Uniform mesh convergence results of Example 6.3 with (β−, β+) = (1, 1000).

where φ is a level set function of the petal-shaped interface as follows

φ(x, y) = (x2
+ y2)2

(
1 + 0.5 sin

(
12 tan−1

( y
x

)))
− 0.3.

his example was reported in [51]. We choose a large jump ratio β−
= 1 and β+

= 1000.

The errors in L2, H 1, and L∞ norms decay in optimal orders, as reported in Fig. 6.6(a)–(c). The performances
re similar to all three algorithms. The algorithm 3 (6.4) gives the largest condition number among all three as
hown in Fig. 6.6(d). The error surfaces are depicted in Fig. 6.7.

For adaptive mesh refinement tests, we start with a finer 32 × 32 mesh due to the complex shape of the interface.
numerical solution is plotted in Fig. 6.8(a). Fig. 6.8(b) demonstrates that the mesh is refined around the interface

here the changes of solutions are more dramatic. In Fig. 6.8(c), the error and the estimators decay optimally with
espect to the degrees of freedom. Compared to Example 6.2, the adaptive mesh refinement are more beneficial in
his example due to the combined difficulty in high jump ratio and the complex interface shape. Errors in adaptive
esh refinement are smaller than those from the uniform refinement, although the latter is also an optimal rate.

17
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Fig. 6.7. From left: Error surfaces of Algorithms 1–3 on a 256 × 256 mesh of Example 6.3.

Fig. 6.8. Adaptive mesh convergence results of Example 6.3 with (β−, β+) = (1, 1000).

Example 6.4 (Complicated Interface Shape with Flipped Coefficient). In this example, we consider the same
problem as Example 6.3 with a flipped coefficient, i.e., β−

= 1000 and β+
= 1.

The errors in L2, H 1, and L∞ norms decay in optimal orders and behave similarly for all three algorithms, as
shown in Fig. 6.9(a)–(c). The Algorithm 3 (6.4) gives the largest condition number among all three as shown in
Fig. 6.9(d). The error surfaces of three algorithms are depicted in Fig. 6.10.

We start again from the 32 × 32 mesh for adaptive mesh refinement tests. A numerical solution has the shape
Fig. 6.11(a). Fig. 6.11(b) demonstrate that mesh are refined around the interface where the changes of solutions are
more dramatic. Not much refinement are performed inside the interface due to the solution is flat in this region. In
Fig. 6.11(c), the error and the estimators decay optimally with respect to the degrees of freedom.

Example 6.5 (Sharp-Corner Interface). In this example, we consider the case when the interface has a sharp corner,
as used in [27]. Let Ω = (−1, 1)2. The interface is defined by the level-set function:

Γ (x, y) = −y2
+ ((x − 1) tan(θ ))2x . (6.7)

The subdomains are defined as Ω+
= {(x, y) ∈ Ω : Γ (x, y) > 0}, and Ω−

= {(x, y) ∈ Ω : Γ (x, y) < 0}. The exact
solution is chosen as:

u(x, y) =

⎧⎪⎨⎪⎩
1
β−

Γ (x, y), (x, y) ∈ Ω−,

1
β+

Γ (x, y), (x, y) ∈ Ω+.

(6.8)

We let β−
= 1 and β+

= 1000.

The errors in L2, H 1, and L∞ norms decay in optimal orders and behave similarly for all three algorithms, as
shown in Fig. 6.12(a)–(c). The Algorithm 3 (6.4) gives the largest condition number among all three as shown in
Fig. 6.12(d). The error surfaces are depicted in Fig. 6.13.

We start again from the 8 × 8 mesh for adaptive mesh refinement tests. A numerical solution has the shape
plotted in Fig. 6.13(a). Fig. 6.14(b) demonstrates that mesh are refined around and inside the interface where the
18
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Fig. 6.9. Uniform mesh convergence results of Example 6.4 with (β−, β+) = (1000, 1).

Fig. 6.10. From left: Error surfaces of Algorithms 1–3 on a 256 × 256 mesh of Example 6.4.

Fig. 6.11. Adaptive mesh convergence results of Example 6.4 with (β−, β+) = (1000, 1).
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i

Fig. 6.12. Uniform mesh convergence results of Example 6.5 with (β−, β+) = (1, 1000).

Fig. 6.13. From left: Error surfaces of Algorithms 1–3 on a 256 × 256 mesh of Example 6.5.

changes of solutions are more dramatic. In Fig. 6.14(c), the error and the estimators decay optimally with respect
to the degrees of freedom. Again, we see some superiority in adaptive-mesh solutions over uniform-mesh solutions.

Example 6.6 (Multiple Interfaces). In this example, a multi-domain interface problem with multiple interfaces is
considered. The interface consists of four circular interfaces defined as follows:

Γ1(x, y) = (x + 0.5)2
+ (y + 0.5)2

− (π/10)2,

Γ2(x, y) = (x + 0.5)2
+ (y − 0.5)2

− (π/9)2,

Γ3(x, y) = (x − 0.5)2
+ (y + 0.5)2

− (π/8)2,

Γ4(x, y) = (x − 0.5)2
+ (y − 0.5)2

− (π/7)2.

These interfaces separate the domain Ω = (−1, 1)2 into five subdomains Ωi = {(x, y) ∈ Ω : Γi (x, y) < 0} for
= 1, 2, 3, 4, and Ω5 = Ω/Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4. Assume the boundary condition u = 0 on ∂Ω , and the source

function f (x, y) = 1. We consider three coefficient configurations as follows

• Case 1: β = 1, β = 2, β = 3, β = 4, and β = 5.
1 2 3 4 5

20
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Fig. 6.14. Adaptive mesh convergence results of Example 6.5 with (β−, β+) = (1, 1000).

Fig. 6.15. Coefficient configuration and numerical solutions of Case 1 of Example 6.6.

• Case 2: β1 = 1, β2 = 2, β3 = 3, β4 = 4, and β5 = 100.
• Case 3: β1 = 1000, β2 = 2, β3 = 1, β4 = 2000, and β5 = 50.

In all these cases, the analytical form of the exact solution is unknown.

We compute the numerical solutions using the PG-IFE Algorithm 1 defined in (6.2). The coefficient configuration,
and numerical solution in 2D view and 3D view are depicted in Fig. 6.15, Fig. 6.16, and Fig. 6.17 for Case 1, Case
2, and Case 3, respectively. For adaptive mesh refinement tests, the adaptive meshes are plotted in Fig. 6.18 for three
cases. In Case 1, all coefficients in five sub-domains have small jumps, thus the mesh refinement is quasi-uniform.
Not much in any sub-domain nor the interface. In Case 2, due to the large jump in Ω5 over other subdomains,
he mesh refinements concentrate around the interface. Also, note that mesh is slightly finer inside Ω1 due to the
olutions being steeper inside this region among all subdomains. In Case 3, the mesh refinements are centered
round interfaces and Ω2 and Ω3, but not so much in Ω1 and Ω4. This is due to a relatively large jump compared to
ase 1, and the relative flat solution inside subregion Ω1 and Ω4, as depicted in Fig. 6.17. In Fig. 6.19, we report

he convergence of the error estimators in all cases. We can see that the convergence is optimal with respect to the
egrees of freedom. Since the exact solution is unknown, we cannot report the decay of true error. However, we
elieve the error will decay optimally based on the effectiveness of Example 6.1–6.5.

xample 6.7 (3D Sphere Interface Problem). In this example, we apply our method to a 3D interface problem. The
onstruction of 3D IFE spaces are reported in [23–25]. Let Ω = (−1, 1)3 and let Γ = {(x, y, z) : γ (x, y, z) = 0}

e a spherical interface where γ (x, y, z) = x2
+ y2

+ z2
− r2

0 . The exact solution is

u(x, y, z) =

⎧⎪⎨⎪⎩− cos
(
π (x2

+ y2
+ z2)

2r2
0

)
in Ω−

:= {(x, y, z) ∈ Ω : γ (x, y, z) < 0},

x2
+ y2

+ z2
− r2

0 in Ω+
:= {(x, y, z) ∈ Ω : γ (x, y, z) > 0}.

(6.9)

he parameters are chosen to be r0 = π/4 and β−
= 1, and β+

=
π

2r2 ≈ 2.5465. This example has been used
n [25].
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Fig. 6.16. Coefficient configuration and numerical solutions of Case 2 of Example 6.6.

Fig. 6.17. Coefficient configuration and numerical solutions of Case 3 of Example 6.6.

Fig. 6.18. Adaptive meshes of all three cases in Example 6.6.

Fig. 6.19. Adaptive mesh convergence results of Example 6.6.
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Fig. 6.20. Uniform mesh convergence results of Example 6.7.

Fig. 6.21. Error surface of interface on mesh N = 100 of Example 6.7.

Our computation is carried out on a family of uniform tetrahedral meshes obtained by first partitioning the domain
into N 3 cuboids and then cutting each cuboid into six congruent tetrahedrons. We start from a coarse mesh with
N = 20 and stretch to a very fine mesh with N = 160 by incrementing 10 more vertices in each direction for each
finer mesh. In Fig. 6.20, we report errors and convergence rates in L∞, L2, and H 1-norms for both PGIFE and
classical IFE methods. In L∞ norm, the PG-IFE solution is superior to the classical IFE solution when the mesh
size is small, and the PGIFE solution maintains the optimal second-order convergence. The accuracy of PG-IFE
approximation is also illustrated in the comparison of errors on the interface surface in Fig. 6.21. The convergence
rates in L2, and H 1-norms are both optimal.

Example 6.8 (3D Orthocircle Interface Problem). In this example [25], we consider an interface problem with
more complicated shape and a larger jump. Let Ω = (−1.2, 1.2)3, and let the interface be Γ = {(x, y, z) ∈ Ω :

γ (x, y, z) = 0} where

γ =
[
(x2

+ y2
− 1)2

+ z2][(x2
+ z2

− 1)2
+ y2][(y2

+ z2
− 1)2

+ x2]
− 0.0752[1 + 3(x2

+ y2
+ z2)

]
.

et the exact solution be

u(x, y, z) =

⎧⎪⎪⎨⎪⎪⎩
1
β−
γ (x, y, z) in Ω−

:= {(x, y, z) ∈ Ω : γ (x, y, z) < 0},

1
β+
γ (x, y, z) in Ω+

:= {(x, y, z) ∈ Ω : γ (x, y, z) > 0}.

(6.10)

he coefficients are chosen to have a contrast as β−
= 1 and β+

= 100.

In Fig. 6.22, we report errors and convergence rates in the L∞, L2, and H 1-norms for both PGIFE and classical
FE methods. The convergence rates are optimal for this complex-shape interface problem in all three norms. In
23
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Fig. 6.22. Uniform mesh convergence results of Example 6.8.

Fig. 6.23. Error surface of interface on mesh N = 100 of Example 6.8.

L∞, L2 norms, the PGIFE method outperforms the classical IFE method, which can be also seen from the error
omparison on the interface surface in Fig. 6.23.
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