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1. Introduction

Elliptic interface problems have received wide attention in the past decades. Numerous numerical methods have been
developed to generate accurate and effective approximations for interface problems. Conventional numerical methods,
such as the finite element method [1], require the mesh to be aligned with the interface. Another class of numerical
methods uses unfitted meshes for solving interface problems. In the finite difference framework, since the pioneering
working of immersed boundary method [2], the immersed interface method [3], matched interface and boundary
method [4], cut-cell method [5] have been developed. In the finite element framework, there have been penalty finite
element method [6], generalized finite element method [7], extended finite element method [8], cut finite element
method [9], and immersed finite element method [10], to name only a few.

The immersed finite element method (IFEM) [10-15] is a class of finite element methods that modify the approximation
functions, instead of solution meshes, locally around the interface in order to resolve the interface with unfitted mesh.
An IFEM adopts standard finite element basis functions on elements away from interfaces but constructs new piecewise-
polynomial basis functions on elements cut through by interfaces. In [16], a partially penalized immersed finite element
method (PPIFEM) was developed by adding consistency terms and penalty terms to the classical Galerkin formulation on
the interface edges. The method is proved to converge optimally in the energy norm [16] and L?> norm [17]. Moreover,
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Fig. 1. A typical triple-region domain.

the PPIFEM was extended to handle non-homogeneous flux jump conditions in [18]. Gradient recovery for PPIFEM was
reported in [19].

Most numerical methods aim at interface problems with two sub-domains. There are a few literatures concerning
multi-domain interface problems with possibly a triple-junction point. In [20], the matched interface and boundary
method has been developed on multi-domain. In [21], the authors employed a Petrov-Galerkin type method [22] to
solve multi-domain interface problems. Related research papers include [23,24]. As for IFEM for multi-domain interface
problems with triple junction, we developed a piecewise linear IFEM on triangular meshes [25]. One of the challenges is
the construction of IFEM basis functions due to the complicated geometrical configuration of a multi-domain. We showed
that the stiffness matrix is symmetric positive definite and the numerical solutions are reasonably accurate. As indicated
in [16] for two-domain interface problems, we also observed that the convergence rates in L?> and H' norms deteriorate
as the mesh size becomes small.

In this paper, we develop a new IFEM for solving multi-domain interface problems with non-homogeneous flux jump.
We use interface-unfitted rectangular Cartesian meshes, and construct the piecewise bilinear shape functions on multi-
interface elements. The PPIFEM is used for enhanced accuracy and stability. Non-homogeneous flux jump conditions are
handled by enriching the local approximation spaces, inspired by [26] and [18]. It is worthwhile to note that in our new
construction on multi-interface elements, the number of restrictions (from nodal-value conditions and interface jump
conditions) and degrees of freedom match for all types of interface elements. Therefore, the least-squares approximation is
unnecessary for obtaining IFE basis functions as the piecewise-linear IFE spaces in [25]. Our numerical results indicate that
the bilinear PPIFEM for multi-domain interface problems converge optimally in H', L? and L norms without deterioration
even for fine meshes. Besides, the new method outperforms the classical linear IFEM [25] in the accuracy around interfaces.

The rest of this article is organized as follows. In Section 2, we introduce the multi-domain interface problems and
recall some preliminary results. In Section 3, bilinear IFE basis functions and flux jump basis functions are constructed
on different types of interface elements. Local and global IFE spaces are defined accordingly. In Section 4, we present the
PPIFEM for multi-domain interface problems with the non-homogeneous flux jump. In Section 5, numerical examples are
provided to show the features of our new method. A brief conclusion is presented in Section 6.

2. Interface problems

Let 2 C R? be an open bounded domain. Assume that §2 is subdivided by several interfaces into multiple domains.
Without loss of generality, we assume that £2 is divided by three interfaces Iy, I, I'3 into three sub-domains 21, 25,
£23. We also assume that the boundaries 0521, 0§25, 0§23 are Lipschitz continuous. See Fig. 1 for an illustration of the
geometric setting of the domain and interfaces.

Consider the following elliptic interface problem:

—V(ﬂVu):f, iI‘l.Q]UQzUQ3, (21)
u=g, ondsf. )
The coefficient function S(x) is assumed to be discontinuous across each interface I; where x = (x, y). For simplicity, we
assume that B(x) is a piecewise constant function such that
Bx)=Bi, ifxe s, (2.2)
where g; > 0. Across each interface I3, the solution u is assumed to be continuous, i.e.,

[ul, =0, Vi=1,2,3. (2.3)
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The normal flux jumps are prescribed as follows:
[BVu-n] £(B3Vus — f2Vup)-ny = by(x,y) on I7,
[BVu-n]p, £ (B1Vur — 3Vuz)-my = by(x,y) on I3, (2.4)
[BVu-nly £ (B2Vus — f1Vuy) - n3 = bs(x,y) on I3.

Here, u; = u|g,, and b;, i = 1, 2, 3, are given functions defined on I;. Unit normal vectors of I, I';, I'3 are denoted by nj,
n, N3, respectively. For simplicity, we also use g = g|yo;ns2 from now on.
We use the standard notations for the Sobolev spaces. Define the broken Sobolev space

H*(2) = {v e H'(22) : vlg,€ HX(£2), [BVu-n]; =b;, i=1,23},

equipped with the semi-norm and norm:

3 1/2
1/
|u|,~,2<m=<2|ulﬂz<a) , Ilullgz(mz(nun,i] |u|,,zm)

i=1

2

The variational form of (2.1)-(2.4) is to find u € H'(£2) such that u = g on 32 and
3

a(u, v) = (BVu, Vo) = (f,v) = » (b1, v)r. Vv € H)(£2), (2.5)
i=1
where (-, -), is the L? inner product on @ C £2. The subscript  is omitted when w = £2.
For elliptic interface problems, the following regularity result holds [27]:

Theorem 2.1. Assume that f € [*(2), g € H%(3£2;n382), fori = 1, 2, 3. Then the problem (2.1)-(2.4) has a unique solution
u € H'(£2) such that for some constant C > 0,

3 3
lull gy < C (ufan(m + ) Wbillarzry + Y ||g,~||Ha/z(m,.mam> : (2.6)

i=1 i=1
3. Construction of triple-junction bilinear IFE spaces

In this section, we construct the bilinear IFE space on interface elements with multiple interfaces. The construction of
classical bilinear IFE functions with one interface is reported in [28,29].

3.1. Element classification

Let 7, be an interface-independent Cartesian mesh of 2 where h denotes the mesh size. We classify all rectangular
elements according to the number of interfaces intersecting the interior of an element. If the interior of an element T € 7,
is not intersected with any interface I}, then the element T is called a non-interface (or a regular) element. The collection
of all regular elements are denoted by 7,". If the interior of an element T € 7j, is cut through by at least one interface I7,
then the element T is called an interface element. The collection of these elements is denoted by 7;'. For multi-interface
problems, we assume that the interface elements satisfy the following hypotheses:

(H1) Multiple interfaces can only intersect with an element at no more than three edges.

(H2) Each edge of an interface element can only intersect with interfaces at no more than two points unless the edge is
part of the interface.

These hypotheses rule out the case that interfaces intersect an element at three points but on the same edge. Furthermore,
we distinguish the collection of interface elements 7, by three sub-categories based on the number of interfaces inside an
element. For a triple-domain interface problem stated above, there are at most three interfaces inside an element. The set
74, contains elements intersected with only one interface. The set 7;,'2 includes all elements intersecting two interfaces
(see Fig. 3 for an illustration). The set 771 5 contains the elements intersecting with all three interfaces and hence the
triple-junction points must be inside these elements (see Fig. 4 for an illustration).

Now all elements in a Cartesian mesh must be in one of the following classes.

Th=TeUTy =Tg UTi UTh, UThs. 3.1)

Fig. 2 illustrates the above classification of elements by color. Elements in white denote regular elements. Elements in
green denote the case when an interface touches one of the nodes of the element or overlaps with an edge of the element.
Elements in both of these two colors represent elements in 7,'. Elements marked in red, orange, and blue represent
elements in 7, |, 7; ,, and 7} 5, respectively.
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Fig. 2. Left: a typical triple-region domain and a Cartesian mesh. Right: a zoom-in of the region around triple point.
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Fig. 3. Two typical elements in 7’,,’2

Remark 3.1. If the triple-junction point is on an edge of an element (see the right plot of Fig. 3), we count this element
in 7, ,.

3.2. Local IFE spaceson T € 7' and T € Th",l

On a non-interface element T € 7", we adopt the standard bilinear (Q1) nodal basis functions. The local finite element
space on T is

Su(T) = span{1, x, y, xy}.

Ifanelement T € Th‘] then T intersects with only one interface at two different points at two edges. We refer the readers
to the construction of the classical bilinear IFE basis functions in [28,29]. For the non-homogeneous flux jump, the local
space is enlarged by adding one more basis function that vanishes at all nodes, continuous over the element, but with a
unit flux jump. For more details, we refer readers to [26]. Our main focus is to construct the local approximating spaces
on elements in 7;, and 7, 5.
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Fig. 4. Two typical elements in 7 ;.

3.3. Local IFE spaces on T € T},

In this case, there are two interfaces inside an element T € 771 ,- As shown in Fig. 3, the triple-junction point is disjoint
of the interior of the element (left plot of Fig. 3) or lie on the edge of the element (right plot of Fig. 3). Let the curved
interfaces be approximated by the line segments I';, I3, and they split the element T into three polygons, denoted by
Ta, Tv, Te. The intersection points are denoted by I, I'?, I, and I}%. See Fig. 3 for the geometrical configuration.

We define four piecewise bilinear basis functlons on an element as follows

ﬁT(x) =a;+bix+cy+dixy, ifxeT,,
Gir(X) = { ¢P7(X) = a3 + box + oy + doxy, ifx €Ty, i=1,2,3,4 (3.2)
¢ir(X) = az + bsx +c3y + dsxy, ifxeT,
The following nodal-value conditions and the interface jump conditions are used to determine the coefficients g, b;, ¢j,
and d;, = 1,2, 3):
o four nodal-value conditions
oiT(Aj)) =85, Vi, j=1,2,3,4. (3.3)
e six continuity conditions of the basis functions

() = P, ¢ (I2) = ¢Pr(T2), di = da,

(3.4)
$rr(I) = ¢ir(I), #Pr(I7) = $ir (1Y), dz = ds.
e two conditions of normal flux continuity
[BVéir- n]]rs ds =0, [BVéir- n]]n ds = 0. (3.5)

IsNT nNT

The twelve conditions in (3.3)-(3.5) are used to determine the twelve coefficients a;, b;, ¢;, and d;, withi = 1,2,3 in a
bilinear IFE local basis function ¢; 1, i = 1, 2, 3, 4. The left plot of Fig. 5 exemplifies a typical bilinear IFE basis function
onT e 7;, ,- The local bilinear IFE space is defined as Sp(T) = span{¢;r : i =1, 2, 3, 4}.

To accommodate the non- -homogeneous jump of flux (2.4), we enrich the local IFE space by adding two local functions
q&T‘ It k = 1, 2. These flux basis functions are also defined as piecewise bilinear polynomials

¢T{)x =a;+bix+cy+dxy, ifxeT,,
of ,(x) = d)” (X)=ay + box+ oy +doxy, ifxeT, k=s,t. (3.6)
qb”(x) =az+bsx+c3y +dsxy, ifxeT,
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Fig. 5. Basis function(left) and flux jump function(right) of elements in 7]1‘2

The flux jump basis functions qb; ] and qb;J satisfy the following conditions
o They vanish at four nodes A; of the element T:
¢f(A)=0, Vj=1,234, k=s.t. (3.7)
e They are continuous across the endpoints of interfaces I7 N T:

PP = @E NI, @F((rd) = ¢r)(Id), di =dy,

(3.8)

) = ory(I). Orj) = 9512, do =ds.

e They have a unit flux jump on the corresponding interfaces.
[8Ver, n]l,, ds=dw, VK =st. (3.9)

Iy NT

A flux basis function of this type is shown in the right plot of Fig. 5. The local flux IFE space Sé(T) = span{q);], ¢;J} and

the enriched local IFE space on T is §h(T) = Sp(T) U S{I(T). The Lagrange type interpolation Zj 7 : I:IZ(T) — §h(T) is as
follows

Tnru(x) = Y u(A)gir(X)+ Y dfef (x), (3.10)
i=1 k=s,t
where
@ = / [Vu - nlj, ds. (3.11)
INT

3.4. Local IFE spaces on T € T} ,

In this case, an element T € 7;,{3 intersects all three interfaces at three points. In general, the triple-junction point,
denoted by P, is inside this element. See Fig. 4 for an illustration.

We use the line approximations of the curved interfaces by Iy, I, I3, which split the whole rectangle into three
polygons, denoted by T,, Ty, T. (see Fig. 4). The intersection points with each interface Iy, Iy, I'; are denoted by I'°,
I, and I'), respectively.

Piecewise bilinear IFE basis functions are constructed on the element T as follows

ir(X) = a1 + bix+cy +dixy, ifxeT,,
Gir(X) = { P1(X) = a2 + box + oy + doxy, ifx €Ty, i=1,2,34 (3.12)
#f(X) = a3 + bsx + c3y +dsxy, ifxeT.
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Fig. 6. A bilinear IFE local basis function(left) and a flux basis function (right) of elements in Th’3

As before, the twelve coefficients are determined by

e four-nodal value conditions
oiT(Aj)) =85, Vi, j=1,2,3,4. (3.13)
o five continuity conditions of the basis functions

Orr (1) = ¢ip(I), ¢4 (IY) = ¢lr(1Y). $87(IY) = ¢S (1Y),

p b b c (3.14)
¢i1(P) = ¢i1(P), ¢i1(P) = ¢i1(P).
e three conditions of normal flux continuity
f [BVéir-nlpds=0, k=1,2,3. (3.15)
IynT

A typical bilinear IFE basis function is plotted in the left plot of Fig. 6. The local bilinear IFE space is defined as Sy(T) =
span{¢;r :i=1, 2, 3,4}.

For non-homogeneous jump of flux (2.4), we enrich the local IFE space by adding three local functions ¢’T“ I k=1,2,3
as follows

¢'{’£(x) =a;+bix+cy+dixy, ifxeT,
O (X) = §dF)(X) = @ + byx + oy + dxy, ifx €Ty, k=1,23, (3.16)
¢'T"Jc(x) =a3+ bsx+ 3y +daxy, ifxeT,.

such that for k = 1, 2, 3 the following conditions hold

e vanishing at four nodes A; of the element T:
o1 (A)=0, Vj=1,234 (3.17)
e continuous across the endpoints of interfaces I3 N T:

SrpID) = Q5. p(Ie) = of)(IY). ¢ri(If) = of5(I),

(3.18)
SLAP) = $EAP), GFP) = GES(P).
e unit flux jump condition:
f [BVF, - nlds =8, V=123 (3.19)
LiNT ’

]

A flux basis function of this type is shown in the right plot of Fig. 6. The local flux space is defined by S{I(T) =
span{¢>}J, qb%’], qb%,]}. As before, the enriched local IFE space on T is Sp(T) = Sy(T) US{1(T). The Lagrange type interpolation
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Tnr : HX(T) — Su(T) is as follows
4

3
Ty ru(x Z (A)pir(x)+ Y dhef (%), (3:20)

where arguments q’;, k =1, 2, 3, are integrations of flux jump along the interface, i.e.,

g = / [BVu - n];ds. (3.21)
IyNT

Remark 3.2. On an element T € Th ,» the bilinear IFE basis functions degenerate to standard bilinear IFE basis functions
in [29] when an interface moves out of the element. This can be proved following the same idea in [15].

Remark 3.3. Comparing with the linear IFE basis functions on the triple-junction element in [25], the bilinear IFE basis
functions and flux basis functions on the rectangular element ensure the nodal-value conditions precisely. Inside the
triple-junction element, the continuity is guaranteed at the intersection points and triple junction point.

3.5. Global bilinear IFE space

Now we define the global bilinear IFE space and flux IFE space. Let A} be the collection of all interior nodes of the
mesh 7. Associated with each node x; € N, we define a global bilinear IFE function &; such that

(i) @i(x;) = 8, Vi, j € M.
(ii) Pjlre Sp(T), ¥T € Ty,

where Sp(T) is the local IFE space defined in previous subsections. Correspondingly, the global bilinear IFE space is defined
as

Sh(2) =span{®; :i=1,2,...,|Nyl}.
For each local flux basis q)T J» a zero- -extension to the whole domain will yield the corresponding global flux basis function

d)k.

K ¢r,(x), if xeT,
(%) = {O, if x¢T. (3.22)

Here, the value k depends on the type of interface element. In particular, k = 1if T € 7}, k = 1,2if T € 7},, and
k=1,2,3ifT e 771'3 The flux jump IFE space is defined as

S](.Q) = span{@'{] :VT € 77f},

and the enriched global bilinear IFE space is Sh(.Q) = Sp(2)U S{I(Q).
The Lagrange interpolation operator Tn : HX(Q) — Sy is

Tyu(x) = Y u(x)Pi(x)+ Y Zq"@" (3.23)
JeN TeT; k=1

where dy = 1for T € 7, dy =2 for T € 7/ ,, and di = 3 for T € 7} ;. The value of g} is given in (3.11) and (3.21).
4. PPIFEM For triple-junction interface problems

Let &, be the collection of edges on the mesh 7;. Let &, and &] be the set interior edges and boundary edges, respectively.
If an edge e € &, intersects with the interface, we call it an interface edge, otherwise, it is called a non-interface edge.
Denote by 512 and &' the set of interface edges and non-interface edges, respectively.

For any interior edge e € &,, we denote the two elements sharing the edge e by T, ; and T, ,. For a function u defined
on T, 1 UT, >, we define the average and jump of u across the edge e respectively by

fulfe = ((U|Tel)| +(ulr,,)e),  [ulle = (ulr, le—(ulz, ;-

For e € £, we define {u}}, = [ull, = ule.
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The bilinear IFE approximation is to find i, € §h(.Q) in the following form

uh_u,,—|—uﬁfzujd>]+ZZq 05”, (4.1)

JeN TeT} k=1

where uy, € Sy, is the unknown function, and uﬁ S 5{1 can be explicitly constructed. We use the PPIFEM [16] for solving
the nonhomogeneous flux triple-junction interface problem: Find u; € Sy, such that

3
an(up, vn) = (f, v) — an(th, vi) + Z(bi, v,  Yup € Sp, (4.2)
i—1

where the bilinear form

o) = Y [ p9u- Vundx— 3 [ 1590 ned Ludas

e

KeTh eeS},
(4.3)
T Z/{{ﬂwh el [unl s + Z/— funl [ s
eegh
Here, € has the following choices. When ¢ = —1, the scheme is called symmetric PPIFEM. When € = 0, 1, the scheme is

called incomplete PPIFEM and non-symmetric PPIFEM, respectively. The stability parameter o, > 0.
5. Numerical examples
In this section, we test our new bilinear IFE approximation in two numerical examples. The numerical experiments

are carried out on a group of Cartesian meshes with N x N rectangular elements, starting from N = 16. We consider the
following three norms of the numerical solution:

lup — ulle = max |up(x,y) — u(x, y)l,
(X.y)ENR

lun — ullp = f (. ) — u(x, y)Pdxdy,
2

lup — ulg = / |Vun(x, y) — Vu(x, y)[*dxdy,
2

where N}, denotes the set of all nodes in the mesh 7;. To avoid redundance, we only report errors of symmetric PPIFEM,
since the results from the nonsymmetric and incomplete PPIFEM are similar.

5.1. Example 1 (straight-line interface)

In this example, we consider a square domain £2 = (—1, 1) separated by three straight-line interfaces. The interfaces
are defined through the following level set functions:

(x,y)= 38x + 9
1lx, y) = 7 y 28"
@a(x,y) =5.25x +y — 0.3125,

(x,y)= lx-l— !
@3X,y y - 19

The exact solution of this problem is set to be

1 . 1 1
u(x,y) = E sm[(ﬁx +y-— E)(5.25x +y—0.3125)],

38 9

1 1 1
uy(x,y) = ﬂ— sm[(—x +y— E)(7 +y— %)]

us(x,y) = l sin[(—sx +y- 2)(5.25)( +y —0.3125)/10].
B3 7 28
The geometry of the interface and the element classifications are displayed in the left plot of Fig. 7.
We first consider the case with a moderate jump (81, 82, 3) = (10, 1, 100). Interpolation errors in L?, and semi-
H! norms are reported in Table 1. The errors and convergence rates of the PPIFEM solutions are reported in Table 2. It
can be observed that both the interpolations and PPIFEM solutions converge with optimal rates in all three norms. For
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Fig. 7. Geometry of the interface and element classification for Example 1 (left) and Example 2 (right).

Table 1
Interpolation errors and convergences of Example 1 with coefficients
(10,1,100).
N | Zpu — ull2 Order | Zhu — Uy Order
16 3.05 x 1072 6.05 x 107!
32 7.71 x 1073 1.98 3.02 x 107! 1.00
64 1.93 x 1073 2.00 1.51 x 107! 1.00
128 4.84 x 107 2.00 7.52 x 1072 1.00
256 1.21 x 107 2.00 3.76 x 102 1.00
512 3.02 x 107° 2.00 1.88 x 1072 1.00
Table 2
PPIFEM errors in Example 1 with coefficients (10,1,100).
N [lup — ul|goo Order llup — ull2 Order |up — ulpy Order
16 2.70 x 102 2.81x 1072 6.05 x 107!
32 6.92 x 1073 1.96 7.10 x 1073 1.98 3.02 x 107! 1.00
64 1.75 x 1073 1.99 1.78 x 1073 2.00 1.51 x 107! 1.00
128 4.38 x 107 2.00 4.45 x 107 2.00 7.52 x 1072 1.00
256 1.09 x 107 2.00 1.11 x 107 2.00 3.76 x 1072 1.00
512 2.74 x 1073 2.00 2.78 x 1073 2.00 1.88 x 1072 1.00
Table 3
IFEM errors in Example 1 with coefficients (10,1,100).
N llup — ul| e Order llup — ull2 Order |up — uly Order
16 2.79 x 102 2.83 x 1072 6.08 x 107!
32 8.28 x 1073 1.75 7.16 x 1073 1.98 3.04 x 107! 1.00
64 2.44 x 1073 1.76 1.78 x 1073 2.00 1.51 x 107! 1.01
128 7.61x 1074 1.68 4.46 x 1074 2.00 7.55 x 1072 1.00
256 3.04 x 1074 1.33 1.11 x 107 2.00 3.77 x 1072 1.00
512 1.32 x 1073 1.20 2.79 x 107° 2.00 1.89 x 1072 1.00

comparison, we also include the numerical results of Galerkin bilinear IFEM solutions without partial penalty in Table 3.
Convergence in the L° norm is not optimal.

Next we consider a larger coefficient jump, i.e., (81, B2, B3) = (100, 10000, 1). The errors of PPIFEM and Galerkin IFEM
are reported in Tables 4 and 5, respectively. It can be observed that the PPIFEM scheme is robust for this large contrast
case in all three norms. Again, the convergence of L> norm for Galerkin IFEM is suboptimal. The magnitudes of the errors
are significant larger than the errors of PPIFEM solutions.
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Table 4
PPIFEM errors in Example 1 with coefficients (100,10000,1).
N llup — ul|geo Order llup — ull2 Order [up — Ul Order
16 8.87 x 1073 2.81x 1072 6.44 x 107!
32 2.93 x 1073 1.60 7.10 x 1073 1.98 3.25 x 107! 0.99
64 7.30 x 1074 2.00 1.78 x 103 2.00 1.63 x 107! 1.00
128 1.81 x 1074 2.01 4.45 x 10~ 2.00 8.16 x 102 1.00
256 4.43 x 107 2.04 1.11 x 1074 2.00 4.08 x 1072 1.00
512 1.16 x 107 1.93 2.78 x 107> 2.00 2.04 x 1072 1.00
Table 5
IFEM errors in Example 1 with coefficients (100,10000,1).
N llup — u|geo Order llup — ull2 Order lup — ufp Order
16 9.27 x 103 2.80 x 102 6.43 x 107!
32 2.84 x 1073 1.71 7.10 x 103 1.98 3.25 x 107! 0.98
64 8.51 x 1074 1.74 1.78 x 103 2.00 1.63 x 107! 1.00
128 4.54 x 1074 0.91 4.45 x 1074 2.00 8.16 x 102 1.00
256 2.35 x 1074 0.95 1.11 x 1074 2.00 4.08 x 1072 1.00
512 1.19 x 107 0.98 2.79 x 107> 2.00 2.04 x 1072 1.00
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Fig. 8. Comparison of error surfaces of classical IFEM and PPIFEM for Example 2.

5.2. Example 2

In this example, we test our numerical scheme for curved interfaces. In particular, the interfaces consist of a circle and
a straight line, which are defined by the following level set functions

p1(x,y) = 3x — 4y,

@x,y) =x* +y* —0.25,

@3(x,y) = —x* — y* + 0.25.
The exact solution is set to be

(. y) = %«xz 1925~ 0.125),
1
5

us(x, y) = ﬂl(3x — 4y)In(x* + y* 4+ 0.75).
3
In the first case, we choose the coefficient to be (81, B2, B3) = (10, 1, 100). The error of the interpolation operator is
reported in Table 6. Errors of symmetric PPIFEM and Galerkin IFEM are reported in Tables 7 and 8, respectively. From
these tables, we can see that the PPIFEM converge optimally in L*, [? and H' norms. The Galerkin IFE solutions have
suboptimal convergence in L* norm. Also, as the mesh size decreases, there seems to be an order deterioration in L? and
H' norms for the Galerkin IFEM. In Fig. 8, we compare the error surfaces of classical IFEM and the PPIFEM. This clearly
demonstrates that PPIFEM outperforms the classical IFEM in terms of the accuracy around the interface.

We also consider a large coefficient contrast case, (81, B2, 83) = (100000, 100, 10). The errors of symmetric PPIFEM
and Galerkin IFEM are reported in Tables 9 and 10, respectively. The convergences are similar to above.

Uy(x, y) = —(x* + y* — 0.25) sin(3x — 4y),
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Table 6
Interpolation errors and convergences of Example 2 with coefficients
(10,1,100).
N |1 Zpu — ull;2 Order | Zhu — Uy Order
16 2.46 x 1072 5.27 x 107!
32 6.25 x 1073 1.98 2.63 x 107! 1.00
64 1.57 x 1073 1.99 1.31 x 107! 1.00
128 3.93 x 1074 2.00 6.57 x 1072 1.00
256 9.84 x 107° 2.00 3.28 x 102 1.00
512 2.46 x 107° 2.00 1.64 x 1072 1.00
Table 7
PPIFEM errors in Example 2 with coefficients (10,1,100).
N llup — ullge Order llup — ull2 Order |up — ufpy Order
16 1.28 x 1072 2.20 x 1072 5.26 x 107!
32 3.41x 1073 1.91 5.55 x 1073 1.99 2.63 x 107! 1.00
64 9.33 x 1074 1.87 1.39 x 1073 2.00 131 x 107! 1.00
128 2.43 x 1074 1.94 3.48 x 1074 2.00 6.57 x 1072 1.00
256 5.84 x 107> 2.06 8.71 x 107 2.00 3.28 x 102 1.00
512 1.47 x 107 1.99 2.18 x 107 2.00 1.64 x 1072 1.00
Table 8
IFEM errors in Example 2 with coefficients (10,1,100).
N llup — ul|goo Order llup — ull2 Order |up — ulpy Order
16 4.75 x 1072 2.38 x 1072 5.42 x 107!
32 1.49 x 102 1.67 5.78 x 103 2.04 2.68 x 107! 1.01
64 4.82 x 1073 1.63 1.43 x 1073 2.02 1.34 x 107! 1.01
128 2.09 x 1073 1.21 3.56 x 1074 2.01 6.70 x 1072 1.00
256 9.64 x 1074 1.11 9.04 x 107° 1.98 3.39 x 1072 0.98
512 474 x 107 1.02 2.47 x 1073 1.87 1.75 x 1072 0.96
Table 9
PPIFEM errors in Example 2 with coefficients (1000000,100,10).
N llup — ullgeo Order llup — ull2 Order |up — ulpy Order
16 1.42 x 1072 3.29 x 1073 5.77 x 1072
32 3.42 x 1073 2.05 7.22 x 1074 2.19 2.79 x 1072 1.05
64 1.32 x 1073 1.38 2.11x 107 1.78 1.34 x 1072 1.06
128 3.06 x 1074 2.11 3.60 x 1073 2.55 6.03 x 1073 1.15
256 1.05 x 107 1.54 8.60 x 1076 2.07 2,92 x 1073 1.04
512 2.66 x 107° 1.98 2.07 x 1076 2.06 1.43 x 1073 1.03
Table 10
IFEM errors in Example 2 with coefficients (1000000,100,10).
N [lup — ul|poo Order llup — ull2 Order |up — Ul Order
16 2.84 x 1073 2.07 x 1073 4.59 x 1072
32 2.37 x 1073 0.26 5.66 x 1074 1.87 2.40 x 102 0.93
64 1.17 x 1073 1.02 1.85 x 1074 1.61 1.28 x 1072 0.91
128 4.60 x 10~* 134 3.77 x 107° 2.30 6.23 x 103 1.03
256 2.40 x 1074 0.94 1.02 x 107° 1.88 3.28 x 1073 0.93
512 1.23 x 107 0.97 3.15x 1076 1.70 1.82 x 1073 0.85

6. Conclusion

We have developed a partially penalized immersed finite element method using bilinear polynomials for solving elliptic
multi-domain interface problems with triple junction points. The immersed finite element basis functions are constructed
on interface elements with for all types of geometrical configurations. The local bilinear IFE spaces are enriched for
handling nonhomogeneous flux jump conditions. Numerical results are provided to demonstrate the effectiveness of our
method. In the future, we plan to carry on the a priori error estimates for the method and will also plan to extend the

method to other interface problems.
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