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Abstract
A new immersed finite element (IFE) method is developed for second-order elliptic problems
with discontinuous diffusion coefficient. The IFE space is constructed based on the rotated-
Q1 nonconforming finite elements with the integral-value degrees of freedom. The standard
nonconforming Galerkin method is employed in this IFE method without any stabilization
term. Error estimates in energy and L2-norms are proved to be better than O(h

√| log h|) and
O(h2| log h|), respectively, where the | log h| factors reflect jump discontinuity. Numerical
results are reported to confirm our analysis.

Keywords Immersed finite element · Nonconforming · Rotated-Q1 · Cartesian mesh ·
Elliptic interface problem
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1 Introduction

We consider the second-order elliptic interface problem:

− ∇ · (β∇u) = f in �− ∪ �+, (1.1a)
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Fig. 1 Body-fitting mesh and non-body-fitting mesh of an interface problem

u = g on ∂�, (1.1b)

where, without loss of generality, we assume that aC2-continuous interface curve� separates
the physical domain � into two sub-domains �− and �+, such that � = �+ ∪ �− ∪ �,
see an illustration in Fig. 1. The physical domain � ⊂ R

2 is assumed to be occupied by two
materials such that the diffusion coefficient β(x, y) is discontinuous across the interface �,
and it is assumed to be a piecewise constant function defined by

β(x, y) =
{

β− if (x, y) ∈ �−,

β+ if (x, y) ∈ �+,
(1.2)

such that min{β−, β+} > 0. Across the interface �, the solution and the normal component
of the flux are assumed to be continuous, i.e.,

[u]� = 0, (1.3a)

[[ν · β∇u]]� = 0, (1.3b)

where [v]� = v+|� − v−|� , and [[ν · β∇u]]� = ν+ ·β+∇u+ + ν− ·β−∇u−, with ν the unit
normal of �.

Conventional finite element methods (FEM) can solve this elliptic interface problem
satisfactorily provided that solution meshes are shaped to fit the material interface [5];
otherwise the accuracy of the solution is uncertain [1,14]. Immersed finite element (IFE)
methods [3,10,13,15,20,24,25,29,30,32], on the other hand, do not require meshes to fit the
interface. Hence, if desired, Cartesian meshes can be used to solve interface problems which
is advantageous in many simulations. For example, in particle-in-cell methods for plasma-
particle simulations [21,22], it is preferable to solve the governing electric potential equation
on Cartesian meshes for efficient particle tracking. Also, IFE methods, in either a standard
fully discrete or a semi-discrete (method of lines) formulation, can be used to solve time-
dependent problems with moving interfaces [19,27] on a fixed Cartesian mesh throughout
the whole simulation.

The basic idea of IFE methods is to locally modify finite element functions on interface
elements to fit the interface jump conditions (1.3a) and (1.3b). For elliptic interface prob-
lems, most IFE methods in the literature are modified from the Lagrange-type finite element
spaces (usually H1-conforming), whose degrees of freedom are determined by nodal values
at the mesh points. However, IFE spaces originated from these conforming FE spaces are
usually nonconforming because IFE functions are discontinuous across interface edges. This
discontinuity can be harmfully large for certain configuration of interface locations and dif-
fusion coefficients. Consequently, the IFE solution is often less accurate around the interface
than the rest of solution domain. Our recent study in [28,33] indicates that the convergence
rates of these Lagrange-type IFE functions used in the Galerkin formulation can sometimes
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deteriorate as the mesh size gets small. In [28], a partially penalized immersed finite ele-
ment (PPIFE) method was developed to cope with the discontinuity of Lagrange-type IFE
functions. The PPIFE method is shown to converge optimally in the energy norm.

Another framework to construct the IFE approximation is based on nonconforming finite
elements [4,7,23,31]. One significant difference between conforming and nonconforming
finite elements is the way to impose the continuity of finite element functions across ele-
ments. Conforming FE enforces the continuity through nodal values at mesh points, while
the continuity of nonconforming FE is usually weakly imposed through mean values over
edges/faces. The simplest nonconforming finite element defined on simplicial meshes is
the well-known Crouzeix–Raviart (CR) element [7]. For rectangular meshes, the simplest
nonconforming finite elements are known as the rotated-Q1 finite elements [4,23,31].

In this article, we develop and analyze an IFEmethod based on the nonconforming rotated-
Q1 FEMwithout any stabilization term. Our error estimates show that the method converges
optimally sans factors of | log(h)| in both energy and L2-norms with standard piecewise
H2-regularity assumption. The main technique in our error analysis is based on a special
projection operator introduced in [8] to bound the flux error on edges. We extend this projec-
tion to interface problems and show that the error bound of flux on interface edges induces a
| log(h)| factor, which is crucial for piecewise smooth functions, and therefore unremovable
for interface problems. The analytical technique in our error estimation is new to interface
problems. Also, the proposed IFE method here can be readily extended for solving problems
with nonhomogeneous jump conditions across the interface by following a homogenization
technique such as those developed in [10,17].

The rest of this article is organized as follows. In Sect. 2, we construct the nonconforming
rotated-Q1 IFE space and present some basic properties. In Sect. 3, we discuss the approxi-
mation capabilities of the IFE space. In Sect. 4, we analyze the error bounds of Galerkin IFE
approximation to the elliptic interface problem in energy and L2-norms. In Sect. 5, numeri-
cal results are presented to confirm our analysis and to demonstrate features of the new IFE
method. Finally, a few brief conclusions are provided in Sect. 6.

2 Nonconforming Immersed Finite Element Space

This section starts with notations and some preliminaries to be used in this paper. Then, we
will introduce the IFE space based on nonconforming rotated-Q1 elements.

2.1 Notations and Preliminaries

Multi-index notations will be employed such that α = (α1, α2) ∈ [
Z

+]2
, |α| = α1 + α2,

together with the partial differential operator ∂α = ∂α1

∂x
α1
1

∂α2

∂x
α2
2
, where Z+ denotes the set of

all nonnegative integers.
Let S ⊆ � be an open set such that S ∩ � 	= ∅, and let Ss = S ∩ �s, s = −,+. Then, let

S̃ = S− ∪ S+, and we note that S̃ 	= S. Let Wm,p(S̃) denote the usual Sobolev space on the
open set S̃ with non-negative integer index m, equipped with the norm and seminorm:

‖v‖Wm,p(S̃) =
⎛
⎝ ∑

|α|≤m

∫
S̃

∣∣∂αv(x)
∣∣p dx

⎞
⎠

1/p

, |v|Wm,p(S̃) =
⎛
⎝ ∑

|α|=m

∫
S̃

∣∣∂αv(x)
∣∣p dx

⎞
⎠

1/p

,
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for 1 ≤ p < ∞, and

‖v‖Wm,∞(S̃) = max|α|≤m
ess.sup

x∈S̃
|∂αv(x)|, |v|Wm,∞(S̃) = max|α|=m

ess.sup
x∈S̃

|∂αv(x)|.

In particular, for p = 2, we denote Hm(S̃) = Wm,p(S̃), andwe omit the index p in associated
norms and seminorms for simplicity, i.e., ‖v‖Wm,2(S̃) = ‖v‖Hm (S̃), and |v|Wm,2(S̃) = |v|Hm (S̃).

Wewill also follow the convention to drop the domain index S̃ if S̃ = �̃. For p = 2, associated
with the norm ‖ · ‖Hm (S̃), the inner product for H

m(S̃) will be denoted by (·, ·)Hm (S̃), with

further simplification to (·, ·)S̃ and (·, ·) if m = 0 and also if S̃ = �̃, respectively.
For m ≥ 1, we define two types of subspaces of Hm(S̃) whose functions satisfy the

interface jump conditions (1.3a) and (1.3b) on �. First, we set

H̃m
� (S) = H1(S) ∩ Hm(S̃),

endowed with the inner-product and the norm

〈u, v〉H̃m (S) = (u, v)H1(S) +
∑

s=−,+

m∑
|α|=2

(∂αu, ∂αv)L2(Ss ), ‖u‖H̃m (S) =
√

〈u, u〉H̃m (S).

Notice that H̃1
�(S) = H1(S) and that

[v]�∩S = 0 in the sense of H
1
2 (� ∩ S) ∀v ∈ H̃m

� (S), m ≥ 1.

In addition, for m = 2, we define a subspace of H̃m
� (S) as follows:

H̃2
β (S) = {

v ∈ H̃2
�(S): [[ν� · β∇v]]�∩S = 0

}

where the jump of the flux is understood in the sense of H
1
2 (�). Furthermore, the concepts

above can be readily extended to define the following spaces and the related norms: for p > 2,

W̃ 2,p
� (S) = W 1,p(S) ∩ W 2,p(S̃), W̃ 2,p

β (S) =
{
v ∈ W̃ 2,p

� (S) | [[ν� · β∇v]]�∩S = 0
}

.

Assume that f ∈ H−1(�),where H−1(�) is the dual space of H1
0 (�) = H̃1

�,0(�̃).For the

interface problem described by (1.1) and (1.3), we consider its weak form: find u ∈ H1(�)

such that u = g on ∂� and

a(u, v) = L(v) ∀ v ∈ H1
0 (�), (2.1)

where

a(u, v) = (β∇u,∇v), L(v) = 〈 f , v〉H−1(�),H1
0 (�) ,

〈·, ·〉V ′,V being the duality pairing between the topological vector space V and its dual space
V ′. An application of the Lax–Milgram Lemma shows that there exists a unique solution
u ∈ H1(�) for (2.1) such that

‖u‖H1(�) ≤ C‖ f ‖H−1(�),

where C is a positive constant depending only on � and β.
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2.2 Nonconforming FE Functions

Let � be a rectangular domain or a union of rectangular domains. Without loss of generality,
assume that {Th} is a family of uniform Cartesian meshes for domain�with mesh parameter
h > 0. For each element T ∈ Th , we call it an interface element if the interior of T intersects
with the interface �; otherwise, we call it a non-interface element. Without loss of generality,
we assume that interface elements in Th satisfy the following hypotheses when the mesh size
h is small enough:
(H1) The interface � cannot intersect an edge of any element at more than two points unless
the edge is part of �.

(H2) If � intersects the boundary of an element at two points, these intersection points must
be on different edges of this element.
(H3) The interface � is a piecewise C2-continuous function, and the mesh Th is formed such
that the subset of � in every interface element is C2-continuous.

Denote by T I
h and T N

h = Th\T I
h the collections of all interface elements and non-interface

elements, respectively. For a typical rectangular element T = �A1A2A3A4 ∈ Th , the
following conventions for its vertices and edges are assumed:

A1 = (x0, y0), A2 = (x0 + hx , y0), A3 = (x0 + hx , y0 + hy), A4(x0, y0 + hy), (2.2)

and
γ1 = A1A2, γ2 = A2A3, γ3 = A3A4, γ4 = A4A1. (2.3)

We follow the classical triplet definition of a finite element [6]. On the element T , the local
FE space is defined by

�T = Span

{
1,

x − x0
hx

,
y − y0
hy

,

(
x − x0
hx

)2

−
(
y − y0
hy

)2
}

. (2.4)

The degrees of freedom are defined as the mean values over edges:

	T =
{

1

|γ j |
∫

γ j

ψT ds, j = 1, 2, 3, 4: ∀ ψT ∈ �T

}
, (2.5)

where |γ j | denotes the length of the edge γ j . The local basis functions ψ j,T , j = 1, 2, 3, 4,
fulfill

1

|γk |
∫

γk

ψ j,T ds = δ jk, ∀ j, k = 1, 2, 3, 4. (2.6)

Set the local finite element space on an element T as follows:

SNh (T ) = Span
{
ψ j,T : j = 1, 2, 3, 4

}
. (2.7)

It is obvious that on every element T ∈ Th , SNh (T ) = �T .

2.3 Nonconforming IFE Functions

Next, we describe the construction of a local IFE function, denoted by φT , on a typical
interface element T ∈ T I

h whose vertices and edges are given in (2.2)–(2.3).
Assume that an interface curve � intersects T ∈ T I

h at two different points D and E ,
and the line segment DE separates T into two sub-elements T+ and T−. Depending on
the adjacency of the edges containing D and E , the interface elements will be classified as
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Fig. 2 Type I (left) and Type II (right) interface elements

Type I and Type II interface elements such that these two edges are located at two adjacent
edges and at two opposite edges, respectively. See Fig. 2 for an illustration. We use a Type II
interface element to exemplify the construction of the local IFE functions and corresponding
spaces, i.e., we assume the interface points are such that

D = (x0 + dhx , y0), E = (x0 + ehx , y0 + hy),

where d, e ∈ (0, 1). A local IFE function φT is defined as a piecewise rotated-Q1 polynomial
as follows:

φT (x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c+
1 + c+

2

(
x − x0
hx

)
+ c+

3

(
y − y0
hy

)
+ c+

4

((
x − x0
hx

)2

−
(
y − y0
hy

)2
)

in T+,

c−
1 + c−

2

(
x − x0
hx

)
+ c−

3

(
y − y0
hy

)
+ c−

4

((
x − x0
hx

)2

−
(
y − y0
hy

)2
)

in T−.

(2.8)
The coefficients c±

j are determined by the mean value v j on each edge γ j :

1

|γ j |
∫

γ j

φT ds = v j , j = 1, 2, 3, 4, (2.9)

and the following interface jump conditions:

[φT ]DE = 0, (2.10)∫
DE

[[
νDE · β∇φT

]]
DE ds = 0, (2.11)

where νDE is the unit normal on DE . Note that the continuity condition (2.10) is equivalent to

[φT (D)] = 0, [φT (E)] = 0, c+
4 = c−

4 . (2.12)

Equations (2.9)–(2.11) provide eight constraints that lead to an 8 × 8 algebraic
system Mcc = v on the coefficients c = (c−

1 , . . . , c−
4 , c+

1 , . . . , c+
4 )t with v =

(v1, . . . , v4, 0, . . . , 0)t . By direct calculation, one can verify that thematrixMc is nonsingular
for all β± > 0 and 0 < d, e < 1; see [33] for more details. Hence, an IFE function φT sat-
isfying jump conditions (2.10) and (2.11) is uniquely determined by its mean values v j over
edges γ j , j = 1, 2, 3, 4. For each j = 1, 2, 3, 4, let v = v j = (v1, . . . , v4, 0, . . . , 0)t ∈ R

8

be the j th canonical vector such that v j = 1 and vk = 0 for k 	= j . We can solve for
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Fig. 3 Nonconforming FE/IFE local basis functions

c j = (c−
1 , . . . , c−

4 , c+
1 , . . . , c+

4 )t and use it in (2.8) to form the j th nonconforming rotated-
Q1-IFE local basis functionφ j,T . Figure 3provides a comparisonof a standard rotated-Q1-FE
basis function and the corresponding rotated-Q1-IFE basis functions in both Type I and Type
II interface elements.

Denote by SIh (T ) = Span {φ j,T : j = 1, 2, 3, 4} the local rotated-Q1-IFE space on an
interface element T . The global IFE space is defined as follows:

Sh(�) =
{
v ∈ L2(�): v|T ∈ SNh (T ) if T ∈ T N

h , v|T ∈ SIh (T ) if T ∈ T I
h ;∫

γ

[v]γ ds = 0 for all interior edges γ of Th
}
. (2.13)

2.4 Basic Properties of IFE Spaces

In this subsection, we summarize some basic properties for the IFE space Sh(�). The results
can be verified via straightforward calculations. We also refer readers to Section 3.1 in [33]
for proofs of the following lemmas and theorems.

Lemma 2.1 (Unisolvency) On each interface element T ∈ T I
h , an IFE function φT ∈ SIh (T )

is uniquely determined by its mean values (2.9) and jump conditions (2.10)–(2.11).

Lemma 2.2 (Continuity) On each interface element T ∈ T I
h , the local IFE space SIh (T ) ⊂

C0(T ).

Lemma 2.3 (Partition of unity) On each interface element T ∈ T I
h , the IFE basis functions

φ j,T satisfy the partition-of-unity property, i.e.,

4∑
j=1

φ j,T (x, y) = 1, ∀(x, y) ∈ T . (2.14)

Lemma 2.4 (Consistency) On each interface element T ∈ T I
h , the IFE basis functions are

consistent to standard FE basis functions in the following sense:

1. If there is no jump in the coefficient, i.e., β+ = β−, then the IFE basis functions φ j,T

become the standard FE basis functions ψ j,T .
2. Ifmin{|T+|, |T−|} shrinks to zero, then the IFE basis functionsφ j,T become the standard

FE basis functions ψ j,T . Here, |T s | denotes the area of T s , s = +,−.
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Lemma 2.5 (Flux continuity on �) On each interface element T ∈ T I
h , every IFE function

φT ∈ SIh (T ) satisfies the flux jump condition weakly as follows:
∫

�∩T
[[ν · β∇φT ]]�∩T ds = 0,

where ν is the unit normal to �.

Lemma 2.6 (Boundedness)There exists a constant C, independent of interface location, such
that for j = 1, 2, 3, 4, and k = 0, 1, 2,

‖φ j,T ‖W̃ k,∞(T )
≤ Ch−k

T ∀T ∈ T I
h . (2.15)

Theorem 2.7 (Trace inequality) There exists a constant C > 0 independent of interface
location, but may depend on the diffusion coefficient β, such that

‖ν · β∇v‖L2(γ ) ≤ Ch
− 1

2
T ‖∇v‖L2(T ) ∀v ∈ SIh (T ) (2.16)

where γ is any edge of T , and ν is the unit outward normal to T .

Theorem 2.8 (Inverse inequality) There exists a constant C, independent of interface loca-
tion, but may depend on the diffusion coefficient β, such that for 0 ≤ l ≤ k ≤ 2

|v|W̃ k,∞(T )
≤ Ch−1

T |v|H̃ k (T )
, |v|H̃ k (T )

≤ Chl−k
T |v|H̃ l (T )

, ∀v ∈ SIh (T ). (2.17)

3 The Interpolation Operator and Approximation Capability

In this section, we discuss the approximation capability for the nonconforming IFE space
Sh(�). On each non-interface element T ∈ T N

h , the local interpolation is defined canonically
by IT :C(T ) → SNh (T ), such that,

IT u =
4∑

i=1

(
1

|γi |
∫

γi

u ds

)
ψi,T , (3.1)

where γ j , j = 1, 2, 3, 4 denote the edges of T . The standard scaling argument leads to the
following error estimates [31, Lemma 1]:

‖IT u − u‖L2(T ) + h|IT u − u|H1(T ) ≤ Ch2|u|H2(T ). (3.2)

On each interface element T ∈ T I
h , the interpolation operator IT :C(T ) → SIh (T ) is defined

similarly as follows:

IT u =
4∑

i=1

(
1

|γi |
∫

γi

u ds

)
φi,T . (3.3)

Finally, we define the global IFE interpolation Ih :C(�) → Sh(�) piecewisely such that

(Ihu)|T = IT u ∀ T ∈ Th .

The error estimates for the interpolation operator on interface elements are reported in [11,
12,33]. We only state the results in the following theorems.
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Theorem 3.1 There exists a constant C > 0, independent of interface location, such that

‖IT u − u‖L2(T ) + h|IT u − u|H1(T ) ≤ Ch2‖u‖H̃2(T ) ∀u ∈ H̃2
β (T ), (3.4)

on every interface element T ∈ T I
h .

Theorem 3.2 There exists a constant C > 0 such that the following interpolation error
estimate holds:

‖Ihu − u‖L2(�) + h

⎛
⎝ ∑

T∈Th

|IT u − u|2H1(T )

⎞
⎠

1
2

≤ Ch2‖u‖H̃2(�) ∀u ∈ H̃2
β (�). (3.5)

4 The IFE Galerkin Method and Error Estimates

In this section, we consider a nonconforming IFE Galerkin method and carry out its error
estimation.

4.1 The Nonconforming IFE Galerkin Method

Given amesh Th , we denote by Eh , E̊h and Eb
h the set of all edges, interior edges, and boundary

edges, respectively. The sets of interface edges and non-interface edges are denoted by E I
h

and EN
h , respectively. For the sake of simplicity, in the following discussion, we assume that

the interface curve � does not intersect the boundary ∂�. Consequently, Eb
h ⊂ EN

h .
Define the bilinear and linear forms

ah(u, v) =
∑
T∈Th

∫
T

β∇u · ∇v dx, L(v) =
∑
T∈Th

∫
T
f v dx .

Define the trial function set and the test function space as follows:

Sh,g(�) =
{
v ∈ Sh(�):

∫
γ

v ds =
∫

γ

g ds, ∀γ ∈ Eb
h

}
,

S̊h(�) =
{
v ∈ Sh(�):

∫
γ

v ds = 0, ∀γ ∈ Eb
h

}
.

The nonconforming IFE Galerkin method is: find uh ∈ Sh,g(�) such that

ah(uh, vh) = L(vh), ∀ vh ∈ S̊h(�). (4.1)

In the following, we derive the error estimation of IFE approximation (4.1).

4.2 Projection Operators

For convenience in the analysis to follow, let

γ jk = ∂Tj ∩ ∂Tk, γ j = ∂Tj ∩ ∂�, ∀ Tj , Tk ∈ Th,

and write

v j = v|Tj ∀ Tj ∈ Th; v jk = v j|γ jk ∀γ jk ∈ E I
h .
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Set


h =
{
λ|λ = (λ jk, λk j ) ∈ (P0(γ jk))

2, λ jk + λk j = 0 ∀γ jk ∈ E̊h;
λ = λ j ∈ P0(γ j ) ∀γ j ∈ Eb

h

}
.

Denote by ν j the unit outward normal to Tj . We will use the following projection operators
introduced in [8]: �0:�γ∈Eh L2(γ ) → �γ∈Eh P0(γ ) and �ν : H̃2

β (�) → 
h by

〈v − �0v, 1〉γ = 0 ∀v ∈ L2(γ ) ∀γ ∈ Eh, (4.2)〈
β

∂v j

∂ν j
− �νv, 1

〉
γ jk

= 0 ∀v ∈ H̃2
β (�) ∀γ jk ∈ Eh, (4.3)

so that �γ
0 (v):=�0(v|γ ) = 1

|γ |
∫
γ

v ds is the average of v over γ and

(
�νv|γ jk ,�νv|γk j

) =
(

�
γ jk
0 β

∂v j

∂ν j
,�

γk j
0 β

∂vk

∂νk

)
∈ R

2 ∀γ jk ∈ E I
h .

Lemma 4.1 Let γ = (0, h) with γ − = (0, α) and γ + = (α, h). Assume that u ∈ L2(γ ) and

u|γ s ∈ H
1
2 (γ s), s = −,+. Then u ∈ H

1
2−ε(γ ) for every ε ∈ (0, 1

4 ). Moreover, there exists
a constant C independent of α, such that

‖u‖
H

1
2 −ε

(γ )
≤ C√

ε

(
‖u‖

H
1
2 (γ −)

+ ‖u‖
H

1
2 (γ +)

)
.

Proof For every ε ∈ (0, 1
4 ), let σ = 1

2 − ε, then σ ∈ ( 14 ,
1
2 ). For q ≥ 1 and y ∈ γ −,

∫
γ +

1

|x − y|(1+2σ)q
dx = (h − y)1−(1+2σ)q − (α − y)1−(1+2σ)q

1 − (1 + 2σ)q
.

Since σ ∈ ( 14 ,
1
2 ), we specifically choose

q = 1

2

(
1 + 2

1 + 2σ

)
�⇒ q = 2 − ε

2(1 − ε)
.

Then 1 ≤ q < 2
1+2σ , 1 − (1 + 2σ)q 	= −1, and 1 + 2σ ≤ (1 + 2σ)q < 2. Hence,

I (γ −, γ +, σ, q):=
∫

γ −

∫
γ +

1

|x − y|(1+2σ)q
dxdy

=
(

1

1 − (1 + 2σ)q

)(
1

2 − (1 + 2σ)q

)(
h2−(1+2σ)q − (h − α)2−(1+2σ)q − α2−(1+2σ)q

)

≤ C

∣∣∣∣ 1

1 − (1 + 2σ)q

∣∣∣∣
∣∣∣∣ 1

2 − (1 + 2σ)q

∣∣∣∣ = C

∣∣∣∣ 1

1 − ε

∣∣∣∣
∣∣∣∣1ε

∣∣∣∣ ≤ C

ε
.

Therefore, using p such that 1
p + 1

q = 1, and the above estimate, we have

∫
γ −

∫
γ +

|u(x) − u(y)|2
|x − y|1+2σ dxdy

≤
∫

γ −

([∫
γ +

|u(x) − u(y)|2p dx
] 1

2p
)2 [∫

γ +
1

|x − y|(1+2σ)q
dx

] 1
q

dy
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≤ 2
∫

γ −
‖u‖2L2p(γ +)

[∫
γ +

1

|x − y|(1+2σ)q
dx

] 1
q

dy

+ 2
∫

γ −
|u(y)|2

[∫
γ +

1

|x − y|(1+2σ)q
dx

] 1
q

dy.

≤ 2‖u‖2L2p(γ +)

(∫
γ −

1pdy

) 1
p

I (γ −, γ +, σ, q)
1
q

+ 2

(∫
γ −

|u(y)|2pdy
) 1

p

I (γ −, γ +, σ, q)
1
q

≤ C‖u‖2L2p(γ +)

(
1

ε

) 1
q + C‖u‖2L2p(γ −)

(
1

ε

) 1
q

≤ C

(
1

ε

) 2(1−ε)
2−ε

(
‖u‖2

H
1
2 (γ +)

+ ‖u‖2
H

1
2 (γ −)

)
.

In the last step, we used the Sobolev embedding theorem for one dimension:

W
1
2 ,2(γ s) ↪→ W 0,p(γ s), s = −,+, p ∈ [1,∞).

By definition of the fractional Sobolev norm, we have

‖u‖2Hσ (γ ) = ‖u‖2L2(γ )
+

∫
γ

∫
γ

|u(x) − u(y)|2
|x − y|1+2σ dxdy

= ‖u‖2L2(γ )
+

∫
γ −

∫
γ −

|u(x) − u(y)|2
|x − y|1+2σ dxdy + 2

∫
γ −

∫
γ +

|u(x) − u(y)|2
|x − y|1+2σ dxdy

+
∫

γ +

∫
γ +

|u(x) − u(y)|2
|x − y|1+2σ dxdy

≤ ‖u‖2
H

1
2 (γ +)

+ ‖u‖2
H

1
2 (γ −)

+ C

(
1

ε

) 2(1−ε)
2−ε

(
‖u‖2

H
1
2 (γ +)

+ ‖u‖2
H

1
2 (γ −)

)
,

which leads to

‖u‖Hσ (γ ) ≤ C

ε(1−ε)/(2−ε)

(
‖u‖

H
1
2 (γ −)

+ ‖u‖
H

1
2 (γ +)

)
≤ C√

ε

(
‖u‖

H
1
2 (γ −)

+ ‖u‖
H

1
2 (γ +)

)
,

because for small ε, we have

1 − ε

2 − ε
= 1

2
− ε

4
− ε2

8
− ε3

16
− · · · ≤ 1

2
.

��
Theorem 4.2 Let T ∈ Th and γ be an edge of T . Then there exists a constant C > 0 such
that the following hold on a mesh Th with a sufficiently small mesh size:

1. If T ∈ T N
h and v ∈ H2(T ) + SNh (T ), then

∥∥∥∥β
∂v

∂ν
− �νv

∥∥∥∥
L2(γ )

≤ Ch
1
2 ‖v‖H2(T ).
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2. If γ ∈ EN
h but T ∈ T I

h , and v ∈ H̃2
β (T ) + SIh (T ), then∥∥∥∥β

∂v

∂ν
− �νv

∥∥∥∥
L2(γ )

≤ Ch
1
2

(
‖v‖H2(T̃−) + ‖v‖H2(T̃+)

)
.

3. If γ ∈ E I
h and v ∈ H̃2

β (T ) + SIh (T ), then∥∥∥∥β
∂v

∂ν
− �νv

∥∥∥∥
L2(γ )

≤ Ch
1
2 | log h| 12

(
‖v‖H2(T̃−) + ‖v‖H2(T̃+)

)
.

Here, for T ∈ T I
h , designate

T̃ s =
{
T ∩ �s for v ∈ H̃2

β (T ),

T s for v ∈ SIh (T ),
for s = +,−.

Proof Let γ ∈ Eh . In the first two cases we assume γ ∈ EN
h , but for the third case we assume

γ ∈ E I
h . Then by the standard trace theorem or the lemma above, we have β ∂v

∂ν
∈ H

1
2 (γ ) or

β ∂v
∂ν

∈ H
1
2−ε(γ ) for any ε ∈ (0, 1

4 ).
Since �νv is the L2 projection of β ∂v

∂ν
to the space of constant polynomials, applying the

error estimate for polynomial projection and the standard error estimate on interpolation of
Sobolev spaces (see [9, Theorem 1.4, p.6]), we have

∥∥∥∥β
∂v

∂ν
− �νv

∥∥∥∥
L2(γ )

≤

⎧⎪⎪⎨
⎪⎪⎩

Ch
1
2
∥∥β ∂v

∂ν

∥∥
H

1
2 (γ )

if γ ∈ EN
h ,

Ch
1
2−ε

∥∥β ∂v
∂ν

∥∥
H

1
2 −ε

(γ )
if γ ∈ E I

h .

(4.4)

For the first two cases, by the definition of the H1/2-norm for the zero-th order trace of a H1

function, see for example [2], we have

∥∥∥∥β
∂v

∂ν

∥∥∥∥
H

1
2 (γ )

≤

⎧⎪⎨
⎪⎩

∥∥β ∂v
∂ν

∥∥
H1(T )

if T ∈ T N
h ,

∥∥β ∂v
∂ν

∥∥
H1(T̃ s )

≤ ∥∥β ∂v
∂ν

∥∥
H1(T̃−)

+ ∥∥β ∂v
∂ν

∥∥
H1(T̃+)

if T ∈ T I
h ,

which means

∥∥∥∥β
∂v

∂ν

∥∥∥∥
H

1
2 (γ )

≤

⎧⎪⎨
⎪⎩
max{β+, β−} ‖v‖H2(T ) if T ∈ T N

h ,

max{β+, β−} ‖v‖H̃2(T ) if T ∈ T I
h .

(4.5)

For the third case, applying Lemma 4.1, we have∥∥∥∥β
∂v

∂ν

∥∥∥∥
H

1
2 −ε

(γ )

≤ C√
ε

(
‖β ∂v

∂ν
‖
H

1
2 (γ −)

+ ‖β ∂v

∂ν
‖
H

1
2 (γ +)

)

≤ C√
ε

(
‖v‖H2(T̃−) + ‖v‖H2(T̃+)

)
. (4.6)

Finally, all the estimates in this theorem follow by applying (4.5) and (4.6) to (4.4), and by
taking the minimum of 1

hε
√

ε
over 0 < ε < 1/4. Indeed, at ε = 1

2 log 1
h
, for 0 < h < 1

e2
, the

minimum value is
1

hε
√

ε
= h

1
2 log h

√
2 log

1

h
= √

2e| log h| 12 .

123



454 Journal of Scientific Computing (2019) 79:442–463

4.3 The Energy-Norm Error Estimate

Define the (broken) energy norm

�u� = √
ah(u, u).

As needed, we quote the following second Strang lemma for the IFE solution:

Lemma 4.3 Let u ∈ H̃1
�(�) and uh ∈ Sh(�) be the solutions of (2.1) and (4.1), respectively.

Then,

�u − uh� ≤ C

{
inf

vh∈Sh(�)
�u − vh� + sup

wh∈Sh(�)

|ah(u, wh) − L(wh)|
�wh�

}
. (4.7)

We are now ready to state and derive an error estimate in the energy norm.

Theorem 4.4 Let u ∈ H̃2
β (�)anduh ∈ Sh(�)be the solutions of (2.1)and (4.1), respectively.

Then, there exists a constant C such that

�u − uh� ≤ Ch

⎛
⎜⎝‖u‖H̃2(�) + | log h| 12

∑
T∈T I

h

‖u‖H̃2(T )

⎞
⎟⎠ . (4.8)

If, in addition, u ∈ W̃ 2,q
β (�) for some q > 2, then there exists h0 > 0 such that, for all

0 < h < h0,

�u − uh� ≤ Ch

⎛
⎜⎝‖u‖H̃2(�) +

∑
T∈T I

h

‖u‖W̃ 2,q (T )

⎞
⎟⎠ . (4.9)

Proof We need to estimate those terms bounding �u − uh� in (4.7) of the Strang lemma
above. By the interpolation estimate (3.5), we can estimate the first term on the right hand
side of (4.7) as follows:

inf
vh∈Sh(�)

�u − vh� ≤ Ch‖u‖H̃2(�). (4.10)

Next, let wh ∈ Sh(�) be arbitrary. Then, since u ∈ H1(�), it follows that

ah(u, wh) =
∑
j

(β∇u,∇wh)Tj = −
∑
j

(∇ · β∇u, wh)Tj +
∑
j

〈
β

∂u j

∂ν j
, wh

〉
∂Tj

= (−∇ · β∇u, wh) +
∑
j

〈
β

∂u j

∂ν j
, wh

〉
∂Tj

.

Hence, by choosing m j ∈ P0(Tj ) to be the average of wh over Tj , one sees that

ah(u, wh) − L(wh) =
∑
j

〈
β

∂u j

∂ν j
, wh

〉
∂Tj

=
∑
j

〈
β

∂u j

∂ν j
− �νu j , wh

〉
∂Tj

=
∑
j

〈
β

∂u j

∂ν j
− �νu j , wh − m j

〉
∂Tj

. (4.11)
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Hence, by Theorem 4.2, the trace inequality on Tj , and the approximation capability of m j ,
we have

|ah(u, wh) − L(wh)|

≤
⎛
⎝∑

j

∥∥∥∥β
∂u j

∂ν j
− �νu j

∥∥∥∥
2

L2(∂Tj )

⎞
⎠

1
2
⎛
⎝∑

j

‖wh − m j‖2L2(∂Tj )

⎞
⎠

1
2

≤ Ch
1
2

⎛
⎜⎝ ∑

T∈T N
h

‖u‖H2(T ) + | log h| 12
∑
T∈T I

h

‖u‖H̃2(T )

⎞
⎟⎠Ch

1
2

⎛
⎝∑

j

‖∇wh‖2L2(Tj )

⎞
⎠

1
2

≤ Ch

⎛
⎜⎝ ∑

T∈T N
h

‖u‖H2(T ) + | log h| 12
∑
T∈T I

h

‖u‖H̃2(T )

⎞
⎟⎠ �wh�. (4.12)

Then, applying (4.10) and (4.12) to (4.7) leads to (4.8).
Assume that u ∈ W̃ 2,q

β (�) for some q > 2. Then choose p such that 1
p + 2

q = 1, so that,

for T ∈ T I
h

‖u‖H̃2(T )

≤
⎛
⎝∑

s=±

∫
T s

∑
|α|≤2

|Dαu|2dx
⎞
⎠

1
2

≤
(∫

T
1pdx

) 1
2p

⎛
⎜⎝∑

s=±

∫
T s

⎛
⎝ ∑

|α|≤2

|Dαu|2
⎞
⎠

q
2

dx

⎞
⎟⎠

1
q

≤ C |T | 1
2p

⎛
⎝∑

s=±

∫
T s

∑
|α|≤2

|Dαu|qdx
⎞
⎠

1
q

≤ Ch
1
p ‖u‖W̃ 2,q (T ).

Hence, the second term in (4.8) can be bounded by

| log h| 12
∑
T∈T I

h

‖u‖H̃2(T ) ≤ C
∑
T∈T I

h

| log h| 12 h 1
p ‖u‖W̃ 2,q (T ).

Since limh→0 | log h| 12 h 1
p = 0, there exists h0 > 0 such that the estimate (4.9) is valid for

0 < h < h0. This completes the proof. ��
Remark 4.1 Indeed, (4.8) implies that the IFE solution converge faster than O(h| log h| 12 ),
since its multiplication factor,

∑
T∈T I

h
‖u‖H̃2(T ), goes to zero as h → 0.

4.4 Duality and the L2-Error Estimate

Let

ηh = Ihu − uh ∈ S̊h(�),

and let ψ ∈ H̃2
β (�) be the solution of the dual problem:

− ∇ · (β∇ψ) = ηh in �, (4.13a)

ψ = 0 on ∂�. (4.13b)

123



456 Journal of Scientific Computing (2019) 79:442–463

Assume that the interface problem (2.1) is H̃2
β (�)-regular so that the elliptic regularity

estimate holds:

‖ψ‖H̃2(�) ≤ C‖ηh‖L2(�). (4.14)

We start from recalling the following standard estimates for the IFE interpolation Ihψ : there
exists a constant C such that{‖Ihψ‖H2(T ) ≤ C ‖ψ‖H2(T ) ∀ T ∈ T N

h ,

‖Ihψ‖H2(T−
j ) + ‖Ihψ‖H2(T+

j ) ≤ C ‖ψ‖H̃2(T ) ∀ T ∈ T I
h .

(4.15)

Since ηh ∈ S̊h(�), it follows that

‖ηh‖2L2(�)
= (−∇ · β∇ψ, ηh) = ah(ψ, ηh) −

∑
j

〈
β

∂ψ j

∂ν j
, ηh j

〉
∂Tj

= ah(ψ, ηh) −
∑
j

〈
β

∂ψ j

∂ν j
− �νψ j , ηh j − q j

〉
∂Tj

for all q j ∈ P0(Tj ).

Next, for all vh ∈ S̊h(�), similarly to (4.11), we have

ah(ηh, vh) = ah(u, vh) − ah(uh, vh) − ah(u − Ihu, vh)

=
∑
j

〈
β

∂u j

∂ν j
− �νu j , vh j

〉
∂Tj

− ah(u − Ihu, vh).

Using the property [ψ]γ jk
= 0 and recalling the definition of �ν , we see that〈

β
∂u j

∂ν j
− �νu j , ψ j

〉
γ jk

+
〈
β

∂uk
∂νk

− �νuk, ψk

〉
γk j

= 0.

In addition, note that for vh ∈ Sh(�), −∇ · (β∇vh) = 0 on every T ∈ Th ; hence,

ah(u − Ihu, vh) =
∑
j

(u − Ihu,−∇ · (β∇vh))Tj +
∑
j

〈
u − Ihu, β

∂vh

∂ν j

〉
∂Tj

=
∑
j

〈
u − Ihu, β

∂vh

∂ν j
− �ν j vh

〉
∂Tj

.

Therefore

‖ηh‖2L2(�)
= ah(ψ, ηh) −

∑
j

〈
β

∂ψ j

∂ν j
− �νψ j , ηh j − q j

〉
∂Tj

= ah(ηh, ψ − vh) − ah(u − Ihu, vh)

−
∑
j

〈
β

∂ψ j

∂ν j
− �νψ j , ηh j − q j

〉
∂Tj

+
∑
j

〈
β

∂u j

∂ν j
− �νu j , vh j − ψ j

〉
∂Tj

= ah(ηh, ψ − vh) −
∑
j

〈
u − Ihu, β

∂vh

∂ν j
− �ν j vh

〉
∂Tj

−
∑
j

〈
β

∂ψ j

∂ν j
− �νψ j , ηh j − q j

〉
∂Tj

+
∑
j

〈
β

∂u j

∂ν j
− �νu j , vh j − ψ j

〉
∂Tj

.

(4.16)
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With these preparations, we are ready to derive the error estimate in the L2-norm for the
IFE solution.

Theorem 4.5 Assume that the interface problem (2.1) is H̃2
β (�)-regular. Then, there exists a

constant C such that the L2-norm error of the IFE solution satisfies the following estimate:

‖u − uh‖L2(�) ≤ Ch2

⎛
⎜⎝| log h| 12 ‖u‖H̃2(�) + | log h|

∑
T∈T I

h

‖u‖H̃2(T )

⎞
⎟⎠ . (4.17)

Proof We proceed to estimate each term on the right hand side of (4.16). First, choose
vh = Ihψ . Then, by (3.5) and (4.14), the first term on the right-hand side of (4.16) is
bounded as follows:

|ah(ηh, ψ − vh)| = |ah(ηh, ψ − Ihψ)| ≤ Ch�ηh�‖ηh‖L2(�). (4.18)

Again, choosing q j ∈ P0(Tj ) to be the average of ηh over Tj , by Theorem 4.2, the trace
inequality on Tj , Theorem 3.2, and (4.14), we can bound the last two terms on the right hand
side of (4.16) as follows:∣∣∣∣∣∣

∑
j

〈
β

∂ψ j

∂ν j
− �νψ j , ηh j − q j

〉
∂Tj

∣∣∣∣∣∣ +
∣∣∣∣
∑
j

〈
β

∂u j

∂ν j
− �νu j , vh j − ψ j

〉
∂Tj

∣∣∣∣

≤ Ch

⎛
⎜⎝ ∑

T∈T N
h

‖ψ‖H2(T ) + | log h| 12
∑
T∈T I

h

‖ψ‖H̃2(T )

⎞
⎟⎠ �ηh�

+Ch2

⎛
⎜⎝ ∑

T∈T N
h

‖u‖H2(T ) + | log h| 12
∑
T∈T I

h

‖u‖H̃2(T )

⎞
⎟⎠ ‖ψ‖H̃2(�)

≤ Ch

⎛
⎜⎝| log h| 12 �ηh� + h

∑
T∈T N

h

‖u‖H2(T ) + h| log h| 12
∑
T∈T I

h

‖u‖H̃2(T )

⎞
⎟⎠ ‖ηh‖L2(�).

(4.19)

For the second term in (4.16), by Theorem 3.2, Theorem 4.2, (4.15) and (4.14),∣∣∣∣∣∣
∑
j

〈
u − Ihu, β

∂vh j

∂ν j
− �ν j vh

〉
∂Tj

∣∣∣∣∣∣

≤
⎛
⎝∑

j

|u − Ihu|20,∂Tj

⎞
⎠

1
2
⎛
⎝∑

j

∣∣∣∣β ∂vh j

∂ν j
− �ν j vh

∣∣∣∣
2

0,∂Tj

⎞
⎠

1
2

≤ Ch
3
2 ‖u‖H̃2(�)

⎛
⎜⎝h

∑
T∈T N

h

‖vh‖2H2(T )
+ h| log h|

∑
T∈T I

h

‖vh‖2H̃2(T )

⎞
⎟⎠

1
2

≤ Ch2| log h| 12 ‖u‖H̃2(�)‖ηh‖L2(�). (4.20)
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Plugging the estimates (4.18)–(4.20) in (4.16) gives

‖ηh‖L2(�) ≤ Ch| log h| 12 �ηh� + Ch2| log h| 12 ‖u‖H̃2(�)

≤ Ch| log h| 12 (�Ihu − u� + �u − uh�) + Ch2| log h| 12 ‖u‖H̃2(�).

Finally, applying Theorem 3.2 and Theorem 4.4 to the above estimate, we arrive at the desired
estimate (4.17). This completes the proof. ��
Remark 4.2 The estimate given in (4.17) suggests that the IFE solution converges in L2-norm
better than O(h2| log h|) which is optimal sans the usual | log h| factor.
Remark 4.3 Anoptimal rate O(h2)without | log h| factormay be obtainedwith slightly better
regularity u ∈ W̃ 2,q

β (�), q > 2, and the elliptic regularity assumption based on Lq -norm.
In addition, the analysis requires the interpolation error estimates for IFE functions based on
Lq -norm, which will be an interesting future work.

5 Numerical Examples

In this section, we present some numerical examples to demonstrate the performance of
the nonconforming Q1-IFE method for elliptic interface problems. We also compare the
numerical results obtained by this IFE method with those obtained by the conforming Q1-
IFE method.

The tests will be performed on different shapes of interfaces. We will use a family of
Cartesian meshes {Th}0<h<1, each of which consists of N × N congruent rectangles. Errors
of an IFE approximation are reported in L∞, L2, and semi-H1 norms. Specifically, error in
L∞-norm is calculated using the formula:

‖uh − u‖L∞ = max
T∈Th

(
max

(x,y)∈T̂⊂T
|uh(x, y) − u(x, y)|

)
, (5.1)

where T̂ consists of the 49 uniformly distributed points in T . We also report the condition
numbers for the stiffness matrices on each level of mesh.

5.1 Circular Interface

We first test the nonconforming IFE method on the example given in [16,28]. Let � =
(− 1, 1)2, separated by a circular interface curve� centered at the originwith radius r0 = π/5
such that

�− = {
(x, y) ∈ �: x2 + y2 < r20

}
, �+ = {

(x, y) ∈ �: x2 + y2 > r20
}
.

The exact solution is chosen as

u(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

ra

β− if r < r0,

ra

β+ +
(

1

β− − 1

β+

)
ra0 if r > r0,

(5.2)

where a = 5, r = √
x2 + y2.
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Table 1 IFE solutions for the circular interface with β− = 1, β+ = 1000

N DOF ‖ · ‖L∞ Rate ‖ · ‖L2 Rate | · |H1 Rate Cond Rate

8 1.44E+2 7.29E−3 1.05E−2 1.25E−1 3.52E+4

16 5.44E+2 3.75E−3 0.96 3.96E−3 1.41 8.73E−2 0.51 1.53E+5 −2.11

32 2.11E+3 9.28E−4 2.01 9.43E−4 2.06 4.51E−2 0.95 6.25E+5 −2.03

64 8.32E+3 2.15E−4 2.11 2.31E−4 2.03 2.32E−2 0.96 2.51E+6 −2.00

128 3.30E+4 7.12E−5 1.59 5.85E−5 1.98 1.18E−2 0.98 9.86E+6 −1.97

256 1.32E+5 1.69E−5 2.08 1.44E−5 2.02 5.93E−3 0.99 4.00E+7 −2.02

512 5.25E+5 4.37E−6 1.95 3.62E−6 1.99 2.98E−3 0.99 1.61E+8 −2.01

1024 2.10E+6 1.14E−6 1.94 9.15E−7 1.98 1.49E−3 1.00 6.46E+8 −2.00

Table 2 IFE solutions for the circular interface with β− = 1000, β+ = 1

N DOF ‖ · ‖L∞ Rate ‖ · ‖L2 Rate | · |H1 Rate Cond Rate

8 1.44E+2 3.77E−2 1.42E−1 2.31E−0 7.58E+4

16 5.44E+2 1.61E−2 1.23 3.63E−2 1.97 1.49E−0 1.00 3.01E+5 −1.99

32 2.11E+3 3.24E−3 2.31 9.05E−3 2.00 5.95E−1 0.99 1.21E+6 −2.00

64 8.32E+3 8.35E−4 1.96 2.27E−3 2.00 2.98E−1 1.00 4.97E+6 −2.03

128 3.30E+4 2.10E−4 1.99 5.68E−4 2.00 1.49E−1 1.00 1.99E+7 −2.00

256 1.32E+5 5.15E−5 2.02 1.42E−4 2.00 7.45E−2 1.00 7.94E+7 −1.99

512 5.25E+5 1.24E−5 2.05 3.55E−5 2.00 3.72E−2 1.00 3.19E+8 −2.00

1024 2.10E+6 3.17E−6 1.97 8.88E−6 2.01 1.86E−2 1.00 1.27E+9 −2.00

Errors of numerical solutions for high coefficient contrasts (β−, β+) = (1, 1000) and
(β−, β+) = (1000, 1) are reported in Tables 1 and 2, respectively. Convergence rates in
semi-H1 norm and L2-norm confirm our error analysis (4.8) and (4.17). Data in these tables
also suggest that the convergence rate in L∞-norm is approximately second order, which
is optimal from the point view of the polynomial degrees of the IFE space. We also note
that the condition numbers of the stiffness matrices grow with order O(h−2). The numerical
solutions for these two coefficient contrasts are plotted in Fig. 4. Numerical results for small
coefficient jumps (e.g. β− = 1, β+ = 10) are similar, thus we omit those data in the
paper.

5.2 Sharp-Corner Interface

In this example, we consider the casewhen the interface has a sharp corner. Let� = (−1, 1)2.
The interface is defined by the level-set function:

�(x, y) = −y2 + ((x − 1) tan(θ))2x, θ = 40. (5.3)

The subdomains are defined as �+ = {(x, y) ∈ � : �(x, y) > 0}, and �− = {(x, y) ∈ � :
�(x, y) < 0}. The exact solution is chosen as:
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Fig. 4 IFE solutions for Example 5.1 with (β−, β+) = (1, 1000) and (β−, β+) = (1000, 1)

Table 3 IFE solutions for sharp-corner interface with β− = 1, β+ = 1000

N DOF ‖ · ‖L∞ Rate ‖ · ‖L2 Rate | · |H1 Rate Cond Rate

8 1.44E+2 1.91E−2 4.02E−2 8.25E−1 6.83E+4

16 5.44E+2 6.04E−3 1.66 1.00E−2 2.00 4.12E−1 1.00 2.62E+5 −1.94

32 2.12E+3 1.74E−3 1.79 2.59E−3 1.95 2.06E−1 1.00 1.01E+6 −1.95

64 8.32E+3 4.50E−4 1.95 6.66E−4 1.96 1.03E−1 0.99 3.99E+6 −1.98

128 3.30E+4 1.22E−4 1.88 1.66E−4 2.01 5.14E−2 1.00 1.58E+7 −1.98

256 1.32E+5 4.02E−5 1.61 4.12E−5 2.00 2.57E−2 1.00 6.24E+7 −1.98

512 5.25E+5 1.14E−5 1.82 1.03E−5 2.00 1.29E−2 1.00 2.47E+8 −1.99

1024 2.10E+6 2.86E−6 1.99 2.58E−6 2.00 6.43E−3 1.00 9.81E+8 −1.99

u(x, y) =

⎧⎪⎨
⎪⎩

1

β− �(x, y), (x, y) ∈ �−,

1

β+ �(x, y), (x, y) ∈ �+.
(5.4)

At the point (1, 0), the interface curve has a sharp corner. The performance of our numerical
scheme is reported in Tables 3 and 4 for he high coefficient jump cases (β−, β+) = (1, 1000)
and (β−, β+) = (1000, 1), respectively. Similar conclusions as previous ones can be made
for such convergence tests. Furthermore, the numerical solutions are plotted in Fig. 5.

5.3 Comparison with Lagrangian IFE Methods

In this subsection, we address some similarities and differences between the nonconforming
Q1-IFE method and the conforming Q1-IFE method discussed in [16,18,26].

Both IFE methods can solve the interface problem (1.1)–(1.3) on rectangular Cartesian
meshes. In terms of computational cost, the conforming IFE method is cheaper because the
degrees of freedom of the nonconforming IFE method are about twice as much as that of the
conforming IFEmethod on the samemesh of N×N rectangles. However, the nonconforming
IFE method is advantageous in term of accuracy and convergence. In Fig. 6, we use the error
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Table 4 IFE solutions for sharp-corner interface with β− = 1000, β+ = 1

N DOF ‖ · ‖L∞ Rate ‖ · ‖L2 Rate | · |H1 Rate Cond Rate

8 1.44E+2 3.45E−2 1.70E−2 1.62E−1 1.70E+4

16 5.44E+2 9.29E−3 1.89 4.10E−3 2.05 8.38E−2 0.95 7.08E+4 −2.06

32 2.11E+3 2.28E−3 2.03 1.00E−3 2.03 4.18E−2 1.00 2.91E+5 −2.04

64 8.32E+3 5.24E−4 2.12 2.57E−4 1.96 2.07E−2 1.01 1.16E+6 −1.99

128 3.30E+4 1.33E−4 1.98 6.22E−5 2.05 1.03E−2 1.01 4.66E+6 −2.01

256 1.32E+5 3.08E−5 2.11 1.49E−5 2.06 5.14E−3 1.01 1.88E+7 −2.01

512 5.25E+5 9.54E−6 1.69 3.70E−6 2.01 2.56E−3 1.01 7.52E+7 −2.00

1024 2.10E+6 2.38E−6 2.00 9.28E−7 2.00 1.28E−3 1.00 3.01E+8 −2.00

Fig. 5 IFE solutions for Example 5.2 with (β−, β+) = (1, 1000) and (β−, β+) = (1000, 1)

surfaces to compare the accuracy of these two IFEmethods for the circular interface problem
in Sect. 5.1 on the samemesh containing 80×80 cells.We notice that the error of conforming
IFE solution is much larger around interface than the rest of domain such that its error surface
possesses a prominent “interface error crown”. In contrast, not only the nonconforming IFE
solution ismuchmore accurate than the conforming IFE solution around the interface, but also
its accuracy around interface is comparable to the accuracy in areas away from the interface.
Also as discussed in [28], the convergence order in H1- and L2- norms for conforming
IFE method can sometimes deteriorate as the mesh size becomes small, and the order in
L∞-norm can become far from the second order. Adding penalty terms can eliminate these
shortcomings of the conforming IFE method [28], but this leads to a more complicated IFE
method with a higher computational cost while the nonconforming Q1-IFE method is based
on the simple Galerkin formulation and still converges optimally.

We compare the discontinuity in a global basis of the conforming Q1-IFE space with its
counterpart in the nonconforming Q1-IFE space defined on the samemesh. The first two plots
from the left in Fig. 7 are for the conforming Q1 basis and the corresponding nonconforming
Q1-IFE basis over two typical interface elements, respectively. An obviously large gap along
the interface edge in the first plot of Fig. 7 shows a much stronger discontinuity of the
conforming Q1-IFE basis than the corresponding nonconforming Q1-IFE basis shown in
the second plot of Fig. 7. Furthermore, we plot the traces of these IFE bases on an interface
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Fig. 6 Error surfaces of the nonconforming and conforming Q1-IFE solutions

Fig. 7 Conforming Q1-IFE and nonconforming Q1-IFE bases with β− = 1, β+ = 1000

edge in the right plot of Fig. 7. The blue curves in this plot are for the conforming Q1-IFE
basis which are far more apart than the red trace curves for the nonconforming-Q1-IFE
basis. From this plot, we can see the fact that, over each interface edge, the continuity of a
conforming Q1-IFE basis is only maintained at the two end points, but the continuity of a
nonconforming Q1-IFE basis is maintained over the whole interface edge. It is our belief
that the less discontinuity in the nonconforming Q1-IFE functions is a key factor for the
advantages of the nonconforming Q1-IFE method.

6 Conclusions

In this article, we develop the nonconforming Q1-IFE space based on mean-value degrees of
freedom. The new nonconforming IFEmethod is based on the standardGalerkin formulation.
Error analysis shows the quasi-optimal convergence in both energy and the L2-norms.
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