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Immersed finite element methods are designed to solve interface problems on interface-
unfitted meshes. However, most of the study, especially analysis, is mainly limited to 
the two-dimension case. In this paper, we provide an a priori analysis for the trilinear 
immersed finite element method to solve three-dimensional elliptic interface problems on 
Cartesian grids consisting of cuboids. We establish the trace and inverse inequalities for 
trilinear IFE functions for interface elements with arbitrary interface-cutting configuration. 
Optimal a priori error estimates are rigorously proved in both energy and L2 norms, with 
the constant in the error bound independent of the interface location and its dependence 
on coefficient contrast explicitly specified. Numerical examples are provided not only to 
verify our theoretical results but also to demonstrate the applicability of this IFE method 
in tackling some real-world 3D interface models.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Interface problems are ubiquitous. Many real-world applications in fracture mechanics, fluid mechanics, and material 
science involve multiple mediums and can be considered as three-dimensional (3D) interface problems. For mathematicians 
and computational scientists, partial differential equations (PDEs) are often used to model these problems. Usually, these 
governing equations have discontinuous coefficients that represent the different material properties.

To solve interface problems, in general, there are two classes of numerical methods. The first class of methods uses 
interface-fitted meshes, i.e., the mesh must be tailored to fit the interface. Methods of this type include classical finite 
element method (FEM) [11], discontinuous Galerkin method [4], and virtual element method [10], to name only a few. The 
second class of numerical methods uses interface-unfitted meshes that are independent of the interface. Structured meshes 
such as the Cartesian mesh are often used in these methods. An immediate benefit of these unfitted-mesh methods is the 
avoidance of re-mesh when solving a dynamic problem with evolving interfaces. For example, this feature can be particularly 
advantageous in simulating multi-phase fluid flow [32], crystal growth [7], solving geometric inverse problems [21] and so 
on. We refer readers to [38] for various applications. Moreover, the mesh generation can be especially challenging in the 
3D case since the geometry and topology can be rather complicated such as those in biomedical image [3] and geophysical 
image [13].

In the past few decades, there are many numerical methods introduced for solving interface problems based on unfitted 
meshes. In the finite difference framework, there are Peskin’s immersed boundary method [45], immersed interface method 
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[36], matched interface and boundary method [52], to name only a few. In the framework of finite element methods (FEMs), 
there are general FEM [6], Cut-FEM [8], multi-scale FEMs [12,33], extended FEM [14], partition of unity method [43], and 
immersed FEM [37], etc.

The immersed FEM was first developed in [37] for solving one-dimensional (1D) elliptic interface problem, in which the 
lowest order IFE function was developed and analyzed. The fundamental idea is to construct some special shape functions 
capturing the jump behavior of the exact solution. Since then, IFE methods have been extended to higher-order approxima-
tion [2,9] in 1D, and two-dimensional (2D) interface problems [18,19,24,28,40,41], and 3D interface problems [35,48,26,20]. 
Besides the classical second-order elliptic equation, IFE methods have been applied in a wide variety of interface prob-
lems, such as the linear elasticity system [42,22], moving interface problems [17,30,39], interface inverse problems [21], and 
stochastic interface models [51].

So far, most of IFE methods in literature deal with 2D interface problems. Very few tackles the real 3D interface prob-
lems. In [35], a linear IFE method was introduced on unfitted tetrahedral meshes, and was then used in [26] for simulating 
plasma–lunar surface interactions. In [48], a trilinear element was introduced on cuboidal mesh for solving the electroen-
cephalography forward problem. However, there are no theoretical results for either of these methods. Recently, in [20], the 
authors reconstructed trilinear IFE functions on cuboidal meshes based on the actual interface surface. The unisolvency of 
the trilinear IFE functions was shown using the invertibility of a Sherman-Morrison matrix. A maximum angle condition 
was employed in the construction procedure to guarantee the optimal approximation capabilities of the trilinear IFE spaces, 
and rigorous proof was also given through detailed geometrical analysis. However, the error analysis of the IFE solution is 
still open in the 3D case.

As most of the IFE spaces in the literature, the global IFE functions in [20] are discontinuous across interface faces, 
which can cause certain nonconformity and loss of convergence order if the standard Galerkin scheme is used. We shall 
demonstrate by numerical results that the standard Galerkin scheme used in the literature aforementioned for 3D IFE 
cannot achieve optimal accuracy in general due to the discontinuity on interface faces. The partially penalized IFE (PPIFE) 
scheme has been widely used to address this issue [40,22] in 2D situation, and the basic idea is to use interior penalties 
to handle discontinuities only on interface edges/faces. The PPIFE method was first introduced in [40] for the 2D elliptic 
interface problem in which the analysis relies on piecewise H3 regularity of the solution. Recently, through interpolation 
error analysis on patches of interface elements, it was proved in [23] that the errors decay optimally in both energy norm 
and L2 norm requiring only the piecewise H2 regularity of the solution.

This paper has two major contributions. The first one is to conduct a rigorous error analysis for the PPIFE method 
for 3D interface problems. The global degrees of freedom for the proposed IFE method are isomorphic to the standard 
continuous piecewise trilinear finite element space defined on the same mesh which is independent of the interface location 
and advantageous for moving interface problems. But due to the complexity of the geometrical configurations of interface 
elements and the corresponding IFE functions, the analysis can be very challenging. For example, fundamental inequalities 
such as trace inequality and inverse inequality must be re-established for three-dimensional IFE functions. Nevertheless, the 
standard theoretical tools can barely be used due to the low regularity of the solution. In our analysis, we show the discrete 
extension operator used to construct IFE functions is stable regardless of interface location, and this stability serves as the 
foundation of the trace and inverse inequalities, which is also the key for the proposed PPIFE method to be stable for an 
arbitrary interface. Another challenge is the inconsistency of the numerical scheme due to the discontinuity of the trilinear 
IFE function across the interface surface. Thanks to the optimal error bound of the interpolation operator [20], we are able 
to show that the inconsistency term will not affect the overall accuracy, namely, there is no need to add penalties on the 
interface surface. The second contribution is the extensive investigation of the applicability of the proposed IFE method. In 
particular, we demonstrate that it can be used to solve problems with various interface shapes and topologies. Moreover, 
we also investigate the implementation of the method for some real-world interface models where only the original cloud-
point geometric data on the interface are available. In a realistic simulation, these raw data need to be used to generate a 
computational interface surface which can be further utilized by the proposed IFE method.

The rest of the paper is organized as follows. In Section 2, we present the three-dimensional interface problem and recall 
some geometrical properties of the 3D cuboidal meshes with interface surfaces. In Section 3, we present the trilinear IFE 
spaces and the PPIFE method for solving 3D interface problems. In Section 4, we prove fundamental inequalities including 
the trace and inverse inequalities of the trilinear IFE functions. In Section 5, we derive the a priori error estimates of PPIFE 
solutions in both energy norm and L2 norm. In Section 6, we present extensive numerical experiments not only to verify our 
theoretical results but also to demonstrate how this IFE method can be applied to tackle real-world 3D interface problems. 
A brief conclusion will be drawn in Section 7.

2. Interface models and preliminary results

Let � ⊆R3 be an open bounded domain. Without loss of generality, we assume that � is separated into two subdomains 
�− and �+ by a closed C2 manifold � ⊆ � known as the interface. These subdomains contain different materials identified 
by a piecewise constant function β(x) which is discontinuous across the interface �, i.e.,

β(x) =
{

β− in �−,

β+ in �+,
2
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Fig. 1. Refine an interface element into eight congruent elements. Left: an interface element with an edge containing two intersection points (left). Right: a 
further partition such that this element satisfies the hypothesis (H3).

where β± > 0 and x = (x, y, z). Throughout the analysis, we assume β+ > β− . We consider the following interface problem 
of the elliptic type on �:

−∇ · (β∇u) = f , in �− ∪ �+, (2.1a)

�u�� = 0, on �, (2.1b)

�β∇u · n�� = 0, on �, (2.1c)

u = g, on ∂�, (2.1d)

where �v�� := (v|�+ )� − (v|�− )� , and n is the unit normal vector of � from �+ to �− . For simplicity, we denote us = u|�s , 
s = ±, in the rest of this article. Here we only consider the homogeneous jump condition, and the nonhomogeneous case 
can be treated by some enriched functions through the framework recently developed by Babuška et al. in [1].

In this section, we first introduce some Sobolev spaces used throughout this article and recall some geometrical proper-
ties of the unfitted mesh for three-dimensional interface problems. Given an open subset �̃ ⊆ �, let Hk(�̃) be the standard 
Hilbert spaces on �̃ with the norm ‖ · ‖k,�̃

and the semi-norm | · |k,�̃
. In the case �̃s := �̃ ∩ �s �= ∅, s = ±, we define the 

splitting Hilbert spaces

P Hk(�̃) = {u ∈ Hk(�̃±) : �u�
�∩�̃

= 0 and �β∇u · n�
�∩�̃

= 0}, (2.2)

where the definition implicitly implies the involved traces on � ∩ �̃ are well defined, with the associated norms and semi-
norms defined as follows

‖ · ‖2
Hk(�̃)

:= ‖ · ‖2
Hk(�̃+)

+ ‖ · ‖2
Hk(�̃−)

, | · |2
Hk(�̃)

:= | · |2
Hk(�̃+)

+ | · |2
Hk(�̃−)

.

In the following, we assume that � ⊂ R3 is a cuboid domain, and Th is a Cartesian cuboidal mesh of � where h denotes 
the maximum length of all the cuboids. Denote Fh , Eh and Nh as the collections of faces, edges, and nodes, respectively. We 
call an element T ∈ Th an interface element if not all of its vertices locate on the same side of the interface �; otherwise, we 
treat it as a non-interface element. Similarly, we can define the interface faces and interface edges by the relative location 
of its vertices with the interface. Note that non-interface elements/faces/edges may still intersect with the interface due to 
large curvature of the segment of the interface, see the illustration in Fig. 1. However, this issue can always be resolved 
by refining the mesh. Let T i

h /F i
h/E i

h and T n
h /Fn

h /En
h be the collections of interface and non-interface elements/faces/edges, 

respectively. Let κ be the maximal curvature (principle curvature) of the interface surface �. Moreover, for each interface 
element T ∈ T i

h , we define its patch ωT as

ωT = {T ′ ∈ Th : T ′ ∩ T �= ∅}. (2.3)

Many unfitted-mesh methods rely on the assumption that the mesh size is sufficiently small such that the interface 
curve/surface is resolved enough [18,27]. In this section, we provide a delicate approach to quantify how well the interface 
is resolved by a fixed mesh. In particular, our approach is to measure the flatness of the interface within each interface 
element in terms of the maximal angle between the normal vectors of the interface surface and its planar approximation. 
These fundamental geometric results will be used throughout this paper. First of all, we recall the so-called r-tubular 
neighborhood of a smooth manifold from [15] which is a very useful concept in computational geometry [44].

Lemma 2.1 (r-tubular neighborhood). Given a smooth compact surface � in R3 , for each point X ∈ �, let N X (r) be a segment with the 
length 2r centered at X and perpendicular to �. Then, there exists a positive r > 0 such that N X (r) ∩ NY (r) = ∅ for any X, Y ∈ �, X �=
Y . Then the r-tubular neighborhood of � is defined as the set U�(r) = ∪X∈�N X (r).
3
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Fig. 2. Possible Interface Element Configuration.

Define r� to be the largest r such that Lemma 2.1 holds, namely it corresponds to the largest r-tabular neighborhood, and 
this positive number r� is referred as the reach of the surface � [44]. We further note that the reach r� is only determined 
by the surface itself. Throughout this paper, we assume that the mesh size h is sufficiently small such that the following 
hypotheses hold [20]:

(H1) h < r�/(3
√

3).
(H2) hκ ≤ 0.0288.
(H3) The interface � cannot intersect an edge e ∈ Eh at more than one point.
(H4) The interface � cannot intersect a face f ∈Fh at more than two edges.

These hypotheses basically ensure that the interface surface is sufficiently resolved by the unfitted mesh such that it is 
flat enough inside each interface element. Similar assumptions have been used in many unfitted-mesh methods such as 
[8,25,18,27,35]. In this work we make the bounds in (H1) and (H2) explicit and computable which can guide the mesh 
generation in real computation. We refer readers to [20] for more details of calculation of those bounds.

Now we are ready to describe the classification of the interface elements. Based on hypotheses (H3) and (H4), we claim 
that the interface surface can only intersect an element at six points the most. In fact, suppose that an element has seven 
intersection points. According to (H3), these seven points must be on seven different edges. Since every edge is shared by 
two adjacent faces in the element, there is a total of fourteen interface edges, counting each edge twice from its sharing 
faces. A cuboid has six faces in total, which means there is at least one face containing at least three interface edges. This 
is contradicted to (H4).

According to [20], when the interface is resolved sufficiently by an unfitted mesh, there are only five possible interface 
element configurations as shown in Fig. 2. Taking into account the rotation, the five types of interface cuboids have the 
following representatives:

Type I interface element: three intersection points on three edges
Type II interface element: four intersection points on four parallel edges
Type III interface element: four intersection points on two pairs of adjacent edges
Type IV interface element: five intersection points on five edges
Type V interface element: six intersection points on six edges
4



R. Guo and X. Zhang Journal of Computational Physics 441 (2021) 110445
See Fig. 2 (a-e) for illustrations of all types of interface elements. This classification strategy can also be used in computation 
to efficiently determine the geometry configuration of each interface element by counting the number of interface points 
and the number of vertices on each side. The classification of interface elements is important in constructing IFE functions 
and numerical quadrature which we shall discuss later on.

Now we describe how to construct an approximate plane, denoted by τT , for each interface element T ∈ T i
h with suffi-

cient geometric representation for the interface. This is done by constructing a triangle formed by three suitable intersection 
points such that its maximal angle is always bounded by 135◦ regardless of the interface location [20]. As shown by Fig. 2, 
we follow the choice in [20] to make this plane τT contain the following triangles: �D1 D2 D3 for Type I, �D1 D2 D4 for 
Type II, �D1 D4 D3 for Type III, �D1 D2 D3 for Type IV and �D1 D3 D5 for Type V. We emphasize that the choice may not 
be unique, and any triangle is acceptable as long as the maximal angle condition is satisfied. We refer readers to [10,20]
for more details on the calculation of the maximal angles of these triangles. Note that the maximal angle condition is also 
widely used in standard finite element analysis, which can be traced back to the early works of Babuška [5]. Under this 
choice of the plane τT , we recall from [20] the following optimal geometric error estimate.

Theorem 2.2. Let Th be a Cartesian mesh whose mesh size is small enough such that (H1)-(H4) hold, then the following estimates hold 
for every point X ∈ � ∩ T (or every point X ∈ � ∩ ωT ):

‖X − X⊥‖ ≤ 12.0927κh2, (2.4a)

n(X) · n̄ ≥ 1 − 26.6121κ2h2, (2.4b)

where X⊥ is the projection of X onto τT , n(X) is the unit normal vector to � at X, and n̄ is the normal vector to τT .

Proof. See the proof of Theorem 2.2 of [20]. �
A direct consequence of Theorem 2.2 is the following lemma.

Lemma 2.3. Under the conditions of Theorem 2.2, there exists a constant C independent of interface location and mesh size h such that 
meas(� ∩ T ) ≤ Ch2 .

Proof. Clearly, we have meas(τT ) ≤ Ch2. Then using (2.4b) we have

meas(� ∩ T ) =
∣∣∣∣∣∣
∫

�∩T

dS

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
τT

1

n(X) · n̄
dS

∣∣∣∣∣∣ ≤ Ch2.

Finally, for simplicity’s sake, we shall employ a generic constant C in the rest of this article which is independent of interface 
location, mesh size, and discontinuous coefficients β± without explicitly mentioning in the presentation. In addition, the 
notation � denotes equivalence where the hidden constant C has the same property. �
3. Trilinear IFE spaces and the IFE method

In this section, we describe the trilinear IFE functions and the PPIFE method. In general, IFE functions constructed by 
piecewise polynomials cannot satisfy the jump conditions exactly for an arbitrary interface surface. Different approximations 
of jump conditions have been proposed in the 2D case, see [18,19,29]. Most of the methods rely on the linear approximation 
of the interface curve constructed by simply connecting the intersection points, and then the approximate jump conditions 
are posed on this line. However, this approach becomes obscure in the 3D case since the intersection points, the number 
varying from three to six, may not be coplanar. Some early works of IFE functions use the approximation plane passing 
through the three points which have the shortest distance to the others for which we refer readers to [26,35] for details. 
Besides, a level-set approximate approach was used in [48]. But to our best knowledge, these works on 3D IFE functions are 
in lack of theoretical foundation. Recently, the authors in [20] proposed a new and provable construction approach by using 
a special approximate plane satisfying the maximal angle condition described above.

Let Q1 = Span{1, x, y, z, xy, xz, yz, xyz} be the trilinear polynomial space and let F be the centroid of the triangle de-
scribed above and shown in Fig. 2. According to [20], the local trilinear IFE space Sh(T ) is formed by piecewise polynomials 
φT with φ±

T = φT |T ± ∈Q1 which satisfy the approximate jump conditions to (2.1b) and (2.1c):

φ−
T |τT = φ+

T |τT , d(φ−
T ) = d(φ+

T ), (3.1a)

β−∇φ−
T (F ) · n̄ = β+∇φ+

T (F ) · n̄, (3.1b)

where d(p) is the vector of coefficients of terms xy, yz, xz and xyz in a polynomial p ∈Q1. Then, on each interface element, 
we recall the extension operator CT from (3.4) in [20]:
5
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CT :Q1 → Q1, such that φ−
T = p ∈Q1 and φ+

T = CT (p) ∈Q1

together satisfy the approximate jump conditions (3.1).
(3.2)

Let L(X) = (X − F ) · n̄ be the level-set function of the plane τT . In particular, we have the following explicit expression for 
the operator:

CT (p) = p +
(

β−

β+ − 1

)
(∇p(F ) · n̄)L, (3.3a)

C−1
T (p) = p +

(
β+

β− − 1

)
(∇p(F ) · n̄)L. (3.3b)

Then the proposed IFE space Sh(T ) can be written as

Sh(T ) = {φT |T ± ∈Q1 : φT |T − = p ∈ Q1 and φT |T + = CT (p)}, ∀T ∈ T i
h . (3.4)

It is crucial in both analysis and computation which shape functions are used, namely which degrees of freedom are chosen. 
Different shape functions may have different features in computation. In this article, we consider the Lagrange IFE shape 
function φi,T such that

φi,T (A j) = δi, j, i, j = 1, ...,8, (3.5)

where A j are the vertices of the interface element T as shown in Fig. 2. Then the IFE space can be rewritten as

Sh(T ) = Span{φi,T : i = 1, ...,8}. (3.6)

The global IFE space is defined as

Sh(�) = {v ∈ L2(�) : v|T ∈ Sh(T ) ∀T ∈ Th, and v is continuous at X ∈ Nh}. (3.7)

It has been shown in [20] that these IFE spaces have optimal approximation capabilities to the functions satisfying the jump 
conditions in the L2 and H1 norms. We shall discuss some new approximation capabilities in Section 5. Let S0

h(�) be the 
subspace of Sh(�) with zero trace on ∂�. Clearly, S0

h(�) is a subspace of the underlying space

Vh(�) = {v ∈ L2(�) : v|T ∈ H1(T ) ∀T ∈ T n
h , and v|T ± ∈ H1(T ±) ∀T ∈ T i

h ,

v is continuous at each X ∈ Nh and e ∈ En
h , v|∂� = 0}. (3.8)

Now the proposed PPIFE method is: find uh ∈ Sh(�) such that uh(X) = g(X) ∀X ∈Nh ∩ ∂� and

ah(uh, vh) = L(vh), ∀vh ∈ S0
h(�), (3.9)

where the bilinear form ah(·, ·) is given by

ah(u, v) =
∑
T ∈Th

∫
T

β∇u · ∇vdX −
∑

F∈F i
h

∫
F

{{β∇u · n}} �v�dS

+ ε
∑

F∈F i
h

∫
F

{{β∇v · n}} �u�dS +
∑

F∈F i
h

σ

h

∫
F

�u� �v�dS,

(3.10)

with σ = σ̃ 0(β+)2/β− with σ̃ 0 large enough but independent of h and β± , and the linear form L : Sh(�) →R is

L(v) =
∫
�

f vdX . (3.11)

Here, �·�F and {{·}}F denote the jump and the average, respectively, of a function on a face F from two neighboring elements 
T 1

F and T 2
F sharing the face F , i.e.,

�w�F = (w|T 1
F
)|F − (w|T 2

F
)|F , {{w}}F = 1

2

(
(w|T 1

F
)|F + (w|T 2

F
)|F

)
.

For simplicity, we omit the subscript F , if there is no confusion on where the jump or average is defined.
To show how the exact solution is related to this scheme, we prove the following identity.
6



R. Guo and X. Zhang Journal of Computational Physics 441 (2021) 110445
Lemma 3.1. Let u be the solution to (2.1). Then the following error equation holds

ah(u, vh) − bh(u, vh) =
∫
�

f vhdX, ∀vh ∈ Sh(�), (3.12)

where

bh(u, vh) =
∑

T ∈T i
h

∫
T ∩�

β∇u · n �vh�dS. (3.13)

Proof. We multiply (2.1a) by vh ∈ Sh(�) and integrate over an interface element T . Apply the Green’s formula, then we 
obtain∫

T

−∇ · (β∇u)vhdX =
∫
T

β∇u · ∇vhdX −
∫

∂T −
(β∇u · nT −)vhdS −

∫
∂T +

(β∇u · nT +)vhdS

=
∫
T

β∇u · ∇vhdX −
∫
∂T

(β∇u · nT )vhdS −
∫

T ∩�

(β∇u · n) �vh�dS
(3.14)

where nT + , nT − , and nT are the outward normal to T + , T − , and T , respectively. Note that the normal vector of interface 
n = nT + = −nT − . The last equality is due to the homogeneous flux jump condition (2.1c). The identities on non-interface 
elements are trivial as there is no interface. Now, adding these identities for all elements and noticing that IFE functions are 
continuous across all the non-interface faces and discontinuous across interface faces, we obtain∑

T ∈Th

∫
T

β∇u · ∇vhdX −
∑

F∈F i
h

∫
F

{{β∇u · n}} �vh�dS −
∑

T ∈T i
h

∫
T ∩�

β∇u · n �vh�dS =
∫
�

f vhdX . (3.15)

Finally, we note that �u� = 0 on each face F as u is the exact solution, which yields those two extra penalty terms involving 
ε and σ in the bilinear form (3.10), and thus (3.12) is obtained. �
Remark 3.2. The inconsistency term bh(u, vh) in (3.13) is solely due to the planar geometrical approximation L of T ∩ �. 
Consequently, if the interface surface T ∩ � is a plane, there is no inconsistency error, i.e., bh(u, vh) = 0.

Remark 3.3. We emphasize that (3.9) is not a discontinuous Galerkin (DG) scheme since the global IFE functions in (3.7) are 
all continuous at the mesh nodes such that the global degrees of freedom are isomorphic to the standard continuous piece-
wise trilinear finite element space. The penalties in (3.10) are only added on the interface faces to handle the discontinuities 
of IFE functions across the element boundaries. This isomorphism makes the IFE method advantageous when solving mov-
ing interface problems [39]. Meanwhile, the proposed scheme (3.9), as well as its derivation, is close to the interior penalty 
DG scheme [46]. The ε term in (3.10) is to enforce certain desirable structure for the scheme [46]. ε = −1, 0, 1 corresponds 
to the symmetric PPIFE (SPPIFE), the incomplete PPIFE (IPPIFE), and the non-symmetric PPIFE (NPPIFE) method, respectively. 
The σ term in (3.10) is to enforce the coercivity. Note that these two terms vanish when u is the exact solution.

4. Trace and inverse inequalities

In this section, we proceed to establish the trace and inverse inequalities of the trilinear IFE functions. We note that these 
inequalities are non-trivial since IFE functions as piecewise polynomials do not have sufficient regularity for classical results 
to be applied. We need to consider all interface element configurations in Fig. 2 separately. However, we note that their 
analysis is mathematically similar to each other; thus, without loss of generality, we only consider the Type III interface 
element as shown in Fig. 2(c) since it is a good representative of our arguments.

We begin with a norm equivalence for polynomials on interface elements. For each interface element T , we denote the 
subelements cut by the interface � by T1 and T2 where T1 contains the vertex A1 and T2 contains the vertex A8. Similarly, 
we have the subelements T̃1 and T̃2 cut by the approximating plane τT . Then we have the following results.

Lemma 4.1. On an interface element T , the following norm equivalence holds

‖ · ‖L2(T1) � ‖ · ‖L2(T̃1) � ‖ · ‖L2(T ), on Q1, (4.1)

for the interface element types:

• Type III in Fig. 2, if |A4 D4| ≤ 1 |A4 A3| or |A2 D1| ≤ 1 |A2 A1| or |A6 D2| ≤ 1 |A6 A5| or |A8 D3| ≤ 1 |A8 A7|;
2 2 2 2

7
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Fig. 3. Type III interface element inclusion.

• Type V in Fig. 2.

In addition, the following norm equivalence holds

‖ · ‖L2(T2) � ‖ · ‖L2(T̃2) � ‖ · ‖L2(T ), on Q1, (4.2)

for the interface element types:

• Type I and Type II in Fig. 2;
• Type III in Fig. 2 if |A4 D4| ≥ 1

2 |A4 A3| or |A2 D1| ≥ 1
2 |A2 A1| or |A6 D2| ≥ 1

2 |A6 A5| or |A8 D3| ≥ 1
2 |A8 A7|;

• Type IV and Type V in Fig. 2.

Proof. Without loss of generality, we consider the Type III interface element in Fig. 2(c), and only prove (4.1). In this case 
the approximate plane τT passing through any three points of D1, D2, D3 and D4 has the geometric approximation given 
in Theorem 2.2; and thus by symmetricity, without loss of generality, we only need to consider the case |A4 D4| ≤ 1

2 |A4 A3|. 
First of all, the hypothesis (H2) and (2.4a) indicate that

dist(τT ,� ∩ T ) ≤ 12.0927(κh)h ≤ 0.3386h. (4.3)

We then consider the pyramid A3 E1 E2 E3 denoted by P1 with E1, E2 and E3 satisfying |A3 E3|/|A3 A7| = |A3 E1|/|A3 A1| =
1/10 and |A3 E2|/|A3 A4| = 1/20 as shown in Fig. 3. We can directly calculate that the shortest distance from E1, E2 and 
E3 to the plane τT is 

√
1/6 · 0.9h = 0.3674h > 0.3386h. Hence, (4.3) shows that E1, E2 and E3 are all in T1, and thus 

the pyramid A3 E1 E2 E3 is always inside T1 regardless of the interface location. Therefore, we can construct a new pyramid 
A3 E ′

1 E ′
2 E ′

3 denoted by P ′
1 such that it is homothetic to P1 and always contains the cubic element T , as illustrated by Fig. 3. 

By Lemma 2.2 in [49], we have for any v ∈Q1, there holds

‖v‖L2(T ) ≤ C‖v‖L2(P ′
1) ≤ C‖v‖L2(P1) ≤ C‖v‖L2(T1). (4.4)

Clearly, the pyramid P1 must be always inside the subelement T̃1, then by similar derivation to (4.4), we still have 
‖v‖L2(T ) ≤ C‖v‖L2(T̃1) . Using the simple geometry, we immediately have

‖v‖L2(T1) ≤ C‖v‖L2(T ), and ‖v‖L2(T̃1) ≤ C‖v‖L2(T ).

Combining these estimates, we arrive at (4.1). �
Next we prove the following kind of trace inequality on a pyramid.

Lemma 4.2. Given a pyramid K with a convex polygonal base B, suppose B has NB edges, then

‖p(X0)‖ ≤ C N1/2|K |−1/2‖p‖L2(K ), ∀p ∈Q1, ∀X0 ∈ B. (4.5)
B

8
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Fig. 4. Proof of Lemmas 4.3 and 4.4.

Proof. We connect X0 and the vertices of B , and thus obtain NB triangles denoted by �i , i = 1, · · · , NB . Then we connect 
X0 and the apex of the pyramid to obtain NB sub-pyramids denoted by Ki , i = 1, · · · , NB . Without loss of generality, we 
assume |K1| ≥ |K2| ≥ · · · ≥ |K NB |. Then |K | = ∑NB

i=1 |Ki | ≤ NB |K1|. Thus, on K1, the standard trace inequality for polynomials 
[50] yields

|p(X0)| ≤ C |�1|−1/2‖p‖L2(�1) ≤ C |�1|−1/2
( |�1|

|K1|
)1/2

‖p‖L2(K1) ≤ C N1/2
B |K |−1/2‖p‖L2(K ). � (4.6)

Let T be an interface element of the configuration shown in Fig. 2. Recall that the subelement T1 containing the vertex 
A1 and T2 contains A8. Then we have the following stability estimates for CT .

Lemma 4.3. On each interface element T , there holds

|CT (p)|H j(T2) ≤ C |p|H j(T2), j = 0,1, ∀p ∈Q1, (4.7a)

|C−1
T (p)|H j(T2) ≤ C

β+

β− |p|H j(T2), j = 0,1, ∀p ∈Q1, (4.7b)

for the interface element types:

• Types I and II in Fig. 2;
• Type III in Fig. 2, if |A4 D4| ≥ 1

2 |A4 A3| or |A2 D1| ≥ 1
2 |A2 A1| or |A6 D2| ≥ 1

2 |A6 A5| or |A8 D3| ≥ 1
2 |A8 A7|;

• Types IV and V in Fig. 2.

Proof. Also we only show the proof for the interface element of Type III in Fig. 2. First of all, we note that

|L|H j(T2) ≤ Ch1− j|T2|1/2 ≤ Ch5/2− j, j = 0,1. (4.8)

Due to symmetry, we only need to consider the edge A4 A3, namely assuming |A4 D4| ≥ 1
2 |A4 A3| as shown in Fig. 4(a). We 

consider the tetrahedron A4 D1 D3 D4 denoted as P . Since |A4 D4| ≥ 1
2 |A4 A3|, we know that |P | ≥ h3/12. Therefore, according 

to Lemma 4.2 and (4.8), we use (3.3a) to obtain

|CT (p)|H j(T2) ≤ |p|H j(T2) + max
{β−

β+ ,1
}
‖∇p(F )‖|L|H j(T2)

≤ |p|H j(T2) + Ch1− j‖∇p‖L2(P ) ≤ |p|H j(T2) + C |p|H j(P )

(4.9)

where in the last inequality we have also used the inverse inequality for j = 0 on P . Furthermore, recalling that T̃2 is the 
subelement cut by the plane passing through D1 D4 D3, and applying (4.2) to the last inequality in (4.9), we have

|CT (p)|H j(T2) ≤ |p|H j(T2) + C |p|H j(T̃2) ≤ |p|H j(T2) + C |p|H j(T2), (4.10)

which gives (4.7a). For (4.7b), similar to (4.9) and (4.10), we use (3.3b) to obtain
9
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|C−1
T (p)|H j(T2) ≤ |p|H j(T2) + max

{β+

β− ,1
}
‖∇p(F )‖|L|H j(T2) ≤ |p|H j(T2) + C

β+

β− |p|H j(P ) ≤ C
β+

β− |p|H j(T2). (4.11)

This finishes the proof. �
Lemma 4.4. On each interface element T , there holds

|CT (p)|H j(T1) ≤ C |p|H j(T1), j = 0,1, ∀p ∈Q1, (4.12a)

|C−1
T (p)|H j(T1) ≤ C

β+

β− |p|H j(T1), j = 0,1, ∀p ∈Q1, (4.12b)

for the interface element types

• Type III in Fig. 2, if |A4 D4| ≤ 1
2 |A4 A3| or |A2 D1| ≤ 1

2 |A2 A1| or |A6 D2| ≤ 1
2 |A6 A5| or |A8 D3| ≤ 1

2 |A8 A7|;
• Type V in Fig. 2.

Proof. We still only consider the interface element of Type III and the edge A4 A3, and without loss of generality we assume 
|A4 D4| ≤ 1

2 |A4 A3|, i.e., |A3 D4| ≥ |A4 A3|/2 as shown in Fig. 4(b). In this case, we consider the tetrahedron P = A3 D1 D4 D3

and by a similar discussion, we also have |P | ≥ h3/12. Therefore, similar to (4.9), we have

|CT (p)|H j(T1) ≤ |p|H j(T1) + max
{β−

β+ ,1
}
‖∇p(F )‖|L|H j(T1)

≤ |p|H j(T1) + Ch1− j‖∇p‖L2(P ) ≤ |p|H j(T1) + C |p|H j(P )

(4.13)

where in the last inequality we also use the inverse inequality for j = 0 on P . Finally, similar to (4.10) but applying (4.1) to 
bound the last term in (4.13), we have (4.12a). (4.12b) can be proved by a similar argument. �

The estimates above can be understood as the stability of the extension operator CT for polynomials, and they serve as 
the foundation of the stability of the PPIFE method, namely, the inverse and trace inequalities. Now we are ready to present 
those inequalities for the proposed IFE functions.

Theorem 4.5 (Trace inequalities). On each interface element T and its face F , one of the following must hold for all φT ∈ Sh(T )

‖∇φT · n‖L2(F ) ≤ Ch−1/2‖∇φT ‖L2(T ), (4.14a)

‖β∇φT · n‖L2(F ) ≤ Ch−1/2‖β∇φT ‖L2(T ). (4.14b)

Proof. We only present the detailed proof for the interface element of Type III in Fig. 2. Due to the symmetry, we can 
assume the subelement containing A1 is T − , i.e., T1 = T − , and then the subelement containing A8 is T + , i.e., T2 = T + . 
Furthermore, without loss of generality, we only consider the interface face F = A1 A2 A3 A4. Here we note that F s = F ∩ T s , 
s = ±, are all curved-edge quadrilaterals. According to the definition (3.4), for each IFE function φT , there exists a polynomial 
p ∈Q1 such that φT = φ−

T = p on T − and φT = φ+
T = CT (p) on T + .

On one hand, we first consider the case |A4 D4| ≥ 1
2 |A4 A3|. On T + , we simply apply the standard trace inequality [50]

on the whole element T to obtain

‖β+∇φT · n‖L2(F +) = ‖β+∇CT (p) · n‖L2(F +) ≤ ‖β+∇CT (p) · n‖L2(F )

≤ Ch−1/2|β+CT (p)|H1(T ) ≤ Ch−1/2|β+CT (p)|H1(T +)

(4.15)

where in the last inequality we have used (4.2). Similarly, applying the standard trace inequality [50] on the whole element 
T with (4.12b), we have

‖∇φT · n‖L2(F −) = ‖∇p · n‖L2(F −) ≤ ‖∇p · n‖L2(F ) ≤ Ch−1/2|p|H1(T )

≤Ch−1/2
(
|C−1

T (CT (p))|H1(T +) + |p|H1(T −)

)
≤ Ch−1/2

(
β+

β− |CT (p)|H1(T +) + |p|H1(T −)

)
.

(4.16)

Combining (4.15) and (4.16), we have the desired result (4.14b).
On the other hand, if |A4 D4| ≤ 1

2 |A4 A3|, we apply the argument (4.15) to ∇φT · n on T − with (4.1) to obtain

‖∇φT · n‖L2(F −) = ‖∇p · n‖L2(F −) ≤ ‖∇p · n‖L2(F ) ≤ Ch−1/2|p|H1(T ) ≤ Ch−1/2|p|H1(T −). (4.17)

In addition, we apply the argument (4.16) to ∇φT · n on T + with (4.7a) to obtain
10
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‖∇φT · n‖L2(F +) = ‖∇CT (p) · n‖L2(F +) ≤ ‖∇CT (p) · n‖L2(F ) ≤ Ch−1/2|CT (p)|H1(T )

≤Ch−1/2 (|CT (p)|H1(T +) + |CT (p)|H1(T −)

) ≤ Ch−1/2 (|CT (p)|H1(T +) + |p|H1(T −)

) ≤ Ch−1/2|φT |H1(T ).
(4.18)

Finally, combining (4.17) and (4.18), we have (4.14a) �
Remark 4.6. Roughly speaking, for each interface element T , if the size of the subelement corresponding to the larger 
coefficient β+ shrinks to 0, then the trace inequality (4.14b) holds. On the other hand, if the subelement corresponding to 
the smaller coefficient β− shrinks, then (4.14a) holds. These two inequalities can be unified as the following one

‖β∇φT · n‖L2(F ) ≤ Ch−1/2 β+√
β− ‖√β∇φ‖L2(T ). (4.19)

In addition, we note that the IFE functions on interface elements may not be continuous across the interface. Here 
we present a special type of trace inequality for IFE functions which shows the difference between the two polynomial 
components on interface can be bounded by the IFE function on the element with certain optimal order of h. This is 
important to estimate the inconsistence error. For this purpose, let us first estimate L(X) = (X − F ) · n̄ on � ∩ T .

Lemma 4.7. For each interface element T , there holds

‖L‖L2(�∩T ) ≤ Ch3. (4.20)

Proof. For each X ∈ � ∩ T , we denote the projection of X onto the approximate plane τT by X⊥ . Using (2.4a), the fact 
L(X) = 0 for every X ∈ τT , and Lemma 2.3 we have

‖L‖L2(�∩T ) =
⎛⎝ ∫

�∩T

((X − F ) · n̄)2dS

⎞⎠1/2

=
⎛⎝ ∫

�∩T

((X − X⊥) · n̄)2dS

⎞⎠1/2

≤ C‖X − X⊥‖|� ∩ T |1/2 ≤ Ch3. �
(4.21)

Now, let us define [p] as the difference between one polynomial p and its image CT (p), namely [p] := CT (p) − p. 
In particular, [φT ] = φ+

T − φ−
T . As it is a polynomial, [p] is well-defined everywhere over the whole element. When it is 

restricted onto � ∩ T , it is the same as �·�.

Theorem 4.8. For each interface element T , there holds

‖[φT ]‖L2(T ∩�) ≤ C

√
β+

β− h3/2‖√β∇φT ‖L2(T ), ∀φT ∈ Sh(T ). (4.22)

Proof. We only consider the interface element of Type III shown in Fig. 2(c), and without loss of generality we assume 
that the subelement T1 containing A1 is T − , i.e., T1 = T − , and then the subelement T2 containing A8 is T + , i.e., T2 = T + . 
According to the relation CT between the two polynomial components of an IFE function (3.3), we note that there exists a 
polynomial p ∈Q1 such that φ+

T = CT (p), φ−
T = p and

[φT ] =
(

β−

β+ − 1

)
(∇p(F ) · n̄)L =

(
β+

β− − 1

)
(∇CT (p)(F ) · n̄)L. (4.23)

If |A4 D4| ≥ 1
2 |A4 A3|, using the similar argument to (4.9) and (4.10) with Lemma 4.2 on the tetrahedron A4 D1 D4 D3

as shown in Fig. 4(a), we have |∇CT (p)(F ) · n̄| ≤ Ch−3/2‖∇CT (p)‖L2(T +) . Then we use the second equality in (4.23) and 
Lemma 4.7 to obtain

‖[φT ]‖L2(�∩T ) ≤ C
β+

β− |∇CT (p)(F ) · n̄|‖L‖L2(�∩T )

≤ C
β+

β− h3/2‖∇CT (p)‖L2(T +) ≤ C

√
β+

β− h3/2‖√β∇φT ‖L2(T ).

(4.24)

If |A4 D4| ≤ 1
2 |A4 A3|, using the similar argument to (4.13) with Lemma 4.2 on the tetrahedron A3 D1 D4 D3 as shown in 

Fig. 4(b), we have

|∇p(F ) · n̄| ≤ Ch−3/2‖∇p‖L2(T −).
11
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Then we apply the first equality in (4.23) and Lemma 4.7 to obtain

‖[φT ]‖L2(�∩T ) ≤ C
β−

β+ |∇p(F ) · n̄|‖L‖L2(�∩T ) ≤ C

√
β−

β+ h3/2‖√β−∇p‖L2(T −) ≤ C

√
β−

β+ h3/2‖√β∇φT ‖L2(T ). (4.25)

Combining (4.24) and (4.25) and noticing that 
√

β−
β+ ≤

√
β+

β− , we have finished the proof. �
Theorem 4.9. For each interface element T , there holds

‖[φT ]‖L2(T ∩�) ≤ Ch2‖ �∇φT �‖L2(T ∩�), ∀φT ∈ Sh(T ). (4.26)

Proof. For simplicity, we denote w = [φT ] and note that w = 0 on the approximate plane τT . For each X ∈ � ∩ T , let X⊥ be 
the projection of X onto τT . Then the Taylor expansion yields

0 = w(X⊥) = w(X) + ∂ζ w(X)|X − X⊥| + ∂2
ζ w(X)|X − X⊥|2 + ∂3

ζ w(X)|X − X⊥|3 (4.27)

where ζ is the directional vector from X⊥ to X . Hence using (2.4a) and the fact that w is a linear polynomial, we have 
∂ζ w = ∂2

ζ w = 0. Then, (4.26) follows from taking integration over T ∩ �. �
Theorem 4.10 (Inverse inequalities). For each interface element T , there holds

‖∇φT ‖L2(T ) ≤ C
β+

β− h−1‖φ‖L2(T ), ∀φT ∈ Sh(T ). (4.28)

Proof. Following the convention above, we again only discuss the interface element of Type III shown in Fig. 2(c). Without 
loss of generality we assume that the subelement T1 containing A1 is T − while the subelement T2 containing A8 is 
T + . Recall that there is a polynomial p ∈ Q1, φ−

T = p and φ+
T = CT (p). The argument is actually similar to the one for 

Theorem 4.5.
First, if |A4 D4| ≥ 1

2 |A4 A3|, then for ∇φT on T + , we apply the standard inverse inequality with (4.2) to obtain

‖∇φT ‖L2(T +) = ‖∇CT (p)‖L2(T +) ≤ ‖∇CT (p)‖L2(T ) ≤ Ch−1‖CT (p)‖L2(T ) ≤ Ch−1‖CT (p)‖L2(T +). (4.29)

For ∇φT on T − , we apply the standard inverse inequality and (4.7b) to have

‖∇φT ‖L2(T −) ≤ ‖∇p‖L2(T ) ≤ Ch−1‖p‖L2(T ) ≤ Ch−1 (‖p‖L2(T −) + ‖p‖L2(T +)

)
= Ch−1

(
‖p‖L2(T −) + ‖C−1

T (CT (p))‖L2(T +)

)
≤ Ch−1

(
‖p‖L2(T −) + β+

β− ‖CT (p)‖L2(T +)

)
.

(4.30)

Combining (4.29) and (4.30), we have (4.28).
Second, if |A4 D4| ≤ 1

2 |A4 A3|, then for ∇φT on T + , applying the argument in (4.30) but with (4.12a), we obtain

‖∇φT ‖L2(T +) = ‖CT (p)‖L2(T +) ≤ ‖∇CT (p)‖L2(T ) ≤ Ch−1‖CT (p)‖L2(T )

≤Ch−1 (‖CT (p)‖L2(T −) + ‖CT (p)‖L2(T +)

) ≤ Ch−1 (‖p‖L2(T −) + ‖CT (p)‖L2(T +)

)
.

(4.31)

In addition, for ∇φT on T − , applying the argument in (4.29) but with (4.1), we have

‖∇φT ‖L2(T −) = ‖∇p‖L2(T −) ≤ ‖∇p‖L2(T ) ≤ Ch−1‖p‖L2(T ) ≤ Ch−1‖p‖L2(T −). (4.32)

Combining (4.31) and (4.32), we finish the proof. �
5. Error estimates of IFE solutions

In this section, we proceed to estimate the errors of the PPIFE scheme (3.9). For this purpose, we define the energy 
norm:

�v�2 :=
∑
T ∈Th

‖√β∇v‖2
L2(T )

+
∑

F∈F i
h

σ‖h−1/2 �v�‖2
L2(F )

+
∑

F∈F i
h

1

σ
‖h1/2 {{β∇v · n}} ‖2

L2(F )
. (5.1)

It is easy to see that � · � is a semi-norm. We begin by showing that the functional above is indeed a norm on the space 
Vh(�).

Lemma 5.1. � · � is a norm of Vh(�).
12



R. Guo and X. Zhang Journal of Computational Physics 441 (2021) 110445
Proof. Since �v�2 = 0, we directly have ‖∇v‖ = 0, and thus v is a constant on each element. Due to the continuity at mesh 
nodes and zero trace on ∂�, we know that v must be zero on the whole domain. �

Now we show that the bilinear form ah(·, ·) is both continuous and coercive under the energy norm � · �.

Theorem 5.2. There exists a constant C such that

ah(v, w) ≤ C�v��w�, ∀v, w ∈ Vh(�). (5.2)

Proof. It directly follows from the Hölder’s inequality. �
Theorem 5.3. Assume that σ is large enough, then there holds

ah(v, v) ≥ 1

4
�v�2, ∀v ∈ Sh(�). (5.3)

Proof. We first note that

ah(v, v) =
∑
T ∈Th

‖√β∇v‖2
L2(T )

+ (ε − 1)
∑

F∈F i
h

∫
F

{{β∇v · n}} �v�dS +
∑

F∈F i
h

σ

h
‖�v�‖2

L2(F )
dS. (5.4)

Then we only need to bound the second term in (5.4). On each interface face F , we denote its two neighbor elements by 
T 1

F and T 2
F . Then we apply (4.19) to obtain

‖ {{β∇v · n}} ‖L2(F ) ≤ 1

2

∑
j=1,2

‖β∇v|
T j

F
· n‖L2(F ) ≤ C

β+

2
√

β−
∑
j=1,2

h−1/2‖√β∇v‖
L2(T j

F )
. (5.5)

Using Hölder’s inequality and Young’s inequality, we have∣∣∣∣∣∣(ε − 1)

∫
F

{{β∇v · n}} �v�dS

∣∣∣∣∣∣ ≤2
(

h1/2‖ {{β∇v · n}} ‖L2(F )

)(
h−1/2‖ �v�‖L2(F )

)

≤
⎛⎝ ∑

j=1,2

‖√β∇v‖
L2(T j

F )

⎞⎠(
h−1/2C

β+√
β− ‖ �v�‖L2(F )

)

≤ 1

12

⎛⎝ ∑
j=1,2

‖√β∇v‖2
L2(T j

F )

⎞⎠ + 6

(
C2 (β+)2

β−h
‖ �v�‖2

L2(F )

)
.

(5.6)

Summing (5.6) over all the interface faces, we have∣∣∣∣∣∣∣(ε − 1)
∑

F∈F i
h

∫
F

{{β∇v · n}} �v�dS

∣∣∣∣∣∣∣ ≤ 1

2

∑
T ∈Th

‖√β∇v‖2
L2(T )

+ 6C2 (β+)2/β−

h

∑
F∈F i

h

‖ �v�‖2
L2(F )

. (5.7)

Similarly, using (4.19) again, we have∑
F∈F i

h

‖h1/2 {{β∇v · n}} ‖2
L2(F )

≤ 3
∑
T ∈Th

C2 (β+)2

β− ‖√β∇v‖2
L2(T )

. (5.8)

Taking σ = 12C2 (β+)2

β− and putting (5.7) and (5.8) into (5.4), we have

ah(v, v) ≥
∑

T ∈Th

(
1 − 1

2
− 1

4

) ∑
T ∈Th

‖√β∇v‖2
L2(T )

+
(
σ − 6C2 (β+)2

β−

)
h−1

∑
F∈F i

h

‖ �v�‖2
L2(F )

+
∑

F∈F i

(σ )−1‖h1/2 {{β∇v · n}} ‖2
L2(F )

≥ 1

4
�v�2. �

(5.9)
h

13
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Let us
E ∈ H2

0(�) be the Sobolev extension of us = u|�s from �s to �, s = ±. According to the boundedness of Sobolev 
extensions Theorem 7.25 in [16] and Poincaré inequality, there holds

|us
E |H1(�) + |us

E |H2(�) ≤ C E(|us|H1(�s) + |us|H2(�s)), s = ±, (5.10)

for some constant C E only depending on �± . Now we recall the nodal interpolation Ih for IFE functions from [20]:

Ih : H2(�+ ∪ �−) → Sh(�), Ihu(X) = u(X), ∀X ∈ Nh. (5.11)

According to Theorem 4.3 from [20], if u satisfies the jump conditions, Ihu − u has the optimal convergence rate with 
respect to the mesh size h on each patch ωT defined in (2.3) of an interface element T , namely,

|u − Ihu|Hk(ωT ) ≤ C
β+

β− h2−k
∑
j=1,2

(|u+
E |H j(ωT ) + |u−

E |H j(ωT )), k = 0,1,2. (5.12)

We can further use this result to estimate the interpolation errors in terms of the energy norm.

Lemma 5.4. Assume that the mesh Th is fine enough, then we have

�u − Ihu� ≤ C
(β+)2

(β−)3/2
h

∑
j=1,2

(|u+|H j(�+) + |u−|H j(�−)). (5.13)

Proof. First of all, (5.12) and the standard estimate of the Lagrange interpolation for finite element functions give

‖√β∇(u − Ihu)‖L2(T ) ≤ C
(β+)3/2

β− h
∑
s=±

(|us
E |H1(ωT ) + |us

E |H2(ωT )). (5.14)

For the second term in (5.1), for each F ∈F i
h , we denote T 1

F and T 2
F as the two neighbor elements. Using the trace inequality 

and (5.12), we have

√
σ‖h−1/2 �u − Ihu�‖L2(F ) ≤ C

β+

(β−)1/2

∑
r=1,2

(h−1‖u − Ihu‖L2(T r
F ) + |u − Ihu|H1(T r

F ))

≤ C
(β+)2

(β−)3/2
h

∑
r=1,2

∑
s=±

(|us
E |H1(ωT r

F
) + |us

E |H2(ωT r
F
)).

(5.15)

For the third term in (5.1), by similar derivation we have

1√
σ

‖h1/2 {{β∇(u − Ihu) · n}} ‖L2(F ) ≤ C
β+

(β−)1/2
h

∑
r=1,2

∑
s=±

(|us
E |H1(ωT r

F
) + |us

E |H2(ωT r
F
)). (5.16)

Summing the estimates above over all the elements and interface faces, using the finite overlapping of the patches ωT , 
T ∈ T i

h , and applying the boundedness (5.10), we have the desired result. �
Now we are ready to present the error estimates of IFE solutions in terms of the energy norm and L2 norm. We note 

that the key difficulty for these two estimates is the treatment of the non-consistence of the IFE scheme.

Theorem 5.5. Assume that the mesh Th is fine enough, and assume that σ is large enough such that Theorem 5.3 holds, then there 
holds

�u − uh� ≤ Ch
(β+)2

(β−)5/2

∑
j=1,2

(|β−u−|H j(�−) + |β+u+|H j(�+)

)
. (5.17)

Proof. Let us first estimate the bound of bh(u, vh) for each vh ∈ Sh(�). Using Theorem 4.8 and the trace inequality (Lemma 
3.2 in [49]), we have
14
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|bh(u, vh)| ≤
∑

T ∈T i
h

‖β−∇u− · n‖L2(�∩T )‖ �vh�‖L2(�∩T )

≤ C

√
β+

β−
∑

T ∈T i
h

(h−1/2|β−u−
E |H1(T ) + h1/2|β−u−

E |H2(T ))h
3/2‖√β∇vh‖L2(T )

≤ C

√
β+

β− h(|β−u−
E |H1(�) + |β−u−

E |H2(�))�vh�.

(5.18)

Now we consider the Lagrange interpolation operator Ih , and by Lemma 3.1 we write

ah(uh − Ihu, vh) = ah(u − Ihu, vh) − bh(u, vh). (5.19)

Taking vh = uh − Ihu ∈ Sh(�) and applying coercivity in Theorem 5.3, the boundedness in Theorem 5.2 as well as (5.18), 
we arrive at

�uh − Ihu�2 ≤ C�uh − Ihu��u − Ihu�+ C

√
β+

β− h(|β−u−
E |H1(�) + |β−u−

E |H2(�))�uh − Ihu�. (5.20)

By the optimal approximation of Ihu given in Lemma 5.4, (5.20) yields

�uh − Ihu� ≤ C
(β+)3

(β−)3/2
h

∑
j=1,2

(|u−
E |H j(�) + |u+

E |H j(�)) + C

√
β+

β− h(|β−u−
E |H1(�) + |β−u−

E |H2(�)). (5.21)

Clearly, the triangle inequality together with (5.21) and (5.10) yields the desired result. �
Remark 5.6. The regularity of elliptic interface problems [12,34] gives that∑

j=1,2

(|β−u−|H j(�−) + |β+u+|H j(�+)

) ≤ Creg‖ f ‖L2(�), (5.22)

where the constant Creg only depends on the �± . Thus, Theorem 5.5 yields

�u − uh� ≤ Ch
(β+)2

(β−)5/2
‖ f ‖L2(�). (5.23)

Theorem 5.7. Under the conditions of Theorem 5.5 and the elliptic regularity (5.22), there holds

‖u − uh‖L2(�) ≤ Ch2 (β+)4

(β−)5 ‖ f ‖L2(�). (5.24)

Proof. We use the duality argument. Define an auxiliary function z ∈ P H2(�) to be the solution of interface problem (2.1)
with the right hand side f replaced by u − uh ∈ L2(�). Again, we consider the Lagrange interpolation operator Ih for IFE 
functions (5.11). Testing this auxiliary equation with u − uh and using the similar derivation to Lemma 3.1, we have

‖u − uh‖2
L2(�)

= ah(z, u − uh) − bh(z, u − uh)

= ah(z − Ih z, u − uh) + bh(u,Ih z) − bh(z, u − uh)
(5.25)

where in the second equality we have used the identity (3.12) again. Lemma 5.4 for z and (5.23) show that

ah(z − Ih z, u − uh) ≤ C�z − Ih z��u − uh�

≤C
(β+)4

(β−)5 h2
∑
j=1,2

(|β+z+|H j(�+) + |β−z−|H j(�−))‖ f ‖L2(�) ≤ C
(β+)4

(β−)5 h2‖u − uh‖L2(�)‖ f ‖L2(�).
(5.26)

For the second term on the right side of (5.25), using Theorem 4.9, we obtain

|bh(u,Ih z)| ≤ Ch2
∑

T ∈T i
h

‖β−∇u− · n‖L2(�∩T )‖ �∇Ih z�‖L2(�∩T ) ≤ Ch2‖β−∇u− · n‖L2(�)‖ �∇Ih z�‖L2(�)

≤ Ch2‖β−∇u− · n‖L2(�)

(‖ �∇(Ih z − z)�‖L2(�) + ‖ �∇z�‖L2(�)

)
.

(5.27)

Let z±
E be the Sobolev extensions of z± = z|�± from �± to �. By the trace inequality Lemma 3.2 in [49] and (5.12) on each 

interface element, we have
15
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‖ �∇(Ih z − z)�‖L2(�) ≤
∑

T ∈T i
h

∑
s=±

C(h−1/2|Ih zs
E − zs

E |H1(T ) + h1/2|Ih zs
E − zs

E |H2(T ))

≤C
β+

(β−)2
h1/2

∑
j=1,2

(|β+z+|H j(�−) + |β−z−|H j(�+)) ≤ C
β+

(β−)2
h1/2‖u − uh‖L2(�)

(5.28)

where in the second inequality we have used the boundedness for Sobolev extensions. In addition, by the trace inequality 
from � to �± , we have

‖ �∇z�‖L2(�) ≤ C
1

β−
∑
j=1,2

(|β+z+|H j(�−) + |β−z−|H j(�+)) ≤ C
1

β− ‖u − uh‖L2(�). (5.29)

Putting (5.28) and (5.29) into (5.27) and applying the trace inequality to ∇u− · n from � to �− , we get

|bh(u,Ih z)| ≤ C
β+

(β−)2
h2(|β−u−

E |H1(�) + |β−u−
E |H2(�))‖u − uh‖L2(�). (5.30)

For the third term in (5.25), we note that u is continuous which implies bh(z, u − uh) = −bh(z, uh). Then, its estimation is 
similar to (5.27) but with Theorem 4.8:

|bh(z, uh)| ≤ Ch3/2

√
β+

β−
∑

T ∈T i
h

‖β−∇z− · n‖L2(�∩T )‖
√

β∇uh‖L2(T )

≤ Ch3/2

√
β+

β−
(|β−z−|H1(�−) + |β−z−|H2(�−)

) ∑
T ∈T i

h

(‖√β∇(uh − u)‖L2(T ) + ‖√β∇u‖L2(T )

)
.

(5.31)

The estimate of ‖√β∇(uh − u)‖L2(�) simply follows from Theorem 5.5 with the error bound h (β+)2

(β−)5/2 ‖ f ‖L2(�) . As for the 
term ‖√β∇u‖L2(T ) , we note that it only appears on the interface elements and ∪T ∈T i

h
T ⊆ Sδ := {X ∈ � : dist(X, �) ≤ δ} with 

δ = √
3h where dist(X, �) denotes the distance between X and �. Then, applying the δ-strip argument, see Lemma 3.1 in 

[31], we have∑
T ∈T i

h

‖√β∇u‖L2(T ) ≤ C
√

δ‖√β∇u‖H1(�) ≤ Ch1/2 1√
β− ‖β∇u‖H1(�) ≤ Ch1/2 1√

β− ‖ f ‖L2(�). (5.32)

Putting (5.32) into (5.31) and using the elliptic regularity for z, we obtain the bound for bh(z, uh) which is Ch2 (β+)5/2

(β−)7/2 . 
Substituting it with (5.26) and (5.30) into (5.25), we have (5.24). �
Remark 5.8. We are able to specify how the error bound depends on the material property parameters β± at each step 
throughout the analysis. But it is important to note that the dependence on β± in the final estimates in Theorem 5.5, (5.23)
and Theorem 5.7 is due to the limitation of our analysis approach, since we do not observe such a severe effect from β± in 
computation. How to achieve the optimal error bound with respect to β± is an interesting topic in our future research.

6. Numerical experiments

In this section, we report some numerical experiments to demonstrate the performance of our IFE method. In the first 
four examples, we present artificial interface problems where we know the analytical function of the interface surface and 
the exact solution. In particular, we compare the numerical performance of the proposed PPIFE scheme and the classical IFE 
scheme in Example 1 and Example 2. The classical IFE scheme is to find uh ∈ Sh(�) such that∑

T ∈Th

∫
T

β∇uh · ∇vh dx =
∫
�

f vh dx, ∀vh ∈ Sh(�), (6.1)

where no penalty is added. In Example 3, we consider a more complicated interface shape and the effect of the maximum 
angle conditions in the computation. In Example 4, we study an example with a singular interface. In Example 5, we present 
a real-world interface model of which the interface has a dabbling-duck shape but only the cloud-point data are available.

Example 1 (Plane interface: recovering exact solutions). In the first example, we compare the performance of the PPIFE and 
the classic IFE methods when the exact solutions are contained in the IFE spaces. Let � = (−1, 1)3 and consider a planar 
interface � = {(x, y, z) ∈ � : γ (x, y, z) = 0} where
16
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Table 1
PPIFE errors and the convergence rates for linear solution.

N PPIFE IFE

e∞
h e0

h e1
h e∞

h e0
h e1

h

10 5.50E-15 2.29E-15 1.74E-14 7.23E-3 3.07E-3 4.95E-2
20 1.92E-15 6.37E-16 8.93E-15 2.75E-3 1.03E-3 2.47E-2
30 5.33E-15 3.87E-15 1.75E-14 1.87E-3 4.93E-4 2.24E-2
40 3.11E-15 2.04E-15 1.73E-14 1.81E-3 5.65E-4 2.37E-2

Fig. 5. Convergence in L∞ , L2, and H1 norms of PPIFE and IFE solutions for Example 2.

γ (x, y, z) = 1√
2
(x + z − π/10).

Let the exact solution be

u(x, y, z) =

⎧⎪⎪⎨⎪⎪⎩
1

β− γ (x, y, z) in �− := {(x, y, z) ∈ � : γ (x, y, z) < 0},
1

β+ γ (x, y, z) in �+ := {(x, y, z) ∈ � : γ (x, y, z) > 0}.
(6.2)

Our computation is carried out on a family of uniform Cartesian meshes consisting of N3 cuboids. We report errors in 
the discrete L∞ , L2, and H1-norms, denoted by e∞

h , e0
h , and e1

h , respectively. The errors for both PPIFE and IFE methods are 
reported in Table 1. We note that the PPIFE method actually recovers the exact solutions with no approximation errors (only 
round-off errors are observed). This suggests that PPIFE is a consistent numerical algorithm; namely, if the exact solution 
is a piecewise linear function separated by a planar interface, then the PPIFE method will reproduce the exact solution. In 
contrast, the classical IFE method without penalty cannot generate exact solution due to the inconsistency caused by the 
discontinuities of IFE functions across interface faces.

Example 2 (Sphere interface). In the second example, we let � = (−1, 1)3 and let the interface be a sphere � = {(x, y, z) :
γ (x, y, z) = 0} where γ (x, y, z) = x2 + y2 + z2 − r2. The exact solution is constructed as

u(x, y, z) =

⎧⎪⎨⎪⎩ − cos

(
π(x2 + y2 + z2)

2r2

)
in �− := {(x, y, z) ∈ � : γ (x, y, z) < 0},

x2 + y2 + z2 − r2 in �+ := {(x, y, z) ∈ � : γ (x, y, z) > 0}.
(6.3)

The parameters are chosen to be r = π/4 and β− = 1, and β+ = π
2r2 ≈ 2.5465. Our computation is carried out on a family 

of uniform Cartesian meshes consisting of N3 cuboids. We start from a coarse mesh with N = 20 and stretch to a very fine 
mesh with N = 160 by an increment of 10 more partitions in each direction for each finer mesh. We report errors in the 
discrete L∞ , L2, and H1-norms for both PPIFE and classical IFE methods. See Fig. 5 for a comparison of the performances in 
all three norms. Using linear regression, the errors of PPIFE solution obey

e∞
h ≈ 9.898h2.034, e0

h ≈ 9.093h2.004, e1
h ≈ 9.017h0.999.

Our numerical results show that the PPIFE method converges optimally in both L2 and H1 norms, which confirms our 
theoretical error bounds (5.17) and (5.24). We also observe that the convergence rate in L∞ norm is also optimal for the 
PPIFE method, although we don’t know how to theoretically prove it yet. The PPIFE method clearly outperforms the classical 
IFE method since their errors in L∞ norm are much smaller than IFE method, and their convergence rates in L2 or H1 norm 
do not deteriorate as the mesh size becomes small. This is consistent with the observation for the 2D case [40]. For a more 
17



R. Guo and X. Zhang Journal of Computational Physics 441 (2021) 110445
Fig. 6. A comparison of the PPIFE (left) and the classical IFE (right) errors on the interface surfaces for Example 2, (mesh size N = 100). (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 7. A comparison of the PPIFE (left) and the classic IFE (right) errors on slices of the domain at y = −0.7, −0.35, 0, 0.35, and 0.7 for Example 2, (mesh 
size N = 100).

visible comparison, we plot the errors of PPIFE and IFE methods on the interface surface itself in Fig. 6. Moreover, we plot 
the errors on five slices of the domain with y = −0.7, −0.35, 0, 0.35, and 0.7 in Fig. 7. From both of these figures, we can 
clearly see that the PPIFE errors around interface are significantly smaller and are comparable to the errors away from the 
interface. In contrary, the classical IFE solutions have much larger errors around the interface.

Example 3 (More completed topology: an orthocircle interface). In this example, we consider an interface problem with more 
complicated topology. We let � = (−1.2, 1.2)3, and let the interface be � = {(x, y, z) ∈ � : γ (x, y, z) = 0} where

γ (x, y, z) = [(x2 + y2 − 1)2 + z2][(x2 + z2 − 1)2 + y2][(y2 + z2 − 1)2 + x2] − 0.0752[1 + 3(x2 + y2 + z2)].
The shape of the interface is plotted in the left plot of Fig. 8. This interface problem was reported in [10]. Let the exact 
solution be

u(x, y, z) =

⎧⎪⎪⎨⎪⎪⎩
1

β− γ (x, y, z) in �− := {(x, y, z) ∈ � : γ (x, y, z) < 0},
1

β+ γ (x, y, z) in �+ := {(x, y, z) ∈ � : γ (x, y, z) > 0}.
(6.4)

The coefficients are chosen to have a larger contrast as β− = 1 and β+ = 100. The errors of the PPIFE method in all three 
norms are reported in Fig. 9. Again, we can see that overall convergence rates in L2 and H1 norms are close to optimal, 
which confirms our theoretical results. Using linear regression, the errors obey

e∞
h ≈ 1.365h1.340, e0

h ≈ 5.848h1.877, e1
h ≈ 7.276h1.101.

For comparison, we also report the solutions without imposing the maximum angle condition in Section 2. See the blue 
curves in Fig. 9. Although we can still see the convergence in all three norms, the magnitudes of errors are larger than the 
18



R. Guo and X. Zhang Journal of Computational Physics 441 (2021) 110445
Fig. 8. A plot of the orthocircle interface (left). The error surfaces of PPIFE solutions with (middle) and without (right) imposing the maximal angle condition 
(mesh size N = 160).

Fig. 9. Convergence of Example 3.

those enforced by the maximum angle condition, see the red curves in Fig. 9. We also compare the error surfaces of these 
two solutions on the interface. See the middle and right plots in Fig. 8. It can be observed that errors are larger on the 
interface when the maximal angle condition is not satisfied. These large errors are indicated by the red spots in the right 
plot in Fig. 8 which are also where the maximal conditions are violated.

Moreover, since the only extra work of the IFE method is to replace the standard shape functions by some special shape 
functions on interface elements, we report the percentage of interface elements over all elements, defined by |T i

h |/|Th|, for 
all three examples. The number of interface elements is expected to be O(N2), and the number of all elements is O(N3), 
so the percentage should be a linear function of the mesh size h = 1/N . In Fig. 10, we can observe this linear relationship 
clearly. Also, as the shape of interface elements becomes more complex from Example 1 to Example 3, the proportionality 
constant gets larger. However, even for complicated interface shapes, such as the orthocircle in Example 3, there are only 
less than 3% interface elements on our finest mesh (N = 160, around 4 million cuboids). As a result, the majority of the 
computation (over 97% of the total elements) can be done using the standard FEM package.

Example 4 (An interface with a corner). In this example, we explore a heart-shaped interface with a corner as shown in Fig. 11. 
The analytical level-set function of this heart-shaped interface is given by

γ (x, y, z) = (x2 + 9y2/4 + z2 − 1)3 − x2z3 − 9y2z3/80.

The exact solution is given by

u(x, y, z) =
{

sin(x2 + y2 + z2) in �− := {(x, y, z) ∈ � : γ (x, y, z) < 0},
cos(x2 + y2 + z2) in �+ := {(x, y, z) ∈ � : γ (x, y, z) > 0}. (6.5)

Note that this function only satisfies the nonhomogeneous jump condition for which the analysis of IFE methods will be 
given in a forthcoming article. We emphasize that the interface has a corner where the surface is not smooth. So in order 
to construct IFE functions, the meshes are generated in a manner that the corner only locates at faces not in the interior 
element. We also note that the constructed exact solutions are smooth in this example. The errors on the heart-shaped 
surface are shown in the middle plot of Fig. 11 indicating that they are not large around the corner. The convergence 
behavior of numerical solutions is shown on the right plot of Fig. 11 from which we can observe the optimal convergence 
clearly for L2 and H1 norms.
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Fig. 10. Percentage of interface elements for Examples 1-3.

Fig. 11. A plot of the heart-shaped interface (left). The error surfaces of PPIFE solutions (middle). The convergence curves of L2 and H1 errors of PPIFE 
solutions (right).

Table 2
Numerical solution errors and the convergence rates.

e0
h Order e1

h Order

16 5.6418E-3 NA 5.4544E-1 NA
32 2.0913E-3 1.43 2.5933E-1 1.07
64 5.1039E-4 2.03 1.2048E-1 1.11
128 9.5244E-5 2.42 5.5962E-2 1.11

Example 5 (A real-world interface: dabbling duck). In this example, we apply our algorithm to a real-world geometric object, 
the surface of a dabbling duck shown in Fig. 12. The original data of this interface consists of many cloud points on the 
surface, as shown in the left plot of Fig. 12. We refer readers to [47] for the availability of the data. We perform the 
computation on the modeling domain � = (0.2, 1) × (0.2, 1) × (0.1, 0.9) which is large enough to contain all the data 
points. The fundamental step in the computation is to generate a smooth surface based on the raw data points. Since only 
the lowest order accuracy is considered in this article, here we generate a signed-distance function by directly computing 
the distance from nodes in a given mesh to those data points. Then the zero level-set of the signed-distance function is 
used as the computational interface in this example.

We consider the equation (2.1) with the data f = 0 in �, u = sin(3πx) sin(3π y) sin(3π z) on ∂� and β− = 1, β+ = 10. 
The Cartesian mesh with N3 cuboids is generated on � with the mesh size N = 16, 32, 64, 128, 256. We note that it is 
difficult to construct a function satisfying the homogeneous jump condition exactly on this complicated real-world interface, 
so here we shall use the numerical solution computed on the finest mesh N = 256 as the reference solution to compute the 
errors. The numerical errors and their convergence order are presented in Table 2 where we can observe that the numerical 
solution errors almost have the expected optimal convergence order in L2 and H1 norms. It agrees with the theoretical 
analysis even for this interface generated from the real-world data.

In addition, we plot the error of IFE solution on N = 128 at the slices at y = 0.35, 0.4, 0.45, 0.5, 0.55, and 0.6 in Fig. 13. 
We note that the majority of the errors are concentrated on the interface, and the errors are significantly smaller away from 
the interface. This phenomenon is also observed in the previous examples for which the analytical solutions are available. 
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Fig. 12. A duck-shape interface: cloud points (left) and reconstructed smooth interface (right).

Fig. 13. The slices of errors between N = 128 and N = 256 on y = 0.35,0.4,0.45,0.5,0.55,0.6.

We believe this is due to the advantage of the highly structured mesh, such as the Cartesian mesh, that the IFE method can 
use to solve interface problems. Furthermore, we note that the duck-shaped interface may have large curvature, especially 
around the beak and tail. Our computation shows that the maximum curvatures among all cloud points can achieve over 
2500. Consequently, the hypothesis (H2) may require a very small mesh size. Certainly, even the finest mesh size 1283 can 
not achieve the requirement of the hypothesis (H2), but the overall performance of the PPIFE method is still satisfactory. 
However, we also note that these portions of interface with large curvatures have apparently relatively larger errors. To 
further investigate how the shape of the interface can affect the errors, we plot the relative errors on the interface in 
Fig. 14. As indicated by these figures, the errors are concentrated on the portion of the interface including the peak, neck 
(the lower-right plot in Fig. 14), tail (the lower-left plot in Fig. 14) and the surrounding of the base (the upper-right plot in 
Fig. 14)). The large curvatures can not be avoided in real-world geometric bodies. How to further enhance the performance 
of IFE methods on the large-bending surface may require local mesh refinement, i.e., some adaptive mesh strategy for the 
IFE method [28]. This could be an interesting topic in our future research.

7. Conclusions

In this article, we have developed a partially penalized IFE (PPIFE) method for solving elliptic interface problems in three-
dimensional space on unfitted meshes. The IFE space is isomorphic to the standard continuous piecewise trilinear finite 
element space defined on the same mesh, which is independent of the interface location. The penalties are only added on 
interface faces to handle the discontinuities of IFE functions. We show the PPIFE solutions have optimal convergence rates in 
both the L2 and H1 norm regardless of interface location. Numerical experiments are performed to validate the theoretical 
estimates for both artificial interface and real-world interface models.
21
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Fig. 14. Relative solution errors of N = 128 on interface.
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