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Abstract
In this paper we introduce and analyze the residual-based a posteriori error estimation of the
partially penalized immersed finite element method for solving elliptic interface problems.
The immersed finite element method can be naturally utilized on interface-unfitted meshes.
Our a posteriori error estimate is proved to be both reliable and efficient with both reliabil-
ity and efficiency constants independent of the location of the interface. Numerical results
indicate that the error estimation is robust with respect to the coefficient contrast.

Keywords Immersed finite element methods · A posteriori error estimation · Interface
problems · Residual-based

AMS subject classifications. 35R05 · 65N15 · 65N30

1 Introduction

Interface problems arise widely in the multi-physics and multi-material applications in fluid
mechanics and material science. The governing partial differential equations (PDEs) for
interface problems are usually characterized with discontinuous coefficients that represent
different material properties. The solutions to the interface problems often involve kinks,
singularities, discontinuities, and other non-smooth behaviors. It is therefore challenging to
obtain accurate numerical approximations for interface problems. Moreover, the complexity
of the interface geometry may add an extra layer of difficulty to the numerical approximation.

In general, there are two classes of numerical methods for solving interface problems. The
first class of methods use interface-fitted meshes, i.e., the meshes are tailored to fit the inter-
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Fig. 1 An interface-fitted mesh (left), and an unfitted mesh (right)

face, see the left plot in Fig. 1. Methods of this type include classical finite element methods
[14], discontinuous Galerkin methods [4] and recently developed weak Galerkin methods
[30], to name a few.The second class ofmethods use unfittedmesheswhich are independent of
the interface, as illustrated in the right plot in Fig. 1. In the past few decades, many numerical
methods based on unfitted meshes have been developed. In the finite difference framework,
since the pioneering work of immersed boundary method [31] by Peskin, many numerical
methods of finite difference type have been developed such as immersed interface method
[20,23], matched interface and boundary method [35]. In the finite element framework, there
are quite a few numerical methods developed, for instance, the general finite element method
[5], unfitted finite element method [17], multi-scale finite element method [19], extended
finite element method [29], and immersed finite element method (IFEM) [22,24]. A great
advantage for unfitted numerical methods is that they can circumvent (re)meshing procedure
which can be very expensive especially for time-dependent problems with complex interface
geometry or for shape optimization processes that require repeated updates of the mesh.

The IFEMwas first developed in [22] for a one-dimensional elliptic interface problem and
then extended to higher-order approximations [1,2,10,11] and to higher-dimensional elliptic
interface problems [16,18,21,26,32,34]. Recently, the partially penalized immersed finite
element method was introduced in [25]. Compared to classical IFEM, the partially penalized
IFEM contains normal flux jump terms on interface edges to ensure the consistency of
the scheme. In addition, the new IFEM includes a stabilization term on interface edges to
guarantee the stability of the scheme. The partially penalized IFEM significantly improves
the numerical approximation, especially the accuracy around the interface. The optimal a
priori error estimate is theoretically proved for partially penalized IFEM in the energy norm
[25].

We note that the partially penalized IFEM can solve elliptic interface problems accu-
rately on uniform Cartesian meshes provided that the exact solution of interface problems is
piecewise smooth, and the contrast of the coefficient is “moderate”. However, for interface
problems that also involve singularity or steep gradient, the partially penalized IFEM alone
may not be efficient to obtain an accurate approximation on uniform meshes. In such cases,
it is necessary to apply certain adaptive mesh refinement (AMR) strategy to IFEM. The goal
for AMR is to obtain an approximate solution within prescribed error tolerance with the
minimum computational cost which is particularly rewarding for interface problems with
non-smooth solutions.

The key success for AMR is the a posteriori error estimation which provides both global
and local information on the approximation error. Moreover, in many applications even
without the intention of performing adaptivemesh refinement, the a posteriori error estimation
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is also important in assessing the quality of the simulation by providing an effective error
control. We note that the a priori error estimation of IFEM is getting mature in the past
decade, but the a posteriori error estimation of IFEM is still in the infancy. In this paper,
we will develop and analyze a residual-based a posteriori error estimate for the partially
penalized IFEM for second-order elliptic interface problems in the two-dimensional space.

Comparing to the residual-based error estimation for the classical finite element solution
[6], the newly introduced estimator in this work additionally includes the jump of the tan-
gential derivative of numerical solutions on interface edges besides the standard terms of
element residual and jump of normal flux on all edges. This is necessary since the numerical
solution is in general discontinuous across the interface edges due to the construction of
the IFEM basis functions. Moreover, the new error estimator also includes the geometrical
fitting error due to the polygonal approximation of the curved interface. Theoretically, we
prove that the error estimation is both globally reliable and locally efficient. To prove reli-
ability, we use the Helmholtz decomposition and an L2 representation technique recently
introduced in [8,9]; moreover, we introduce a new type of Clément-type interpolation in the
IFEM space that allows us to take advantage of the error equation of IFEM. In the efficiency
analysis for IFEM, the technique using the standard bubble functions [33] is invalid because
the edge jumps of the normal flux and the tangential derivative become piecewise constant
on the interface edges. Instead, we prove the efficiency in two different approaches that aim
to provide an optimal efficiency constant for both regular and irregular interface edges.

The rest of the article is organized as follows. In Sect. 2, we recall the partially penalized
IFEM for elliptic interface problems. In Sect. 3, we introduce our residual-based error esti-
mator specially designed for IFEM. Sections 4 and 5 are dedicated to the analysis of global
reliability and local efficiency, respectively. Finally, in Sect. 6, we present several numerical
experiments to test the performance of our a posteriori error estimators.

2 Interface Problems and Partially Penalized IFEM

Let � ⊂ R
2 be a polygonal domain with Lipschitz boundary ∂� = �D ∪ �N , where

�D ∩ �N = ∅. Assume that meas(�D) > 0. We consider the elliptic interface problem:

− ∇ · (α∇u) = f in �+ ∪ �− (2.1)

with boundary conditions

u = 0 on �D and − α∇u · n = gN on �N .

Here, f ∈ L2(�), gN ∈ L2(�N ), and n is the unit vector outward normal to ∂�. The
notations ∇ and ∇· are the gradient and divergence operators, respectively. Furthermore,
assume that � is separated by a closed smooth interface curve � into �+ and �− such
that � = �+ ∪ � ∪ �−. The diffusion coefficient α is assumed to be a positive piecewise
constant function as follows

α(x, y) =
{

α+ for (x, y) ∈ �+,

α− for (x, y) ∈ �−.

Denote by ρ = α+

α− the ratio of the coefficient jump. The solution is assumed to satisfy the

following interface jump conditions:

[[u]]� = 0 and [[α∇u · n]]� = 0, (2.2)
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where the jump of a function v across the interface � is defined by

[[v]]� = v+|� − v−|�.

We use the standard notations for the Sobolev spaces. Let

H1
D(�) = {v ∈ H1(�) : v = 0 on �D}.

Then the variational problem for (2.1) is to find u ∈ H1
D(�) such that

a(u, v) � (α∇u,∇v) = ( f , v) − (gN , v)�N , ∀ v ∈ H1
D(�), (2.3)

where (·, ·)ω is the L2 inner product on ω. The subscript ω is omitted when ω = �.

2.1 Triangulation

In this paper, we only consider the triangular meshes in two dimensions. Let T = {K } be a
triangulation of� that is regular but not necessarily body-fitted. Denote the set of all vertices
of the triangulation T by

N := NI ∪ ND ∪ NN

where NI is the set of all interior vertices, and ND and NN are the sets of vertices on �̄D

and �N , respectively. Denote the set of all edges of the triangulation T by

E := EI ∪ ED ∪ EN

where EI is the set of all interior edges and ED and EN are the sets of boundary edges on �D

and �N , respectively. For each element K ∈ T , denote by hK the diameter of K , and byNK

and EK the sets of all vertices and edges on K , respectively.
For simplicity, we assume that the interface cuts the partitionwith the following properties:

(I) If � meets an edge at more than one point, then this edge is part of �.
(II) If the case (I) does not occur, then � must intersect a triangle at two points, and these

two points must be on different edges of this triangle.

Based on the above assumptions, all triangular elements in the partition can be categorized
into two classes: non-interface elements that either has no intersectionwith� or�∩K ⊂ ∂K ,
and interface elements whose interior is cut through by �.

Denote the set of all interface elements by T int . For each interface triangle K we let
�K = � ∩ K and �̃K be the line segment approximating �K by connecting two endpoints of
�K . Let K + = K ∩�+ and K − = K ∩�−. Also we let K̃ + and K̃ − be the two sub-elements
of K separated by �̃K . From the setting above, it is easy to see that K̃ ± is either a triangle or
a quadrangle. Also we define

SK � (K +\K̃ +) ∪ (K −\K̃ −), ∀ K ∈ T int , (2.4)

which is the region enclosed by�K and �̃K . Under the assumption that�K isC2-continuous,
the area of the SK is of O(h3

K ) [21]. Figure 2 provides an illustration of a typical triangular
interface element.

For an edge F ∈ E , if F is cut through by �, i.e., F ∩ � 	= ∅ and F 	⊂ �, then F is called
an interface edge and denote by E int the set of all such interface edges. For each F ∈ E ,
denote by hF the length of F . Denote by nF = (n1, n2) and tF = (−n2, n1) the unit vectors
normal and tangential to F , respectively. Let K F,1 and K F,2 be the two elements sharing
the common edge F ∈ EI such that the unit outward vector normal to K F,1 coincides with
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Fig. 2 A triangular interface element

nF . When F ⊂ ∂�, nF is the unit outward vector normal to ∂�, and denote by K F,1 the
boundary element having the edge F . For a function v that is defined on K F,1∪ K F,2, denote
its traces on F by v|1F and v|2F restricted on K F,1 and K F,2, respectively. Define the jump of
a function v on the edge F by

[[v]]F =
{

v|1F − v|2F , for F ∈ EI ,

v|1F , for F ∈ ED ∪ EN

and the average of a function v on the edge F by

{v}F =
{ (

v|1F + v|2F
)
/2, for F ∈ EI ,

v|1F , for F ∈ ED ∪ EN .

It is easy to verify that

[[vw]]F = [[v]]F {w}F + {v}F [[w]]F , ∀ F ∈ E . (2.5)

For simplicity, we may drop the subscript F in the notations [[·]]F and {·}F if there is no
confusion on where the jump and average are defined.

2.2 IFEM Approximation

For simplicity, we assume that the interface does not intersect with the boundary, i.e., E int ⊂
EI . Let α̃ be an approximation of α such that

α̃(x, y) =
{

α+ if (x, y) ∈ K̃ +,

α− if (x, y) ∈ K̃ −,
∀ (x, y) ∈ K ∈ T int .

For each interface element K ∈ T int , define the local IFE space by

P̃1(K ) =
{
v ∈ H1(K ) : α̃∇v ∈ H(div, K ), v|K̃ ± ∈ P1(K̃ ±)

}

where P1(w) is the space of all polynomial functions in w of degree no more than 1. The
global IFE space S(T ) is then defined to include all functions such that

1. v|K ∈ P̃1(K ) for all K ∈ T int and v|K ∈ P1(K ) for all K ∈ T /T int , and
2. v is continuous at every vertex z ∈ N .
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Note that for each z ∈ N , there exists a unique IFE nodal basis function [21,24], denoted by
λ̃z ∈ S(T ), such that

λ̃z(z
′) = δzz′ , ∀ z′ ∈ N

where δ is the Kronecker delta function.
The partially penalized IFEM solution for the interface problem is to find uT ∈ SD(T ) =

{v ∈ S(T ) : v = 0 on �D} such that

ah(uT , v) = ( f , v) − (gN , v)�N , ∀ v ∈ SD(T ) (2.6)

where the bilinear form ah(w, v) is defined by

ah(w, v) =
∑
K∈T

∫
K

α̃∇w · ∇v dx −
∑

F∈E int

∫
F
{α̃∇w · nF }[[v]] ds

+ ε
∑

F∈E int

∫
F
{α̃∇v · nF }[[w]] ds +

∑
F∈E int

γ

∫
F

α̃

hF
[[w]][[v]] ds.

Here ε may take the values −1, 0, and 1, corresponding to symmetric, incomplete, and
non-symmetric IFEM. The constant γ is the stability parameter and needs to be chosen large
enough for symmetric and incomplete IFEMs to guarantee the coercivity. For non-symmetric
IFEM, the constantγ is only required to be positive. Formore details on the partially penalized
IFEM, we refer readers to [25].

Remark 2.1 By the definition of α̃ and �̃K it is easy to see that α̃ = α on all F ∈ E int .

2.3 Inconsistency Error

Due to the geometrical approximation of the interface curve � by a polygonal interface
�̃ = ⋃

K∈T int

�̃K , the following geometrical inconsistent error exists. By (2.6) and integration

by parts we have for any v ∈ SD(T )

ah(u − uT , v) =
∑
K∈T

∫
K

α̃∇u · ∇v dx−
∑

F∈E int

∫
F
{α̃∇u · nF }[[v]] ds−( f , v)+(gN , v)�N

=
∑
K∈T

∫
K

α∇u · ∇v dx −
∑

F∈E int

∫
F
{α∇u · nF }[[v]] ds

+
∑
K∈T

∫
K
(α̃ − α)∇u · ∇v dx − ( f , v) + (gN , v)�N

=
∑

K∈T int

∫
K
(α̃ − α)∇u · ∇v dx .

(2.7)

Remark 2.2 If the interface � is a polygon such that α̃ = α on each interface element, then
the term (2.7) vanishes. In this case, the partially penalized IFEM scheme is consistent. In
general, for a curved interface�, the global convergence of IFEMwill not be affected by such
linear approximation of the interface, since the partially penalized IFEM also uses piecewise
linear approximation [7].
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3 Residual-Based A Posteriori Error Estimation

In this section, we introduce the residual-based error estimator for the partially penalized
IFEM. We note that the classical residual-based a posteriori error estimation for conforming
finite element methods on fitted meshes consists of element residual and the jump of the
normal flux on edges. For the IFEM, it is also necessary to include the jump of the tangential
derivative on interface edges since the IFEM solution may not be continuous across interface
edges.

Define the normal flux jump of uT on each edge by

jn,F =
⎧⎨
⎩

[[α∇uT · nF ]]F , for F ∈ EI ,

0, for F ∈ ED,

α∇uT · nF + gN |F , for F ∈ EN ,

and the tangential derivative jump of uT on each edge by

jt,F =
{ [[∇uT · tF ]]F , for F ∈ EI ,

0, for F ∈ ED ∪ EN .

Note that on each interface edge F ∈ E int both jn,F and jt,F are piecewise constant.
For all K ∈ T we define the local error indicator ηK by

η2K =
∑

F∈EK ∩E int

(
hF

2
‖α̃−1/2

F jn,F‖20,F + hF

2
‖α̃1/2

F jt,F‖20,F

)
+ ‖α̃1/2∇uT ‖2SK

+
∑

F∈EK ∩EI \E int

hF

2
‖α̃−1/2

F jn,F‖20,F +
∑

F∈EK ∩EN

hF‖α̃−1/2
F jn,F‖20,F

(3.1)

where α̃F (x) = max
(
α̃|1F (x), α̃|2F (x)

)
, and SK is defined in (2.4). Note that α̃F (x) is a

constant on F when F /∈ E int . The global error estimator η is then defined by

η =
( ∑

K∈T
η2K

)1/2

. (3.2)

Remark 3.1 If K is a non-interface element, i.e., EK ∩ E int = ∅, the first and second terms in
(3.1) vanish. In this case, the local error indicator ηK is identical to the residual-based error
indicator for the classical body-fitting conforming finite element method [6].

4 Global Reliability

In this section, we establish the reliability bound of the global estimator η given in (3.2). For
each z ∈ N , let ωz be the union of all elements sharing z as a common vertex. To this end,
let N� be the set of all vertices z such that measd−1(ωz ∩ �) > 0, and define

H f (T ) =
⎛
⎝ ∑

z∈N\(N�∪ND)

diam(ωz)
2

αz
‖ f − fz‖20,ωz

+
∑

z∈N�∪ND

(
diam(ωz)

2

α− ‖ f ‖2
0,ω−

z
+ diam(ωz)

2

α+ ‖ f ‖2
0,ω+

z

)⎞
⎠

1/2
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where αz = α(x)|ωz and fz is the average value of f on ωz .

Remark 4.1 The first term in H f (T ) is a higher order term for f ∈ L2(�) [12]. It is also
well known that for linear finite element methods the edge residuals are dominant. In our
adaptive algorithm the element residual is also omitted.

4.1 Helmholtz Decomposition

Let

H1
N (�) =

{
v ∈ H1(�) :

∫
�

v dx = 0 and
∂v

∂t
= 0 on �N

}
.

For φ ∈ H1(�), define the adjoint curl operator by ∇⊥ φ =
(

−∂φ

∂ y
,

∂φ

∂x

)
. For each v ∈

S(T ), we define the discrete gradient operator ∇h by

(∇hv)|K = ∇(v|K ), ∀ K ∈ T .

Lemma 4.1 (Helmholtz Decomposition) Let u and uT be the solutions of (2.3) and (2.6),
respectively. Then there exist uniquely φ ∈ H1

D(�) and ψ ∈ H1
N (�) such that

α∇u − α̃∇huT = α∇φ + ∇⊥ ψ. (4.1)

Moreover,
(∇φ,∇⊥ψ) = 0. (4.2)

Proof The proof can be referred to [3,15]. Here we also sketch a proof for the convenience
of readers. Let ẽσ := α∇u − α̃∇huT and eT = u − uT . Assume that φ ∈ H1(�) solves the
following equation:

−∇ · α∇φ = −∇h · ẽσ in �

with the boundary conditions

φ = 0 on �D and − α∇φ · n = −ẽσ · n on �N .

Then there exists ψ ∈ H1(�) such that

∇⊥ψ = ẽσ − α∇φ.

Moreover, we have
∂ψ

∂t
= ∇⊥ψ · n = (ẽσ − α∇φ) · n = 0 on �N , hence, ψ ∈ H1

N (�). By

integration by parts and the boundary conditions it is easy to check that

(∇φ,∇⊥ψ) = 0.

This completes the proof of the lemma. 
�
Lemma 4.2 Let φ and ψ be given in (4.1). Then we have the following error representations
in the weighted semi-H1 norm:

‖α1/2∇φ‖20,� = ( f , φ − v) −
∑

F∈EI ∪EN

∫
F

jn,F {φ − v}ds

+ ε
∑

F∈E int

∫
F
{α̃∇v · nF }[[uT ]] ds +

∑
F∈E int

γ

hF

∫
F

α̃ [[uT ]][[v]] ds,
(4.3)
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for any v ∈ SD(T ) and

‖α−1/2∇⊥ψ‖20,� = −
∑

F∈E int

∫
F
[[uT ]](∇⊥ψ · nF

)
ds + ((1 − α̃/α)∇huT ,∇⊥ψ). (4.4)

Proof Let v ∈ SD(T ) be arbitrary. Applying (4.2), (4.1), and integration by parts gives

(α∇φ,∇φ) = (ẽσ ,∇φ) =
(
ẽσ ,∇h(φ − v)

)
+ (

ẽσ ,∇hv
)

=
∑
K∈T

(∫
K

f (φ − v) dx +
∫

∂K

(
α∇u · n)(

φ − v
)

ds

)

−
∑
K∈T

(α̃∇uT ,∇h(φ − v))K + (
ẽσ ,∇hv

)

= ( f , φ − v) −
∑

F∈E int

∫
F
(α∇u · nF )[[v]] ds −

∑
F∈EN

∫
F

gN (φ − v) ds

−
∑
K∈T

(α̃∇uT ,∇h(φ − v))K + (
ẽσ ,∇hv

)
.

(4.5)

Applying integration by parts again gives

∑
K∈T

(α̃∇uT ,∇h(φ − v))K =
∑
K∈T

∫
∂K

(α̃∇uT ) · n(φ − v) ds

=
∑
F∈EI

∫
F
[[α̃∇uT · nF ]]{φ − v} ds −

∑
F∈E int

∫
F
{α̃∇uT · nF }[[v]] ds

+
∑

F∈EN

∫
F
(α̃∇uT · nF )(φ − v) ds.

(4.6)

The last equality used (2.5), φ − v = 0 on �D , and the facts that

[[v]]F = 0, ∀ F ∈ EI \E int and [[φ]]F = 0, ∀ F ∈ EI .

By integration by parts and (2.6) we also have

(
ẽσ ,∇hv

) = (α∇u,∇hv) − (α̃∇huT ,∇hv)

=
∑

F∈E int

∫
F
{α∇u · nF }[[v]] ds −

∑
F∈E int

∫
F
{α̃∇uT · nF }[[v]] ds

+ ε
∑

F∈E int

∫
F
{α̃∇v · nF }[[uT ]] ds +

∑
F∈E int

γ

hF

∫
F

α̃ [[uT ]][[v]] ds,

(4.7)

which, together with (4.5) and (4.6), gives (4.3).
To prove (4.4), by (4.2), (4.1), integration by parts, and the facts that

[[eT ]]F = −[[uT ]]F and [[∇⊥ψ · nF ]]F = 0, ∀ F ∈ EI ,
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we have

(α−1∇⊥ψ,∇⊥ψ) = (∇u − (α̃/α)∇huT ,∇⊥ψ)

= (∇u − ∇huT ,∇⊥ψ) + ((1 − α̃/α)∇huT ,∇⊥ψ)

=
∑
K∈T

∫
∂K

eT (∇⊥ψ · n) ds + ((1 − α̃/α)∇huT ,∇⊥ψ)

= −
∑

F∈E int

∫
F
[[uT ]](∇⊥ψ · nF

)
ds + ((1 − α̃/α)∇huT ,∇⊥ψ).

Hence, we obtain (4.4). This completes the proof of the lemma. 
�

4.2 Modified Clément-Type Interpolation

Define a modified Clément-type interpolation operator Ih : H1
D(�) → SD(T ) by

Ih(v) =
∑
z∈N

(πzv)λ̃z(x) (4.8)

where πz is defined by

πz(v) =

⎧⎪⎨
⎪⎩

∫
ωz

λzv dx∫
ωz

λz dx
, ∀ z ∈ N\ND,

0, ∀ z ∈ ND,

where λz and λ̃z are the classical barycentric hat function and the linear IFEM nodal basis
function of S(T ) associated to z, respectively. Note that

(v − πzv, λz)ωz = 0 ∀ z ∈ N\ND . (4.9)

By Lemma 6.1 in [12], there holds

‖v − πzv‖0,ωz ≤ Cdiam(ωz)‖∇v‖0,ωz , ∀ z ∈ N and ∀ v ∈ H1
D(�). (4.10)

The following lemma provides the approximation and stability properties of the modified
Clément-type interpolation operator.

Lemma 4.3 (Clément-type Interpolation) Let v ∈ H1
D(�), and Ihv ∈ SD(T ) be the inter-

polation of v defined in (4.8). Then there exists a constant C > 0 that is independent of the
mesh size and the location of the interface such that

∥∥v − Ihv
∥∥
0,K ≤ ChK

∥∥∇v
∥∥
0,ωK

, ∀ K ∈ T , (4.11)∥∥∇(v − Ihv)
∥∥
0,K ≤ C

∥∥∇v
∥∥
0,ωK

, ∀ K ∈ T , (4.12)∥∥(v − Ihv)|K
∥∥
0,F ≤ Ch1/2

F

∥∥∇v
∥∥
0,ωK

, ∀ F ∈ EK , K ∈ {K F,1, K F,2}, (4.13)

where ωK is the union of all elements sharing at least one vertex with K .

Proof Without loss of generality, assume that K ∈ T is an interior element. To prove (4.11),
by the partition of unity, the triangle inequality, the boundedness of IFE basis functions
‖λ̃z‖∞,K ≤ C(ρ) (Theorem 2.4, [21]), and (4.10), we have
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∥∥v − Ihv
∥∥
0,K ≤

∑
z∈NK

∥∥(v − πzv)λ̃z
∥∥
0,K ≤ C

∑
z∈NK

∥∥v − πzv
∥∥
0,K

≤ C
∑

z∈NK

∥∥v − πzv
∥∥
0,ωz

≤ C
∑

z∈NK

hK ‖∇v‖0,ωz ≤ ChK ‖∇v‖0,ωK .

To prove (4.12), by the partition of unity, the triangle inequality, the fact that ‖∇λ̃z‖∞,K ≤
Ch−1

K (Theorem 2.4, [21]), and (4.10), we have

∥∥∇(v − Ihv)
∥∥
0,K =

∥∥∥∥∥∥
∑

z∈NK

∇
(
(v − πzv)λ̃z

)∥∥∥∥∥∥
0,K

≤
∑

z∈NK

(∥∥λ̃z∇v
∥∥
0,K + ∥∥(v − πzv)∇λ̃z

∥∥
0,K

)

≤ C
(∥∥∇v

∥∥
0,K + h−1

K

∥∥v − πzv
∥∥
0,K

)
≤ C

∥∥∇v
∥∥
0,ωK

.

Finally, (4.13) follows from the partition of unity, the triangle inequality, the trace inequal-
ity, and (4.10):∥∥(v − Ihv)|K

∥∥
0,F ≤

∑
z∈NK

∥∥(v − πzv)λ̃z |K
∥∥
0,F ≤ C

∑
z∈NK

∥∥(v − πzv)|K
∥∥
0,F

≤ C
∑

z∈NK

(
h−1/2

F

∥∥v − πzv
∥∥
0,K + h1/2

F

∥∥∇v
∥∥
0,K

)

≤ Ch1/2
F

∥∥∇v
∥∥
0,ωK

.

This completes the proof of the lemma. 
�
Lemma 4.4 There exists a constant C > 0, independent of the mesh size and the location of
the interface, such that

‖[[uT ]]‖0,F ≤ ChF‖ jt,F‖0,F , ∀ F ∈ E int (4.14)

and
‖[[uT ]]‖1/2,F ≤ h1/2

F ‖ jt,F‖0,F , ∀ F ∈ E int . (4.15)

Proof Wefirst prove the results on the reference element K formed by vertices ((0, 0), (1, 0),
(0, 1)) and let F be the edge of K on the x-axis. Without loss of generality, let (a, 0), 0 <

a < 1, be the interface point on F and [[uT ]]F (a, 0) = b. Note that [[uT ]]F takes the value
0 at both endpoints (0, 0) and (1, 0). By direct calculations, we have

‖[[uT ]]‖20,F = 1

3
b2 and ‖[[∇uT · t]]‖20,F =

(
1

a
+ 1

1 − a

)
b2 ≥ 4b2.

Regarding the H1/2-norm, we have

‖[[uT ]]‖1/2,F = inf
v∈H̃1(K )

‖v‖1,K

where H̃1(K ) = {v ∈ H1(K ) : v = [[uT ]] on F, v = 0 on ∂K\{F}. In particular, let

v =

⎧⎪⎨
⎪⎩

b

a
x in K1

b

a − 1
(y + x − 1) in K2
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where K1 is the subtriangle fromed by ((0, 0), (a, 0), (0, 1)) and K2 = K\K1. It is easy to
verify that v ∈ H̃1(K ). Another direct calculation gives

‖v‖21,K = 1

12
b2 +

(
1

2a
+ 1

1 − a

)
b2.

It is easy to verify that

‖[[uT ]]‖0,F ≤ ‖ jt,F‖0,F and ‖[[uT ]]‖1/2,F ≤ ‖v‖1,K ≤ 2‖ jt,F‖0,F ,

which, together with the scaling argument, gives (4.14) and (4.15). This completes the proof
of the lemma. 
�
Lemma 4.5 Let φ be given in (4.1). There exists a constant C independent of the mesh size
and the location of the interface such that

‖α1/2∇φ‖0,� ≤C

⎛
⎝ ∑

F∈EI ∪EN

hF
∥∥α̃

−1/2
F jn,F

∥∥2
0,F +

∑
F∈E int

hF
∥∥α̃1/2 jt,F

∥∥2
0,F +H f (T )2

⎞
⎠

1/2

.

(4.16)

Proof By Lemma 4.2,

‖α1/2∇φ‖20,� = ( f , φ − v) −
∑

F∈EI ∪EN

∫
F

jn,F {φ − v}ds

+ ε
∑

F∈E int

∫
F
{α̃∇v · nF }[[uT ]] ds +

∑
F∈E int

γ

hF

∫
F

α̃ [[uT ]][[v]] ds

� I1 + I2 + I3 + I4.

Let v = φI ∈ SD(T ) be the modified Clément-type interpolation defined in (4.8) of φ. By
the partition of unity, the fact that λ̃z = λz for z ∈ N\N� , the Cauchy–Schwarz inequality,
(4.9), and (4.10), we have

I1 =
∑

z∈N�∪ND

(
f λ̃z, φ − πzφ

)
ωz

+
∑

z∈N\(N�∪ND)

(
( f − fz)λz, φ − πzφ

)
ωz

≤ C

⎛
⎝ ∑

z∈N�∪ND

diam(ωz)
∥∥ f

∥∥
0,ωz

∥∥∇φ
∥∥
0,ωz

+
∑

z∈N\(N�∪ND)

diam(ωz)
∥∥ f − fz

∥∥
0,ωz

∥∥∇φ
∥∥
0,ωz

⎞
⎠

≤ C H f (T )
∥∥α1/2∇φ

∥∥
0,�.

(4.17)

For any F ∈ (EI ∪EN )\E int , it follows from the continuity of φ−φI on F , Cauchy–Schwarz
inequality, and (4.13) that∫

F
jn,F {φ − φI } ds =

∫
F

jn,F (φ − φI )|KF,1 ds ≤ Ch1/2
F

∥∥ jn,F
∥∥
0,F

∥∥∇φ
∥∥
0,ωK F,1

≤Ch1/2
F

∥∥α
−1/2
F jn,F

∥∥
0,F

∥∥α1/2∇φ
∥∥
0,ωK F,1

.

(4.18)
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For any F ∈ E int , it then follows from the Cauchy–Schwarz and Young’s inequality and
(4.13) that

∫
F

jn,F {φ − φI } ds

=
∫

F+
jn,F {φ − φI } ds +

∫
F−

jn,F {φ − φI } ds

≤ ‖ jn,F‖0,F+
(∥∥(φ − φI )|KF,1

∥∥
0,F+ + ∥∥(φ − φI )|0,KF,2

∥∥
0,F+

)

+‖ jn,F‖0,F−
(

‖(φ − φI )|KF,1

∥∥
0,F− + ‖(φ − φI )|KF,2

∥∥
0,F−

)

≤ C

(
1

α+ ‖ jn,F‖20,F+ + 1

α− ‖ jn,F‖20,F−

)1/2
⎛
⎝ ∑

K∈{KF,1,KF,2}

∥∥α1/2(φ − φI )|K
∥∥2
0,F

⎞
⎠

1/2

≤ Ch1/2
F

∥∥α̃
−1/2
F jn,F

∥∥
0,F‖α1/2∇φ‖0,ωF ,

whereωF = ωKF,1 ∪ωKF,2 , which, together with (4.18) and the Cauchy–Schwarz inequality,
yields

I2 ≤ C

⎛
⎝ ∑

F∈EI ∪EN

hF
∥∥α̃

−1/2
F jn,F

∥∥2
0,F

⎞
⎠

1/2

‖α1/2∇φ‖0,�. (4.19)

To bound I3, we apply the following trace inequality for functions in the IFEM space (see
Lemma 3.2 in [25]). Let v ∈ SD(T ) be arbitrary, then

∥∥α̃∇v|K · nF
∥∥
0,F ≤ Ch−1/2

F

∥∥α̃∇v
∥∥
0,K , ∀ F ∈ E int . (4.20)

It now follows from the Cauchy–Schwarz inequality, (4.20), and (4.12) that

I3 ≤
∑

F∈E int

‖[[uT ]]‖0,F

(∥∥α̃∇φI |KF,1 · nF
∥∥
0,F + ∥∥α̃∇φI |KF,2 · nF

∥∥
0,F

)

≤
∑

F∈E int

C h−1/2
F ‖[[uT ]]‖0,F

(
‖α̃∇φI ‖0,KF,1

+ ‖α̃∇φI ‖0,KF,2

)

≤ C

⎛
⎝ ∑

F∈E int

h−1
F ‖α̃1/2

F [[uT ]]‖20,F

⎞
⎠

1/2

‖α1/2∇φ‖0,�.

Together with (4.14) we obtain

I3 ≤ C

⎛
⎝ ∑

F∈E int

hF‖α̃1/2
F jt,F‖20,F

⎞
⎠

1/2

‖α1/2∇φ‖0,�. (4.21)

To bound I4, we use the fact that
∫

F
α̃[[uT ]][[φI ]] ds = −

∫
F

α̃[[uT ]][[φ − φI ]] ds ∀ F ∈ E int ,
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the Cauchy–Schwarz and triangle inequalities, and (4.13) to obtain

I4 = −
∑

F∈E int

γ

hF

∫
F

α̃ [[uT ]][[φ − φI ]] ds

≤ C
∑

F∈E int

γ

hF
‖α̃1/2

F [[uT ]]‖0,F
(‖α1/2(φ − φI )|KF,1‖0,F

+‖α1/2(φ − φI )|KF,2‖0,F
)

≤ C

( ∑
F∈E int

h−1
F ‖α̃1/2

F [[uT ]]‖20,F

)1/2

‖α1/2∇φ‖0,�,

which, combining with (4.14), yields

I4 ≤ C

⎛
⎝ ∑

F∈E int

hF‖α̃1/2
F jt,F‖20,F

⎞
⎠

1/2

‖α1/2∇φ‖0,�. (4.22)

Finally, (4.16) is a direct consequence of (4.17), (4.19), (4.21), (4.22) and the Young’s
inequality. This completes the proof of the lemma. 
�
Lemma 4.6 Let ψ be given in (4.1). There exists a constant C independent of the mesh size
and the location of the interface such that

‖α−1/2∇⊥ψ‖0,� ≤ C

( ∑
F∈E int

hF‖α̃1/2
F jt,F‖20,F +

∑
K∈T int

‖α̃1/2∇uT ‖20,SK

)1/2

. (4.23)

Proof For the first term in (4.4) it follows from the duality inequality, (4.15), the trace and
Young’s inequalities that

∑
F∈E int

∫
F
[[uT ]](∇⊥ψ · nF ) ds ≤

∑
F∈E int

∥∥[[uT ]]∥∥1/2,F

∥∥∥∇⊥ψ · nF

∥∥∥−1/2,F

≤ C
∑

F∈E int

h1/2
F

∥∥ jt,F
∥∥
0,F

∥∥∇⊥ψ
∥∥
0,KF,1

≤ C

( ∑
F∈E int

hF‖α̃1/2
F jt,F‖20,F

)1/2

‖α−1/2∇⊥ψ‖0,�.

(4.24)

For the second term in (4.4) it follows from the Cauchy–Schwarz inequality that

((1 − α̃/α)∇uT ,∇⊥ψ) ≤ C
∑

K∈T int

‖α̃1/2∇uT ‖0,SK ‖α−1/2∇⊥ψ‖0,SK

≤ C

⎛
⎝ ∑

K∈T int

‖α̃1/2∇uT ‖20,SK

⎞
⎠

1/2

‖α−1/2∇⊥ψ‖0,�.

(4.25)

Combining (4.24)–(4.25) and (4.4) gives (4.23). This completes the proof of the lemma. 
�
Theorem 4.7 (Global Reliability) There exists a constant Cr > 0 that is independent of the
location of the interface and the mesh size, such that

‖α1/2(∇u − ∇huT )‖0,� ≤ Cr (η + H f (T )). (4.26)
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Proof First by adding and subtracting proper terms we have

‖α1/2(∇u − ∇huT )‖20,�
= (α∇u − α̃∇huT ,∇u − ∇huT ) + ((α̃ − α)∇huT ,∇u − ∇huT )

= (α∇u − α̃∇huT , α−1(α∇u − α̃∇huT ))

+ (α∇u − α̃∇huT , (α̃/α − 1)∇huT )) + ((α̃ − α)∇huT ,∇u − ∇huT )

= (α∇u − α̃∇huT , α−1(α∇u − α̃∇huT )) + 2(∇u − ∇huT , (α̃ − α)∇huT )

− (α−1(α̃ − α)∇huT , (α̃ − α)∇huT ))

≤ (α∇u − α̃∇huT , α−1(α∇u − α̃∇huT )) + 2(∇u − ∇huT , (α̃ − α)∇huT ).

(4.27)

By (4.1) and (4.2) we have

(α∇u − α̃∇huT , α−1(α∇u − α̃∇huT )) = (α∇φ + ∇⊥ψ,∇φ + α−1∇⊥ψ)

= ‖α1/2∇φ‖20,� + ‖α−1/2∇⊥ψ‖20,�.
(4.28)

Applying the Cauchy–Schwarz and Young’s inequalities also gives

(∇u − ∇huT , (α̃ − α)∇huT ) ≤ C

⎛
⎝ ∑

K∈T int

‖α̃∇huT ‖20,SK

⎞
⎠

1/2

‖α1/2(∇u − ∇huT )‖0,�.

(4.29)
Equation (4.26) is then a direct result of (4.27)–(4.29), Lemmas 4.5, 4.6 and the Young’s
inequality. This completes the proof of theorem. 
�

5 Local Efficiency

In this section, we establish the efficiency bound for the error indicators ηK defined in (3.1)
for every element K ∈ T . For non-interface elements, the efficiency bound for ηK is well
known (see [6]) and the key technique is using the local edge and element bubble functions.
However, the same technique without modification becomes invalid for interface elements
because jumps of the normal flux and the tangential derivative on the interface edges become
piecewise constant. To overcome this difficulty it is natural to design more localized bubble
functions that allow us to derive the efficiency bounds on F+ and F− separately for each
F ∈ E int .

For each F ∈ E int we first design auxiliary element and edge bubble functions associated
to F−. Choose K̃ F,1 ⊂ K F,1 and K̃ F,2 ⊂ K F,2 to be two regular triangular sub-elements
such that F− is a common edge of both K̃ F,1 and K̃ F,2, to be more precise,

∂ K̃ F,1 ∩ ∂ K̃ F,2 = F− and (∂ K̃ F,1 ∪ ∂ K̃ F,2) ∩ F+ = ∅.

Note that K̃ F,1 and K̃ F,2 are not necessarily in K −
F,1 and K −

F,2, respectively. The key require-

ment here is to make sub-elements K̃ F,1, K̃ F,2 regular while K −
F,1 and K −

F,2 may not be in

general. For each sub-element K̃ ∈ {K̃ F,1, K̃ F,2}, define the auxiliary element bubble func-
tion υK̃ such that (i) υK̃ ∈ P3(K̃ ), (ii) υK̃ |

∂ K̃ ≡ 0 and (iii) υK̃ takes the value 1 at the
barycentric center of K̃ . We also define the auxiliary edge bubble function υF− for F− such
that (i) υF−|K̃ ∈ P2(K̃ ) for K̃ ∈ {K̃ F,1, K̃ F,2}, (ii) υF−|

∂(K̃F,1∪K̃F,2)
≡ 0 and (iii) υF− takes

value 1 at the middle point of F−. It is easy to verify that υK̃ for K̃ ∈ {K̃ F,1, K̃ F,2} and υF−
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uniquely exist. Let wF− = ( jn,F |F−)vF− and wK̃ = vK̃ fK with fK being the average of f
on K .

Applying the continuity of α∇u · nF , the divergence theorem, and the Cauchy–Schwarz
inequality gives

‖ jn,F‖20,F− ≤ C
∫

F−
[[α̃∇uT · nF ]]wF− ds

= C
∫

F−
([[α̃∇uT · nF ]] − [[α∇u · nF ]])wF− ds

= C
∫

K̃F,1∪K̃F,2

(α̃∇huT − α∇u) · ∇wF− dx +
∫

K̃F,1∪K̃F,2

f wF− dx

≤ C‖α̃∇huT − α∇u‖0,K̃F,1∪K̃F,2
‖∇wF−‖0,K̃F,1∪K̃F,2

+‖ f ‖0,K̃F,1∪K̃F,2
‖wF−‖0,K̃F,1∪K̃F,2

,

which, combining with the properties of wF− that

‖∇wF−‖0,K̃F,1∪K̃F,2
≤ C

1

h−
F

‖wF−‖0,K̃F,1∪K̃F,2
≤ C

1√
h−

F

‖ jn,F‖0,F− ,

yields

‖ jn,F‖0,F− ≤ C

⎛
⎝ 1√

h−
F

‖α̃∇huT − α∇u‖0,K̃F,1∪K̃F,2
+

√
h−

F‖ f ‖0,K̃F,1∪K̃F,2

⎞
⎠ . (5.1)

Wenowestablish the efficiency bound for the element residual‖ f ‖0,K̃ for K̃ ∈ {K̃ F,1, K̃ F,2}.
By the property of wK̃ , the triangle inequality, the divergence theorem, and the Cauchy–
Schwarz inequality, we have

‖ fK ‖2
0,K̃

≤ C

(∫
K̃

f wK̃ dx + ‖ f − fK ‖0,K̃ ‖wK̃ ‖0,K̃
)

≤ C

(∫
K̃

∇ · (α̃∇uT − α∇u)wK̃ dx + ‖ f − fK ‖0,K̃ ‖wK̃ ‖0,K̃
)

≤ C
(
‖α̃∇uT − α∇u‖0,K̃ ‖∇wK̃ ‖0,K̃ + ‖ f − fK ‖0,K̃ ‖wK̃ ‖0,K̃

)
,

which, combining with similar properties for wK̃ :

‖∇wK̃ ‖0,K̃ ≤ C
1

h−
F

‖wK̃ ‖0,K̃ ≤ C
1

h−
F

‖ fK ‖0,K̃ ,

gives

h−
F‖ fK ‖0,K̃ ≤

(
‖α̃∇uT − α∇u‖0,K̃ + h−

F‖ f − fK ‖0,K̃
)

. (5.2)

By (5.1) and (5.2), we have

√
h−

F‖ jn,F‖0,F− ≤ C
∑

K∈{KF,1,KF,2}

(
‖α∇u − α̃∇uT ‖0,K̃ + h−

F‖ f − fK ‖0,K̃
)

.
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Adding proper weights gives√
h−

F‖α̃−1/2
F jn,F‖0,F−

≤ C
∑

K∈{KF,1,KF,2}

(‖α1/2(∇u − ∇uT )‖0,K + ‖α̃1/2∇uT ‖0,SK + H f ,K
)

(5.3)

where

H f ,K = hK ‖α−1/2( f − fK )‖0,K , ∀ K ∈ T

and the constant C is independent of the mesh size and the location of the interface but may
depend on ρ. Similarly, one can prove that

‖ jt,F‖0,F− ≤ C
∑

K̃∈{K̃F,1,K̃F,2}

1√
h−

F

‖∇u − ∇uT ‖0,K̃

and, after adding proper weights, that√
h−

F‖α̃1/2
F jt,F‖0,F− ≤ C

∑
K∈{KF,1,KF,2}

‖α1/2(∇u − ∇uT )‖0,K . (5.4)

Similarly, by defining auxiliary bubble functions on F+, we also have the following local
efficiency results on F+:√

h+
F‖α̃−1/2

F jn,F‖0,F+ ≤ C
∑

K∈{KF,1,KF,2}

(‖α1/2∇(u − uT )‖K + ‖α̃1/2∇uT ‖SK + H f ,K
)

(5.5)
and √

h+
F‖α̃1/2

F jt,F‖0,F+ ≤ C
∑

K∈{KF,1,KF,2}
‖α1/2(∇u − ∇uT )‖0,K . (5.6)

For the first case we assume that for each F ∈ E int , there exist positive constants λ and
� such that

λ ≤ h+
F

h−
F

≤ �. (5.7)

Lemma 5.1 Let u and uT be the solution in (2.3) and (2.6), respectively. Then there exists a
constant C1 that is independent of the mesh size but may depend on λ,�, and ρ such that

ηK ≤C1

⎛
⎝‖α1/2(∇u − ∇huT )‖0,ωK +

∑
K⊂ωK

‖α̃1/2∇uT ‖0,SK +
∑

K⊂ωK

H f ,K

⎞
⎠ , ∀ K ∈ T .

(5.8)

Proof In the case that K is not an interface element, (5.8) is a well known result (see, e.g.,
[8]). In the case that K is an interface element, by (5.3) and (5.5), we have

h1/2
F ‖ã−1/2

F jn,F‖0,F = h1/2
F

(
‖α̃−1/2

F jn,F‖20,F+ + ‖α̃−1/2
F jn,F‖20,F−

)1/2
≤ C1

∑
K∈{KF,1,KF,2}

(‖α1/2∇eT ‖0,K + ‖α̃1/2∇uT ‖0,K + H f ,K
)
,
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where C1 is independent of the mesh size but might depend on ρ, λ, and �. Similarly, by
(5.4) and (5.6), we have

h1/2
F ‖α̃1/2

F jt,F‖0,F ≤ C1

∑
K∈{KF,1,KF,2}

‖α1/2∇eT ‖0,K , (5.9)

where C1 is independent of the mesh size but might depend on ρ, λ, and �. This completes
the proof of the lemma. 
�

In the above lemma, the efficient constantC1 blows upwhen the λ and� become extreme.
However, we note that in the extreme circumstances the related basis functions for IFEM are
very “close” to classical FE nodal basis functions thanks to its consistency with standard FE
basis functions (see [21] for more detail). The partially penalized IFEM solution then should
be also “close” to the classical finite element solution on fitted meshes. In the following
lemma, we prove the efficiency in a different approach that yields a bounded coefficient
constant when the λ and � are extreme.

Lemma 5.2 There exists a constant C2 that is independent of the mesh size and the location
of the interface such that for each interface edge F ∈ E int the following efficiency bound
holds:

‖ jn,F‖0,F + ‖ jt,F‖0,F

≤ C2

∑
K∈{KF,1,KF,2}

(‖α1/2(∇u − ∇huT )‖0,K

+‖α̃1/2∇uT ‖0,SK +H f ,K + h1/2
F min

{√
h−

F ,

√
h+

F

})
.

(5.10)

Proof Without loss of generality assume that h+
F ≥ h−

F . Let K ∈ {K F,1, K F,2}. Define
K̂ ⊂ K to be the triangle such that (i) F+ is a complete edge of K̂ and (ii) the vertex in K
that is opposite to F , denote by zF,K , is also a vertex of K̂ . It is obvious that K̂ is regular. Also
define ûK to be a piecewise linear function such that ûK ≡ uT on K + (or K̂ ), if K̂ ⊂ K +
(or K + ⊂ K̂ ) and that ûK |F is linear. It is obvious that ûK uniquely exists. Finally define
ûT such that ûT |K = ûK , K ∈ {K F,1, K F,2}. By the triangle inequality, we have

‖[[α̃1/2DnuT ]]‖0,F ≤ ‖[[α̃1/2DnûT ]]‖0,F + ‖[[α̃1/2Dn(uT − ûT )]]‖0,F

≤ ‖[[α̃1/2DnûT ]]‖0,F +
∑

K∈{KF,1,KF,2}
‖α̃1/2∇(uT − ûT )|K ‖0,F .

(5.11)
Then by the definition of ûT and a direct computation, we have for each K ∈ {K F,1, K F,2}:

‖α̃1/2∇(uT − ûT )|K ‖0,F �

√
h−

F

ρK −
|(uT − ûT )(z−

F )|, (5.12)

where ρK − denotes that radius of the largest ball inscribed in K −. This, combining with the
fact that |(uT − ûT )(z−

F )| � ρK − (See [21,24] for the consistence of FE and IFE functions
when one piece of the interface element is small.) yields

‖α1/2∇(uT − ûT )|K ‖0,F �
√

h−
F . (5.13)
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Now applying the fact that [[DnûT ]]|F is a constant and the standard efficiency result on
K̂ F,1 and K̂ F,2 gives

h1/2
F ‖[[α̃1/2DnûT ]]‖0,F � h1/2

F ‖[[α̃1/2DnuT ]]‖0,F+

� ‖α1/2∇u − α̃1/2∇uT ‖K̂F,1∪K̂F,2
+ hF‖ f ‖K̂F,1∪K̂F,2

�
∑

K∈{KF,1,KF,2}
‖α1/2∇(u − uT )‖K + ‖α̃1/2∇uT ‖0,SK + H f ,K .

(5.14)

Combing (5.11)–(5.14) we have

h1/2
F ‖[[α̃1/2DnuT ]]‖0,F

≤ C2

∑
K∈{KF,1,KF,2}

(
‖α1/2∇(u − uT )‖K + h1/2

F

√
h−

F + H f ,K + ‖α̃1/2∇uT ‖0,SK

)

(5.15)
where the constant C2 is independent of the mesh size and the location of the interface.

Similarly we can prove that

h1/2
F ‖α̃1/2

F jt,F‖0,F ≤ C2

∑
K∈{KF,1,KF,2}

(
‖α1/2∇(u − uT )‖0,K + h1/2

F

√
h−

F

)
, (5.16)

where the constant C2 is also independent of the mesh size and the location of the interface.
Finally (5.10) is a direct result of (5.15) and (5.16). 
�

Remark 5.1 (5.15) indicates that for the case when λ and � are extreme the term h1/2
F

√
h−

F
becomes negligible, and, therefore, C2 can be used as an effective efficiency constant.

Theorem 5.3 Let u and uT be the solution in (2.3) and (2.6), respectively. The following
efficiency bound holds for any K ∈ T int :

ηK ≤ min{C1, C2}
(‖α1/2∇(u − uT )‖0,ωK + δK

)
. (5.17)

where

δK =
∑

K⊂ωK

‖α̃1/2∇uT ‖0,SK + χ(C2 ≤ C1)h
1/2
F

√
h−

F +
∑

K⊂ωK

H f ,K ,

χ is the characteristic function and C1 and C2 are the efficiency constants in Lemma 5.1 and
Lemma 5.2, respectively.

6 Numerical Results

In this section, we report some numerical results to demonstrate the performance of the
residual-based error estimator for partially penalized IFEM.

For the first three examples, we consider a diffusion interface problem with a smooth
elliptical interface curve which has been reported in [25,27]. Let � = [−1, 1]2, and the
interface � is an ellipse centered at (x0, y0) = (0, 0) with horizontal semi-axis a = π

6.28 and
the vertical semi-axis b = 3

2a. The interface separates � into two sub-domains, denoted by
�− and �+ such that

�− = {(x, y) : r(x, y) < 1} and �+ = {(x, y) : r(x, y) > 1},
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where

r(x, y) =
√

(x − x0)2

a2 + (y − y0)2

b2
.

The exact solution to this interface problem is

u(x, y) =
{

1
β− r p, if (x, y) ∈ �−,
1

β+ r p + 1
β− − 1

β+ , if (x, y) ∈ �+.
(6.1)

Here β± > 0 are the diffusion coefficients, and p > 0 is the regularity parameter. In the

following, we use ρ = β+
β− to denote the ratio of the coefficient jump.

Our adaptive mesh refinement follows the standard procedure:

Solve −→ Estimate −→ Mark −→ Refine.

We solve the interface problem using IFEM in (2.6), then we compute the residual-based
error indicator ηK on each element by (3.1). We adopt the equilibration marking strategy,
i.e., construct a minimal subset T̂ of T such that∑

K∈T̂
η2K ≥ θ2η2 (6.2)

where the threshold θ = 0.5. Finallywe refine themarked triangles by newest vertex bisection
[28]. The initial mesh is formed by first partitioning the domain into a 4 × 4 congruent
rectangles, then cutting each rectangle into two congruent triangles by connecting its diagonal
with positive slope.

Example 6.1 (Piecewise smooth solution with a moderate jump) In this example, we let
ρ = 100 and p = 5 which represents a moderate coefficient contrast and piecewise smooth
solution. In Fig. 3, we list, from left to right, some typical meshes of a similar number of
elements and degrees of freedom (DOF) generated by the uniform IFEM, the adaptive IFEM,
and the adaptive FEM on unfitted mesh [13]. We observe that there is not much local mesh
refinement around the interface for the adaptive IFEM in the middle of Fig. 3, compared with
the uniformmesh in the left plot. This indicates that the errors of the partially penalized IFEM
on uniform mesh are almost equally distributed, and IFEM itself can resolve the interface
accurately formoderate coefficient jump.Whereas using the finite elementmethod on unfitted
meshes requires much more local mesh refinement around the interface (see the plot on the
right of Fig. 3) to resolve the non-smooth feature of interface problems.

In Fig. 4, we report the convergence of these three methods and the residual-based error
estimator for the adaptive IFEM. The slopes of the log(DOF)-log(‖α1/2(∇u − ∇huT )‖0,�)

and the log(DOF)-log(η) for the adaptive IFEM are both very close to−1/2, which indicates
the optimal-order decay of errors with respect to the number of unknowns and, hence, the
efficiency of our local error indicators. We use the following efficiency index,

eff-index = η

‖α1/2(∇u − ∇huT )‖0,�
to test the efficiency of our residual-based error estimator. The eff-index is very stable at every
mesh level and the value is around 3.We note that the errors of uniform IFEMare very close to
the errors of adaptive IFEM. This again indicates that the IFEM itself can resolve the interface
accurately for moderate coefficient jumps and piecewise smooth solutions. However, using
the standard FEM, the magnitudes of errors are much larger than those of IFEM, with similar
degrees of freedom.
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mesh level 6:  #Cell = 32768,  DOF = 16641 mesh level 19:  #Cell = 25130,  DOF = 12746 mesh level 30:  #Cell = 25584,  DOF = 12893

Fig. 3 Uniform mesh for IFEM (left), adaptive mesh for IFEM (center), adaptive mesh for FEM [13] (right)
for Example 6.1
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Fig. 4 Convergence of uniform IFEM, adaptive IFEM, and adaptive FEM for Example 6.1

Example 6.2 (Piecewise smooth solution with a large jump) In this example, we test the large
jump case by choosing ρ = 106. In this case, the true solution possesses a very steep gradient
at the interface.

The left plot of Fig. 5 shows a typical mesh for the adaptive IFEM, which, compared with
Fig. 3, has much denser refinement around the interface. In the right plot of Fig. 5, we observe
the optimal-rate decay of the errors and the estimators. Nevertheless, even if the convergence
rate is optimal for the uniform IFEM, themagnitudes of errors are significantly larger than the
errors of adaptive IFEM. Hence, applying adaptive mesh refinement is computationally more
efficient for interface problems with large coefficient jump even for IFEM. The efficiency
indices are between 2.5 and 3.5 on all meshes except the first few coarse ones, and they
become more stable (close to 3) as the computations reach the asymptotical convergence
region. This phenomenon indicates the robustness of the error estimation with respect to the
ratio of the coefficient jump.
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mesh level 33:  #Cell = 27416,  DOF = 13739
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Fig. 5 Mesh generated by the adaptive IFEM (left) and the convergence of adaptive and uniform IFEM (right)
for Example 6.2

Fig. 6 Numerical solutions of uniform (left) and adaptive (right) IFEM with similar DOFs for Example 6.2

Furthermore, the numerical solutions and the error surfaces on the uniform and adaptive
meshes with similar DOFs are depicted in Figs. 6 and 7, respectively. We can observe that
the error is significantly diminished for the adaptive solution.

Example 6.3 (Solution with singularity and a large coefficient jump) In this example, we
consider the interface problem with a large coefficient jump and a solution singularity. We
choose ρ = 106 and p = 0.5 in the exact solution (6.1). Note that the solution is merely in
H1.5−ε(�) for any ε > 0 and the solution becomes singular at the origin.

The left plot of Fig. 8 shows a typical mesh of the adaptive IFEM, and we observe that
the mesh is densely refined around the interface as well as the point of singularity. The right
plot of Fig. 8 shows the optimal-rate decay of the errors and the estimators of our adaptive
IFEM. Again, the averaging effectivity index is close to 3, which is similar to that in previous
examples. This indicates the uniform effectivity of the error estimate with respect to the type
of elements, i.e., interface and non-interface elements. The comparison of error in the right
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Fig. 7 Point-wise errors of uniform (left) and adaptive (right) IFEM with similar DOFs for Example 6.2

mesh level 34:  #Cell = 31586,  DOF = 15804
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Fig. 8 Mesh generated by the adaptive IFEM (left) and the convergence of adaptive and uniform IFEM (right)
for Example 6.3

plot of Fig. 8 shows a stronger superiority of the adaptive mesh refinement than the uniform
mesh refinement. In fact, the convergence of IFEM with uniform mesh refinement is not
optimal, due to the singularity of the solution.

The numerical solutions and error surfaces for the adaptive IFEM and uniform IFEM
are depicted in Figs. 9 and 10, respectively. It is easy to see that the numerical solution on
the uniform mesh cannot resolve the behavior of exact solution accurately at the singularity
point, and the error of the uniform solution possesses a very high peak around the singular
point, while we can barely observe this phenomenon from the adaptive solution.

Example 6.4 (Solution with complicated interface shape) In this example, we consider an
interface problem with a more complicated interfacial shape. The exact solution has a petal-
shaped interface and it is defined through the following level set function:

u(x, y) =
{

1
β− φ(x, y), if φ(x, y) < 0,
1

β+ φ(x, y), if φ(x, y) ≥ 0,
in � = [−1 , 1]2 (6.3)
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Fig. 9 Numerical solutions of uniform (left) and adaptive (right) IFEM with similar DOFs for Example 6.3

Fig. 10 Point-wise errors of uniform (left) and adaptive (right) IFEM with similar DOFs for Example 6.3

where

φ(x, y) = (x2 + y2)2
(
1 + 0.5 sin

(
12 tan−1

( y

x

)))
− 0.3.

Due to the complexity of interface shape, we start the AMR procedure with a finer initial
mesh, a 16 × 16 Cartesian triangular mesh. A typical mesh is depicted on the left plot of
Fig. 11. Comparing with Example 6.1, in which the interface is an ellipse (see Fig. 3), the
refinement around the interface is denser. This is because the larger curvature of the interface
causes the larger value of the inconsistency term in the error indicator in (3.1).

The convergence plot depicted in the right plot of Fig. 11 indicates the optimal-rate decay
for both the errors and estimators. The errors of the adaptive solution are a little smaller
than the errors of the uniform solution with similar degrees of freedom, although the latter
also converge in an optimal rate. Moreover, the efficient index for this example is close to 3
which is similar to those in the previous examples. Numerical solutions and error surfaces
of uniform and adaptive IFEMs are reported in Figs. 12 and 13, respectively. We can again
see that the errors of adaptive IFEM are smaller than the errors of uniform IFEM has given
similar degrees of freedom.
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mesh level 15:  #Cell = 31432,  DOF = 15831
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Fig. 11 Mesh generated by the adaptive IFEM (left) and the convergence of adaptive and uniform IFEM for
Example 6.4

Fig. 12 Numerical solutions of uniform (left) and adaptive (right) IFEM with similar DOFs for Example 6.4

Example 6.5 (Effect of the inconsistent error terms) In this example, wewill explore the effect
of the inconsistent error term for different interface geometries by revisiting the Examples 6.1
and 6.4 which have a simple ellipse interface and a more complicated petal interface. We
consider the following error indicator

ξ2K =
∑

F∈EK ∩E int

(
hF

2
‖α̃−1/2

F jn,F‖20,F + hF

2
‖α̃1/2

F jt,F‖20,F

)

+
∑

F∈EK ∩EI \E int

hF

2
‖α̃−1/2

F jn,F‖20,F +
∑

F∈EK ∩EN

hF‖α̃−1/2
F jn,F‖20,F

(6.4)
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Fig. 13 Point-wise errors of uniform (left) and adaptive (right) IFEM for Example section 6 with similar DOFs
for Example 6.4

which is same as η2K in (3.1) but without the inconsistent error term ‖α̃1/2∇uT ‖2SK
. The

global error estimator is defined in the standard way:

ξ =
( ∑

K∈T
ξ2K

)1/2

.

First, we compare the convergences using the error estimator ξ and η for Example 6.1.
In the left plot of Fig. 14, the estimators ξ and η are very similar at all meshes, and the
errors of the corresponding IFEM solutions guided by these two estimators are also close.
We believe that due to the simple and smooth interface shape of this example (an ellipse
interface), the inconsistent error term is negligible. Next, we use the new error estimator ξ in
Example 6.4 In which the geometry of interface is more complicated. As we can see in the
right plot of Fig. 14, the error estimators η and ξ and the corresponding IFEM solutions show
notable differences, especially on the first few coarse meshes. In this sense, including the
geometrical correction (inconsistent error) term leads to better error indication particularly
on coarse meshes. We also note that as the mesh is adaptively refined, the error estimators η

and ξ become closer, as well as the IFEM solutions leading by these two estimators.

Example 6.6 (Additional Comments on Large Jump Scenarios) In this test, we revisit the
large jump scenario using the test problem from Example 6.2. To show that the necessity of
performing adaptive mesh strategy for IFEM, we use the true error in energy norm as our
error indicator, i.e.,

η∗
K = ‖α1/2(∇u − ∇huT )‖0,K ,

and the global error estimator is the true error in the energy norm, i.e.,

η∗ =
( ∑

K∈T
η∗2

K

)1/2

= ‖α1/2(∇u − ∇huT )‖0,�.

An adaptive mesh using the error estimator η∗ with a similar number of triangles are shown
in the left plot of Fig. 15. In both cases, the refinement is concentrated around the interface,
which is similar to the adaptive mesh in Fig. 5. This again shows that the partially penalized
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Fig. 14 Comparison of estimators η and ξ for Example 1 (left) and Example 4 (right)
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Fig. 15 Mesh generated by the adaptive IFEM (left) using true error as the error indicators and convergence
of IFEM solutions guided by η and by the true error η∗ for Example 6.2

IFEM itself may not be sufficient to obtain an accurate solution for extremely large jumps of
the coefficient. In this case, the adaptive mesh refinement is more advantageous. The right
plot of Fig. 15 shows the convergence of the errors governed by the estimator η and the true
error η∗. We can see that both converge at an optimal rate, although using the true error as
the estimator gives slightly more accurate solutions.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license, and indicate if changes were made.
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